Move Pro-Micro LEDs into own Board-Definition PROMICRO
[pub/lufa.git] / Bootloaders / DFU / BootloaderDFU.c
1 /*
2 LUFA Library
3 Copyright (C) Dean Camera, 2021.
4
5 dean [at] fourwalledcubicle [dot] com
6 www.lufa-lib.org
7 */
8
9 /*
10 Copyright 2021 Dean Camera (dean [at] fourwalledcubicle [dot] com)
11
12 Permission to use, copy, modify, distribute, and sell this
13 software and its documentation for any purpose is hereby granted
14 without fee, provided that the above copyright notice appear in
15 all copies and that both that the copyright notice and this
16 permission notice and warranty disclaimer appear in supporting
17 documentation, and that the name of the author not be used in
18 advertising or publicity pertaining to distribution of the
19 software without specific, written prior permission.
20
21 The author disclaims all warranties with regard to this
22 software, including all implied warranties of merchantability
23 and fitness. In no event shall the author be liable for any
24 special, indirect or consequential damages or any damages
25 whatsoever resulting from loss of use, data or profits, whether
26 in an action of contract, negligence or other tortious action,
27 arising out of or in connection with the use or performance of
28 this software.
29 */
30
31 /** \file
32 *
33 * Main source file for the DFU class bootloader. This file contains the complete bootloader logic.
34 */
35
36 #define INCLUDE_FROM_BOOTLOADER_C
37 #include "BootloaderDFU.h"
38
39 /** Flag to indicate if the bootloader is currently running in secure mode, disallowing memory operations
40 * other than erase. This is initially set to the value set by SECURE_MODE, and cleared by the bootloader
41 * once a memory erase has completed in a bootloader session.
42 */
43 static bool IsSecure = SECURE_MODE;
44
45 /** Flag to indicate if the bootloader should be running, or should exit and allow the application code to run
46 * via a soft reset. When cleared, the bootloader will abort, the USB interface will shut down and the application
47 * jumped to via an indirect jump to location 0x0000 (or other location specified by the host).
48 */
49 static bool RunBootloader = true;
50
51 /** Flag to indicate if the bootloader is waiting to exit. When the host requests the bootloader to exit and
52 * jump to the application address it specifies, it sends two sequential commands which must be properly
53 * acknowledged. Upon reception of the first the RunBootloader flag is cleared and the WaitForExit flag is set,
54 * causing the bootloader to wait for the final exit command before shutting down.
55 */
56 static bool WaitForExit = false;
57
58 /** Current DFU state machine state, one of the values in the DFU_State_t enum. */
59 static uint8_t DFU_State = dfuIDLE;
60
61 /** Status code of the last executed DFU command. This is set to one of the values in the DFU_Status_t enum after
62 * each operation, and returned to the host when a Get Status DFU request is issued.
63 */
64 static uint8_t DFU_Status = OK;
65
66 /** Data containing the DFU command sent from the host. */
67 static DFU_Command_t SentCommand;
68
69 /** Response to the last issued Read Data DFU command. Unlike other DFU commands, the read command
70 * requires a single byte response from the bootloader containing the read data when the next DFU_UPLOAD command
71 * is issued by the host.
72 */
73 static uint8_t ResponseByte;
74
75 /** Pointer to the start of the user application. By default this is 0x0000 (the reset vector), however the host
76 * may specify an alternate address when issuing the application soft-start command.
77 */
78 static AppPtr_t AppStartPtr = (AppPtr_t)0x0000;
79
80 /** 64-bit flash page number. This is concatenated with the current 16-bit address on USB AVRs containing more than
81 * 64KB of flash memory.
82 */
83 static uint8_t Flash64KBPage = 0;
84
85 /** Memory start address, indicating the current address in the memory being addressed (either FLASH or EEPROM
86 * depending on the issued command from the host).
87 */
88 static uint16_t StartAddr = 0x0000;
89
90 /** Memory end address, indicating the end address to read from/write to in the memory being addressed (either FLASH
91 * of EEPROM depending on the issued command from the host).
92 */
93 static uint16_t EndAddr = 0x0000;
94
95 /** Magic lock for forced application start. If the HWBE fuse is programmed and BOOTRST is unprogrammed, the bootloader
96 * will start if the /HWB line of the AVR is held low and the system is reset. However, if the /HWB line is still held
97 * low when the application attempts to start via a watchdog reset, the bootloader will re-start. If set to the value
98 * \ref MAGIC_BOOT_KEY the special init function \ref Application_Jump_Check() will force the application to start.
99 */
100 uint16_t MagicBootKey ATTR_NO_INIT;
101
102
103 /** Special startup routine to check if the bootloader was started via a watchdog reset, and if the magic application
104 * start key has been loaded into \ref MagicBootKey. If the bootloader started via the watchdog and the key is valid,
105 * this will force the user application to start via a software jump.
106 */
107 void Application_Jump_Check(void)
108 {
109 bool JumpToApplication = false;
110
111 #if (BOARD == BOARD_LEONARDO)
112 /* Enable pull-up on the IO13 pin so we can use it to select the mode */
113 PORTC |= (1 << 7);
114 Delay_MS(10);
115
116 /* If IO13 is not jumpered to ground, start the user application instead */
117 JumpToApplication = ((PINC & (1 << 7)) != 0);
118
119 /* Disable pull-up after the check has completed */
120 PORTC &= ~(1 << 7);
121 #elif ((BOARD == BOARD_XPLAIN) || (BOARD == BOARD_XPLAIN_REV1))
122 /* Disable JTAG debugging */
123 JTAG_DISABLE();
124
125 /* Enable pull-up on the JTAG TCK pin so we can use it to select the mode */
126 PORTF |= (1 << 4);
127 Delay_MS(10);
128
129 /* If the TCK pin is not jumpered to ground, start the user application instead */
130 JumpToApplication = ((PINF & (1 << 4)) != 0);
131
132 /* Re-enable JTAG debugging */
133 JTAG_ENABLE();
134 #else
135 {
136 /* If the reset source was the bootloader and the key is correct, clear it and jump to the application;
137 * this can happen in the HWBE fuse is set, and the HBE pin is low during the watchdog reset */
138 if ((MCUSR & (1 << WDRF)) && (MagicBootKey == MAGIC_BOOT_KEY))
139 JumpToApplication = true;
140
141 /* Clear reset source */
142 MCUSR &= ~(1 << WDRF);
143 }
144 #endif
145
146 /* Don't run the user application if the reset vector is blank (no app loaded) */
147 bool ApplicationValid = (pgm_read_word_near(0) != 0xFFFF);
148
149 /* If a request has been made to jump to the user application, honor it */
150 if (JumpToApplication && ApplicationValid)
151 {
152 /* Turn off the watchdog */
153 MCUSR &= ~(1 << WDRF);
154 wdt_disable();
155
156 /* Clear the boot key and jump to the user application */
157 MagicBootKey = 0;
158
159 // cppcheck-suppress constStatement
160 ((void (*)(void))0x0000)();
161 }
162 }
163
164
165 static volatile bool stayinbootloader;
166
167 /** Main program entry point. This routine configures the hardware required by the bootloader, then continuously
168 * runs the bootloader processing routine until instructed to soft-exit, or hard-reset via the watchdog to start
169 * the loaded application code.
170 */
171 int main(void)
172 {
173 /* Configure hardware required by the bootloader */
174 SetupHardware();
175
176 /* Turn on first LED on the board to indicate that the bootloader has started */
177 LEDs_SetAllLEDs(LEDS_LED1);
178
179 /* Enable global interrupts so that the USB stack can function */
180 GlobalInterruptEnable();
181
182 /* Run the USB management task while the bootloader is supposed to be running */
183 /*if bit_is_clear(PINB,PB5) // PB5 is Digital 9 on Arduino Pro Micro
184 {
185 loop_until_bit_is_set(PINB,PB5);
186
187 while ((RunBootloader || WaitForExit) && bit_is_set(PINB,PB5))
188 USB_USBTask();
189
190 loop_until_bit_is_clear(PINB,PB5);
191 }*/
192
193 stayinbootloader = false;
194
195 uint16_t i = 0;
196 while (RunBootloader || WaitForExit)
197 {
198 USB_USBTask();
199
200 if (!stayinbootloader)
201 {
202 _delay_ms(1);
203 if (i++ > 5000)
204 {
205 break;
206 }
207 }
208 else
209 {
210 i = 0;
211 }
212 }
213
214 /* Wait a short time to end all USB transactions and then disconnect */
215 _delay_us(1000);
216
217 /* Reset configured hardware back to their original states for the user application */
218 ResetHardware();
219
220 /* Start the user application */
221 AppStartPtr();
222 }
223
224 /** Configures all hardware required for the bootloader. */
225 static void SetupHardware(void)
226 {
227 /* Disable watchdog if enabled by bootloader/fuses */
228 MCUSR &= ~(1 << WDRF);
229 wdt_disable();
230
231 /* Disable clock division */
232 clock_prescale_set(clock_div_1);
233
234 /* Relocate the interrupt vector table to the bootloader section */
235 MCUCR = (1 << IVCE);
236 MCUCR = (1 << IVSEL);
237
238 /* Initialize the USB and other board hardware drivers */
239 USB_Init();
240 LEDs_Init();
241
242 /* Bootloader active LED toggle timer initialization */
243 TIMSK1 = (1 << TOIE1);
244 TCCR1B = ((1 << CS11) | (1 << CS10));
245 }
246
247 /** Resets all configured hardware required for the bootloader back to their original states. */
248 static void ResetHardware(void)
249 {
250 /* Shut down the USB and other board hardware drivers */
251 USB_Disable();
252 LEDs_Disable();
253
254 /* Disable Bootloader active LED toggle timer */
255 TIMSK1 = 0;
256 TCCR1B = 0;
257
258 /* Relocate the interrupt vector table back to the application section */
259 MCUCR = (1 << IVCE);
260 MCUCR = 0;
261 }
262
263 /** ISR to periodically toggle the LEDs on the board to indicate that the bootloader is active. */
264 ISR(TIMER1_OVF_vect, ISR_BLOCK)
265 {
266 LEDs_ToggleLEDs(LEDS_LED1 | LEDS_LED2);
267 }
268
269 /** Event handler for the USB_ControlRequest event. This is used to catch and process control requests sent to
270 * the device from the USB host before passing along unhandled control requests to the library for processing
271 * internally.
272 */
273 void EVENT_USB_Device_ControlRequest(void)
274 {
275 /* Ignore any requests that aren't directed to the DFU interface */
276 if ((USB_ControlRequest.bmRequestType & (CONTROL_REQTYPE_TYPE | CONTROL_REQTYPE_RECIPIENT)) !=
277 (REQTYPE_CLASS | REQREC_INTERFACE))
278 {
279 return;
280 }
281
282 stayinbootloader = true;
283
284 /* Activity - toggle indicator LEDs */
285 LEDs_ToggleLEDs(LEDS_LED1 | LEDS_LED2);
286
287 /* Get the size of the command and data from the wLength value */
288 SentCommand.DataSize = USB_ControlRequest.wLength;
289
290 switch (USB_ControlRequest.bRequest)
291 {
292 case DFU_REQ_DNLOAD:
293 Endpoint_ClearSETUP();
294
295 /* Check if bootloader is waiting to terminate */
296 if (WaitForExit)
297 {
298 /* Bootloader is terminating - process last received command */
299 ProcessBootloaderCommand();
300
301 /* Indicate that the last command has now been processed - free to exit bootloader */
302 WaitForExit = false;
303 }
304
305 /* If the request has a data stage, load it into the command struct */
306 if (SentCommand.DataSize)
307 {
308 while (!(Endpoint_IsOUTReceived()))
309 {
310 if (USB_DeviceState == DEVICE_STATE_Unattached)
311 return;
312 }
313
314 /* First byte of the data stage is the DNLOAD request's command */
315 SentCommand.Command = Endpoint_Read_8();
316
317 /* One byte of the data stage is the command, so subtract it from the total data bytes */
318 SentCommand.DataSize--;
319
320 /* Load in the rest of the data stage as command parameters */
321 for (uint8_t DataByte = 0; (DataByte < sizeof(SentCommand.Data)) &&
322 Endpoint_BytesInEndpoint(); DataByte++)
323 {
324 SentCommand.Data[DataByte] = Endpoint_Read_8();
325 SentCommand.DataSize--;
326 }
327
328 /* Process the command */
329 ProcessBootloaderCommand();
330 }
331
332 /* Check if currently downloading firmware */
333 if (DFU_State == dfuDNLOAD_IDLE)
334 {
335 if (!(SentCommand.DataSize))
336 {
337 DFU_State = dfuIDLE;
338 }
339 else
340 {
341 /* Throw away the filler bytes before the start of the firmware */
342 DiscardFillerBytes(DFU_FILLER_BYTES_SIZE);
343
344 /* Throw away the packet alignment filler bytes before the start of the firmware */
345 DiscardFillerBytes(StartAddr % FIXED_CONTROL_ENDPOINT_SIZE);
346
347 /* Calculate the number of bytes remaining to be written */
348 uint16_t BytesRemaining = ((EndAddr - StartAddr) + 1);
349
350 if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x00)) // Write flash
351 {
352 /* Calculate the number of words to be written from the number of bytes to be written */
353 uint16_t WordsRemaining = (BytesRemaining >> 1);
354
355 union
356 {
357 uint16_t Words[2];
358 uint32_t Long;
359 } CurrFlashAddress = {.Words = {StartAddr, Flash64KBPage}};
360
361 uint32_t CurrFlashPageStartAddress = CurrFlashAddress.Long;
362 uint8_t WordsInFlashPage = 0;
363
364 while (WordsRemaining--)
365 {
366 /* Check if endpoint is empty - if so clear it and wait until ready for next packet */
367 if (!(Endpoint_BytesInEndpoint()))
368 {
369 Endpoint_ClearOUT();
370
371 while (!(Endpoint_IsOUTReceived()))
372 {
373 if (USB_DeviceState == DEVICE_STATE_Unattached)
374 return;
375 }
376 }
377
378 /* Write the next word into the current flash page */
379 BootloaderAPI_FillWord(CurrFlashAddress.Long, Endpoint_Read_16_LE());
380
381 /* Adjust counters */
382 WordsInFlashPage += 1;
383 CurrFlashAddress.Long += 2;
384
385 /* See if an entire page has been written to the flash page buffer */
386 if ((WordsInFlashPage == (SPM_PAGESIZE >> 1)) || !(WordsRemaining))
387 {
388 /* Commit the flash page to memory */
389 BootloaderAPI_WritePage(CurrFlashPageStartAddress);
390
391 /* Check if programming incomplete */
392 if (WordsRemaining)
393 {
394 CurrFlashPageStartAddress = CurrFlashAddress.Long;
395 WordsInFlashPage = 0;
396
397 /* Erase next page's temp buffer */
398 BootloaderAPI_ErasePage(CurrFlashAddress.Long);
399 }
400 }
401 }
402
403 /* Once programming complete, start address equals the end address */
404 StartAddr = EndAddr;
405 }
406 else // Write EEPROM
407 {
408 while (BytesRemaining--)
409 {
410 /* Check if endpoint is empty - if so clear it and wait until ready for next packet */
411 if (!(Endpoint_BytesInEndpoint()))
412 {
413 Endpoint_ClearOUT();
414
415 while (!(Endpoint_IsOUTReceived()))
416 {
417 if (USB_DeviceState == DEVICE_STATE_Unattached)
418 return;
419 }
420 }
421
422 /* Read the byte from the USB interface and write to to the EEPROM */
423 eeprom_update_byte((uint8_t*)StartAddr, Endpoint_Read_8());
424
425 /* Adjust counters */
426 StartAddr++;
427 }
428 }
429
430 /* Throw away the currently unused DFU file suffix */
431 DiscardFillerBytes(DFU_FILE_SUFFIX_SIZE);
432 }
433 }
434
435 Endpoint_ClearOUT();
436
437 Endpoint_ClearStatusStage();
438
439 break;
440 case DFU_REQ_UPLOAD:
441 Endpoint_ClearSETUP();
442
443 while (!(Endpoint_IsINReady()))
444 {
445 if (USB_DeviceState == DEVICE_STATE_Unattached)
446 return;
447 }
448
449 if (DFU_State != dfuUPLOAD_IDLE)
450 {
451 if ((DFU_State == dfuERROR) && IS_ONEBYTE_COMMAND(SentCommand.Data, 0x01)) // Blank Check
452 {
453 /* Blank checking is performed in the DFU_DNLOAD request - if we get here we've told the host
454 that the memory isn't blank, and the host is requesting the first non-blank address */
455 Endpoint_Write_16_LE(StartAddr);
456 }
457 else
458 {
459 /* Idle state upload - send response to last issued command */
460 Endpoint_Write_8(ResponseByte);
461 }
462 }
463 else
464 {
465 /* Determine the number of bytes remaining in the current block */
466 uint16_t BytesRemaining = ((EndAddr - StartAddr) + 1);
467
468 if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x00)) // Read FLASH
469 {
470 /* Calculate the number of words to be written from the number of bytes to be written */
471 uint16_t WordsRemaining = (BytesRemaining >> 1);
472
473 union
474 {
475 uint16_t Words[2];
476 uint32_t Long;
477 } CurrFlashAddress = {.Words = {StartAddr, Flash64KBPage}};
478
479 while (WordsRemaining--)
480 {
481 /* Check if endpoint is full - if so clear it and wait until ready for next packet */
482 if (Endpoint_BytesInEndpoint() == FIXED_CONTROL_ENDPOINT_SIZE)
483 {
484 Endpoint_ClearIN();
485
486 while (!(Endpoint_IsINReady()))
487 {
488 if (USB_DeviceState == DEVICE_STATE_Unattached)
489 return;
490 }
491 }
492
493 /* Read the flash word and send it via USB to the host */
494 #if (FLASHEND > 0xFFFF)
495 Endpoint_Write_16_LE(pgm_read_word_far(CurrFlashAddress.Long));
496 #else
497 Endpoint_Write_16_LE(pgm_read_word(CurrFlashAddress.Long));
498 #endif
499
500 /* Adjust counters */
501 CurrFlashAddress.Long += 2;
502 }
503
504 /* Once reading is complete, start address equals the end address */
505 StartAddr = EndAddr;
506 }
507 else if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x02)) // Read EEPROM
508 {
509 while (BytesRemaining--)
510 {
511 /* Check if endpoint is full - if so clear it and wait until ready for next packet */
512 if (Endpoint_BytesInEndpoint() == FIXED_CONTROL_ENDPOINT_SIZE)
513 {
514 Endpoint_ClearIN();
515
516 while (!(Endpoint_IsINReady()))
517 {
518 if (USB_DeviceState == DEVICE_STATE_Unattached)
519 return;
520 }
521 }
522
523 /* Read the EEPROM byte and send it via USB to the host */
524 Endpoint_Write_8(eeprom_read_byte((uint8_t*)StartAddr));
525
526 /* Adjust counters */
527 StartAddr++;
528 }
529 }
530
531 /* Return to idle state */
532 DFU_State = dfuIDLE;
533 }
534
535 Endpoint_ClearIN();
536
537 Endpoint_ClearStatusStage();
538 break;
539 case DFU_REQ_GETSTATUS:
540 Endpoint_ClearSETUP();
541
542 while (!(Endpoint_IsINReady()))
543 {
544 if (USB_DeviceState == DEVICE_STATE_Unattached)
545 return;
546 }
547
548 /* Write 8-bit status value */
549 Endpoint_Write_8(DFU_Status);
550
551 /* Write 24-bit poll timeout value */
552 Endpoint_Write_8(0);
553 Endpoint_Write_16_LE(0);
554
555 /* Write 8-bit state value */
556 Endpoint_Write_8(DFU_State);
557
558 /* Write 8-bit state string ID number */
559 Endpoint_Write_8(0);
560
561 Endpoint_ClearIN();
562
563 Endpoint_ClearStatusStage();
564 break;
565 case DFU_REQ_CLRSTATUS:
566 Endpoint_ClearSETUP();
567
568 /* Reset the status value variable to the default OK status */
569 DFU_Status = OK;
570
571 Endpoint_ClearStatusStage();
572 break;
573 case DFU_REQ_GETSTATE:
574 Endpoint_ClearSETUP();
575
576 while (!(Endpoint_IsINReady()))
577 {
578 if (USB_DeviceState == DEVICE_STATE_Unattached)
579 return;
580 }
581
582 /* Write the current device state to the endpoint */
583 Endpoint_Write_8(DFU_State);
584
585 Endpoint_ClearIN();
586
587 Endpoint_ClearStatusStage();
588 break;
589 case DFU_REQ_ABORT:
590 Endpoint_ClearSETUP();
591
592 /* Reset the current state variable to the default idle state */
593 DFU_State = dfuIDLE;
594
595 Endpoint_ClearStatusStage();
596 break;
597 }
598 }
599
600 /** Routine to discard the specified number of bytes from the control endpoint stream. This is used to
601 * discard unused bytes in the stream from the host, including the memory program block suffix.
602 *
603 * \param[in] NumberOfBytes Number of bytes to discard from the host from the control endpoint
604 */
605 static void DiscardFillerBytes(uint8_t NumberOfBytes)
606 {
607 while (NumberOfBytes--)
608 {
609 if (!(Endpoint_BytesInEndpoint()))
610 {
611 Endpoint_ClearOUT();
612
613 /* Wait until next data packet received */
614 while (!(Endpoint_IsOUTReceived()))
615 {
616 if (USB_DeviceState == DEVICE_STATE_Unattached)
617 return;
618 }
619 }
620 else
621 {
622 Endpoint_Discard_8();
623 }
624 }
625 }
626
627 /** Routine to process an issued command from the host, via a DFU_DNLOAD request wrapper. This routine ensures
628 * that the command is allowed based on the current secure mode flag value, and passes the command off to the
629 * appropriate handler function.
630 */
631 static void ProcessBootloaderCommand(void)
632 {
633 /* Check if device is in secure mode */
634 if (IsSecure)
635 {
636 /* Don't process command unless it is a READ or chip erase command */
637 if (!(((SentCommand.Command == COMMAND_WRITE) &&
638 IS_TWOBYTE_COMMAND(SentCommand.Data, 0x00, 0xFF)) ||
639 (SentCommand.Command == COMMAND_READ)))
640 {
641 /* Set the state and status variables to indicate the error */
642 DFU_State = dfuERROR;
643 DFU_Status = errWRITE;
644
645 /* Stall command */
646 Endpoint_StallTransaction();
647
648 /* Don't process the command */
649 return;
650 }
651 }
652
653 /* Dispatch the required command processing routine based on the command type */
654 switch (SentCommand.Command)
655 {
656 case COMMAND_PROG_START:
657 ProcessMemProgCommand();
658 break;
659 case COMMAND_DISP_DATA:
660 ProcessMemReadCommand();
661 break;
662 case COMMAND_WRITE:
663 ProcessWriteCommand();
664 break;
665 case COMMAND_READ:
666 ProcessReadCommand();
667 break;
668 case COMMAND_CHANGE_BASE_ADDR:
669 if (IS_TWOBYTE_COMMAND(SentCommand.Data, 0x03, 0x00)) // Set 64KB flash page command
670 Flash64KBPage = SentCommand.Data[2];
671
672 break;
673 }
674 }
675
676 /** Routine to concatenate the given pair of 16-bit memory start and end addresses from the host, and store them
677 * in the StartAddr and EndAddr global variables.
678 */
679 static void LoadStartEndAddresses(void)
680 {
681 union
682 {
683 uint8_t Bytes[2];
684 uint16_t Word;
685 } Address[2] = {{.Bytes = {SentCommand.Data[2], SentCommand.Data[1]}},
686 {.Bytes = {SentCommand.Data[4], SentCommand.Data[3]}}};
687
688 /* Load in the start and ending read addresses from the sent data packet */
689 StartAddr = Address[0].Word;
690 EndAddr = Address[1].Word;
691 }
692
693 /** Handler for a Memory Program command issued by the host. This routine handles the preparations needed
694 * to write subsequent data from the host into the specified memory.
695 */
696 static void ProcessMemProgCommand(void)
697 {
698 if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x00) || // Write FLASH command
699 IS_ONEBYTE_COMMAND(SentCommand.Data, 0x01)) // Write EEPROM command
700 {
701 /* Load in the start and ending read addresses */
702 LoadStartEndAddresses();
703
704 /* If FLASH is being written to, we need to pre-erase the first page to write to */
705 if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x00))
706 {
707 union
708 {
709 uint16_t Words[2];
710 uint32_t Long;
711 } CurrFlashAddress = {.Words = {StartAddr, Flash64KBPage}};
712
713 /* Erase the current page's temp buffer */
714 BootloaderAPI_ErasePage(CurrFlashAddress.Long);
715 }
716
717 /* Set the state so that the next DNLOAD requests reads in the firmware */
718 DFU_State = dfuDNLOAD_IDLE;
719 }
720 }
721
722 /** Handler for a Memory Read command issued by the host. This routine handles the preparations needed
723 * to read subsequent data from the specified memory out to the host, as well as implementing the memory
724 * blank check command.
725 */
726 static void ProcessMemReadCommand(void)
727 {
728 if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x00) || // Read FLASH command
729 IS_ONEBYTE_COMMAND(SentCommand.Data, 0x02)) // Read EEPROM command
730 {
731 /* Load in the start and ending read addresses */
732 LoadStartEndAddresses();
733
734 /* Set the state so that the next UPLOAD requests read out the firmware */
735 DFU_State = dfuUPLOAD_IDLE;
736 }
737 else if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x01)) // Blank check FLASH command
738 {
739 uint32_t CurrFlashAddress = 0;
740
741 while (CurrFlashAddress < (uint32_t)BOOT_START_ADDR)
742 {
743 /* Check if the current byte is not blank */
744 #if (FLASHEND > 0xFFFF)
745 if (pgm_read_byte_far(CurrFlashAddress) != 0xFF)
746 #else
747 if (pgm_read_byte(CurrFlashAddress) != 0xFF)
748 #endif
749 {
750 /* Save the location of the first non-blank byte for response back to the host */
751 Flash64KBPage = (CurrFlashAddress >> 16);
752 StartAddr = CurrFlashAddress;
753
754 /* Set state and status variables to the appropriate error values */
755 DFU_State = dfuERROR;
756 DFU_Status = errCHECK_ERASED;
757
758 break;
759 }
760
761 CurrFlashAddress++;
762 }
763 }
764 }
765
766 /** Handler for a Data Write command issued by the host. This routine handles non-programming commands such as
767 * bootloader exit (both via software jumps and hardware watchdog resets) and flash memory erasure.
768 */
769 static void ProcessWriteCommand(void)
770 {
771 if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x03)) // Start application
772 {
773 /* Indicate that the bootloader is terminating */
774 WaitForExit = true;
775
776 /* Check if data supplied for the Start Program command - no data executes the program */
777 if (SentCommand.DataSize)
778 {
779 if (SentCommand.Data[1] == 0x01) // Start via jump
780 {
781 union
782 {
783 uint8_t Bytes[2];
784 AppPtr_t FuncPtr;
785 } Address = {.Bytes = {SentCommand.Data[4], SentCommand.Data[3]}};
786
787 /* Load in the jump address into the application start address pointer */
788 AppStartPtr = Address.FuncPtr;
789 }
790 }
791 else
792 {
793 if (SentCommand.Data[1] == 0x00) // Start via watchdog
794 {
795 /* Unlock the forced application start mode of the bootloader if it is restarted */
796 MagicBootKey = MAGIC_BOOT_KEY;
797
798 /* Start the watchdog to reset the AVR once the communications are finalized */
799 wdt_enable(WDTO_250MS);
800 }
801 else // Start via jump
802 {
803 /* Set the flag to terminate the bootloader at next opportunity if a valid application has been loaded */
804 if (pgm_read_word_near(0) == 0xFFFF)
805 RunBootloader = false;
806 }
807 }
808 }
809 else if (IS_TWOBYTE_COMMAND(SentCommand.Data, 0x00, 0xFF)) // Erase flash
810 {
811 /* Clear the application section of flash */
812 for (uint32_t CurrFlashAddress = 0; CurrFlashAddress < (uint32_t)BOOT_START_ADDR; CurrFlashAddress += SPM_PAGESIZE)
813 BootloaderAPI_ErasePage(CurrFlashAddress);
814
815 /* Memory has been erased, reset the security bit so that programming/reading is allowed */
816 IsSecure = false;
817 }
818 }
819
820 /** Handler for a Data Read command issued by the host. This routine handles bootloader information retrieval
821 * commands such as device signature and bootloader version retrieval.
822 */
823 static void ProcessReadCommand(void)
824 {
825 const uint8_t BootloaderInfo[3] = {BOOTLOADER_VERSION, BOOTLOADER_ID_BYTE1, BOOTLOADER_ID_BYTE2};
826 const uint8_t SignatureInfo[4] = {0x58, AVR_SIGNATURE_1, AVR_SIGNATURE_2, AVR_SIGNATURE_3};
827
828 uint8_t DataIndexToRead = SentCommand.Data[1];
829 bool ReadAddressInvalid = false;
830
831 if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x00)) // Read bootloader info
832 {
833 if (DataIndexToRead < 3)
834 ResponseByte = BootloaderInfo[DataIndexToRead];
835 else
836 ReadAddressInvalid = true;
837 }
838 else if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x01)) // Read signature byte
839 {
840 switch (DataIndexToRead)
841 {
842 case 0x30:
843 ResponseByte = SignatureInfo[0];
844 break;
845 case 0x31:
846 ResponseByte = SignatureInfo[1];
847 break;
848 case 0x60:
849 ResponseByte = SignatureInfo[2];
850 break;
851 case 0x61:
852 ResponseByte = SignatureInfo[3];
853 break;
854 default:
855 ReadAddressInvalid = true;
856 break;
857 }
858 }
859
860 if (ReadAddressInvalid)
861 {
862 /* Set the state and status variables to indicate the error */
863 DFU_State = dfuERROR;
864 DFU_Status = errADDRESS;
865 }
866 }