Don't run user application in the bootloader unless a valid app is present (thanks...
[pub/lufa.git] / Bootloaders / CDC / BootloaderCDC.c
1 /*
2 LUFA Library
3 Copyright (C) Dean Camera, 2014.
4
5 dean [at] fourwalledcubicle [dot] com
6 www.lufa-lib.org
7 */
8
9 /*
10 Copyright 2014 Dean Camera (dean [at] fourwalledcubicle [dot] com)
11
12 Permission to use, copy, modify, distribute, and sell this
13 software and its documentation for any purpose is hereby granted
14 without fee, provided that the above copyright notice appear in
15 all copies and that both that the copyright notice and this
16 permission notice and warranty disclaimer appear in supporting
17 documentation, and that the name of the author not be used in
18 advertising or publicity pertaining to distribution of the
19 software without specific, written prior permission.
20
21 The author disclaims all warranties with regard to this
22 software, including all implied warranties of merchantability
23 and fitness. In no event shall the author be liable for any
24 special, indirect or consequential damages or any damages
25 whatsoever resulting from loss of use, data or profits, whether
26 in an action of contract, negligence or other tortious action,
27 arising out of or in connection with the use or performance of
28 this software.
29 */
30
31 /** \file
32 *
33 * Main source file for the CDC class bootloader. This file contains the complete bootloader logic.
34 */
35
36 #define INCLUDE_FROM_BOOTLOADERCDC_C
37 #include "BootloaderCDC.h"
38
39 /** Contains the current baud rate and other settings of the first virtual serial port. This must be retained as some
40 * operating systems will not open the port unless the settings can be set successfully.
41 */
42 static CDC_LineEncoding_t LineEncoding = { .BaudRateBPS = 0,
43 .CharFormat = CDC_LINEENCODING_OneStopBit,
44 .ParityType = CDC_PARITY_None,
45 .DataBits = 8 };
46
47 /** Current address counter. This stores the current address of the FLASH or EEPROM as set by the host,
48 * and is used when reading or writing to the AVRs memory (either FLASH or EEPROM depending on the issued
49 * command.)
50 */
51 static uint32_t CurrAddress;
52
53 /** Flag to indicate if the bootloader should be running, or should exit and allow the application code to run
54 * via a watchdog reset. When cleared the bootloader will exit, starting the watchdog and entering an infinite
55 * loop until the AVR restarts and the application runs.
56 */
57 static bool RunBootloader = true;
58
59 /** Magic lock for forced application start. If the HWBE fuse is programmed and BOOTRST is unprogrammed, the bootloader
60 * will start if the /HWB line of the AVR is held low and the system is reset. However, if the /HWB line is still held
61 * low when the application attempts to start via a watchdog reset, the bootloader will re-start. If set to the value
62 * \ref MAGIC_BOOT_KEY the special init function \ref Application_Jump_Check() will force the application to start.
63 */
64 uint16_t MagicBootKey ATTR_NO_INIT;
65
66
67 /** Special startup routine to check if the bootloader was started via a watchdog reset, and if the magic application
68 * start key has been loaded into \ref MagicBootKey. If the bootloader started via the watchdog and the key is valid,
69 * this will force the user application to start via a software jump.
70 */
71 void Application_Jump_Check(void)
72 {
73 bool JumpToApplication = false;
74
75 #if ((BOARD == BOARD_XPLAIN) || (BOARD == BOARD_XPLAIN_REV1))
76 /* Disable JTAG debugging */
77 JTAG_DISABLE();
78
79 /* Enable pull-up on the JTAG TCK pin so we can use it to select the mode */
80 PORTF |= (1 << 4);
81 Delay_MS(10);
82
83 /* If the TCK pin is not jumpered to ground, start the user application instead */
84 JumpToApplication |= ((PINF & (1 << 4)) != 0);
85
86 /* Re-enable JTAG debugging */
87 JTAG_ENABLE();
88 #endif
89
90 /* If the reset source was the bootloader and the key is correct, clear it and jump to the application */
91 if ((MCUSR & (1 << WDRF)) && (MagicBootKey == MAGIC_BOOT_KEY))
92 JumpToApplication |= true;
93
94 /* Don't run the user application if the reset vector is blank (no app loaded) */
95 if (pgm_read_word_near(0) == 0xFFFF)
96 JumpToApplication = false;
97
98 /* If a request has been made to jump to the user application, honor it */
99 if (JumpToApplication)
100 {
101 /* Turn off the watchdog */
102 MCUSR &= ~(1<<WDRF);
103 wdt_disable();
104
105 /* Clear the boot key and jump to the user application */
106 MagicBootKey = 0;
107
108 // cppcheck-suppress constStatement
109 ((void (*)(void))0x0000)();
110 }
111 }
112
113 /** Main program entry point. This routine configures the hardware required by the bootloader, then continuously
114 * runs the bootloader processing routine until instructed to soft-exit, or hard-reset via the watchdog to start
115 * the loaded application code.
116 */
117 int main(void)
118 {
119 /* Setup hardware required for the bootloader */
120 SetupHardware();
121
122 /* Turn on first LED on the board to indicate that the bootloader has started */
123 LEDs_SetAllLEDs(LEDS_LED1);
124
125 /* Enable global interrupts so that the USB stack can function */
126 GlobalInterruptEnable();
127
128 while (RunBootloader)
129 {
130 CDC_Task();
131 USB_USBTask();
132 }
133
134 /* Disconnect from the host - USB interface will be reset later along with the AVR */
135 USB_Detach();
136
137 /* Unlock the forced application start mode of the bootloader if it is restarted */
138 MagicBootKey = MAGIC_BOOT_KEY;
139
140 /* Enable the watchdog and force a timeout to reset the AVR */
141 wdt_enable(WDTO_250MS);
142
143 for (;;);
144 }
145
146 /** Configures all hardware required for the bootloader. */
147 static void SetupHardware(void)
148 {
149 /* Disable watchdog if enabled by bootloader/fuses */
150 MCUSR &= ~(1 << WDRF);
151 wdt_disable();
152
153 /* Disable clock division */
154 clock_prescale_set(clock_div_1);
155
156 /* Relocate the interrupt vector table to the bootloader section */
157 MCUCR = (1 << IVCE);
158 MCUCR = (1 << IVSEL);
159
160 /* Initialize the USB and other board hardware drivers */
161 USB_Init();
162 LEDs_Init();
163
164 /* Bootloader active LED toggle timer initialization */
165 TIMSK1 = (1 << TOIE1);
166 TCCR1B = ((1 << CS11) | (1 << CS10));
167 }
168
169 /** ISR to periodically toggle the LEDs on the board to indicate that the bootloader is active. */
170 ISR(TIMER1_OVF_vect, ISR_BLOCK)
171 {
172 LEDs_ToggleLEDs(LEDS_LED1 | LEDS_LED2);
173 }
174
175 /** Event handler for the USB_ConfigurationChanged event. This configures the device's endpoints ready
176 * to relay data to and from the attached USB host.
177 */
178 void EVENT_USB_Device_ConfigurationChanged(void)
179 {
180 /* Setup CDC Notification, Rx and Tx Endpoints */
181 Endpoint_ConfigureEndpoint(CDC_NOTIFICATION_EPADDR, EP_TYPE_INTERRUPT,
182 CDC_NOTIFICATION_EPSIZE, 1);
183
184 Endpoint_ConfigureEndpoint(CDC_TX_EPADDR, EP_TYPE_BULK, CDC_TXRX_EPSIZE, 1);
185
186 Endpoint_ConfigureEndpoint(CDC_RX_EPADDR, EP_TYPE_BULK, CDC_TXRX_EPSIZE, 1);
187 }
188
189 /** Event handler for the USB_ControlRequest event. This is used to catch and process control requests sent to
190 * the device from the USB host before passing along unhandled control requests to the library for processing
191 * internally.
192 */
193 void EVENT_USB_Device_ControlRequest(void)
194 {
195 /* Ignore any requests that aren't directed to the CDC interface */
196 if ((USB_ControlRequest.bmRequestType & (CONTROL_REQTYPE_TYPE | CONTROL_REQTYPE_RECIPIENT)) !=
197 (REQTYPE_CLASS | REQREC_INTERFACE))
198 {
199 return;
200 }
201
202 /* Activity - toggle indicator LEDs */
203 LEDs_ToggleLEDs(LEDS_LED1 | LEDS_LED2);
204
205 /* Process CDC specific control requests */
206 switch (USB_ControlRequest.bRequest)
207 {
208 case CDC_REQ_GetLineEncoding:
209 if (USB_ControlRequest.bmRequestType == (REQDIR_DEVICETOHOST | REQTYPE_CLASS | REQREC_INTERFACE))
210 {
211 Endpoint_ClearSETUP();
212
213 /* Write the line coding data to the control endpoint */
214 Endpoint_Write_Control_Stream_LE(&LineEncoding, sizeof(CDC_LineEncoding_t));
215 Endpoint_ClearOUT();
216 }
217
218 break;
219 case CDC_REQ_SetLineEncoding:
220 if (USB_ControlRequest.bmRequestType == (REQDIR_HOSTTODEVICE | REQTYPE_CLASS | REQREC_INTERFACE))
221 {
222 Endpoint_ClearSETUP();
223
224 /* Read the line coding data in from the host into the global struct */
225 Endpoint_Read_Control_Stream_LE(&LineEncoding, sizeof(CDC_LineEncoding_t));
226 Endpoint_ClearIN();
227 }
228
229 break;
230 case CDC_REQ_SetControlLineState:
231 if (USB_ControlRequest.bmRequestType == (REQDIR_HOSTTODEVICE | REQTYPE_CLASS | REQREC_INTERFACE))
232 {
233 Endpoint_ClearSETUP();
234 Endpoint_ClearStatusStage();
235 }
236
237 break;
238 }
239 }
240
241 #if !defined(NO_BLOCK_SUPPORT)
242 /** Reads or writes a block of EEPROM or FLASH memory to or from the appropriate CDC data endpoint, depending
243 * on the AVR109 protocol command issued.
244 *
245 * \param[in] Command Single character AVR109 protocol command indicating what memory operation to perform
246 */
247 static void ReadWriteMemoryBlock(const uint8_t Command)
248 {
249 uint16_t BlockSize;
250 char MemoryType;
251
252 uint8_t HighByte = 0;
253 uint8_t LowByte = 0;
254
255 BlockSize = (FetchNextCommandByte() << 8);
256 BlockSize |= FetchNextCommandByte();
257
258 MemoryType = FetchNextCommandByte();
259
260 if ((MemoryType != MEMORY_TYPE_FLASH) && (MemoryType != MEMORY_TYPE_EEPROM))
261 {
262 /* Send error byte back to the host */
263 WriteNextResponseByte('?');
264
265 return;
266 }
267
268 /* Check if command is to read a memory block */
269 if (Command == AVR109_COMMAND_BlockRead)
270 {
271 /* Re-enable RWW section */
272 boot_rww_enable();
273
274 while (BlockSize--)
275 {
276 if (MemoryType == MEMORY_TYPE_FLASH)
277 {
278 /* Read the next FLASH byte from the current FLASH page */
279 #if (FLASHEND > 0xFFFF)
280 WriteNextResponseByte(pgm_read_byte_far(CurrAddress | HighByte));
281 #else
282 WriteNextResponseByte(pgm_read_byte(CurrAddress | HighByte));
283 #endif
284
285 /* If both bytes in current word have been read, increment the address counter */
286 if (HighByte)
287 CurrAddress += 2;
288
289 HighByte = !HighByte;
290 }
291 else
292 {
293 /* Read the next EEPROM byte into the endpoint */
294 WriteNextResponseByte(eeprom_read_byte((uint8_t*)(intptr_t)(CurrAddress >> 1)));
295
296 /* Increment the address counter after use */
297 CurrAddress += 2;
298 }
299 }
300 }
301 else
302 {
303 uint32_t PageStartAddress = CurrAddress;
304
305 if (MemoryType == MEMORY_TYPE_FLASH)
306 {
307 boot_page_erase(PageStartAddress);
308 boot_spm_busy_wait();
309 }
310
311 while (BlockSize--)
312 {
313 if (MemoryType == MEMORY_TYPE_FLASH)
314 {
315 /* If both bytes in current word have been written, increment the address counter */
316 if (HighByte)
317 {
318 /* Write the next FLASH word to the current FLASH page */
319 boot_page_fill(CurrAddress, ((FetchNextCommandByte() << 8) | LowByte));
320
321 /* Increment the address counter after use */
322 CurrAddress += 2;
323 }
324 else
325 {
326 LowByte = FetchNextCommandByte();
327 }
328
329 HighByte = !HighByte;
330 }
331 else
332 {
333 /* Write the next EEPROM byte from the endpoint */
334 eeprom_write_byte((uint8_t*)((intptr_t)(CurrAddress >> 1)), FetchNextCommandByte());
335
336 /* Increment the address counter after use */
337 CurrAddress += 2;
338 }
339 }
340
341 /* If in FLASH programming mode, commit the page after writing */
342 if (MemoryType == MEMORY_TYPE_FLASH)
343 {
344 /* Commit the flash page to memory */
345 boot_page_write(PageStartAddress);
346
347 /* Wait until write operation has completed */
348 boot_spm_busy_wait();
349 }
350
351 /* Send response byte back to the host */
352 WriteNextResponseByte('\r');
353 }
354 }
355 #endif
356
357 /** Retrieves the next byte from the host in the CDC data OUT endpoint, and clears the endpoint bank if needed
358 * to allow reception of the next data packet from the host.
359 *
360 * \return Next received byte from the host in the CDC data OUT endpoint
361 */
362 static uint8_t FetchNextCommandByte(void)
363 {
364 /* Select the OUT endpoint so that the next data byte can be read */
365 Endpoint_SelectEndpoint(CDC_RX_EPADDR);
366
367 /* If OUT endpoint empty, clear it and wait for the next packet from the host */
368 while (!(Endpoint_IsReadWriteAllowed()))
369 {
370 Endpoint_ClearOUT();
371
372 while (!(Endpoint_IsOUTReceived()))
373 {
374 if (USB_DeviceState == DEVICE_STATE_Unattached)
375 return 0;
376 }
377 }
378
379 /* Fetch the next byte from the OUT endpoint */
380 return Endpoint_Read_8();
381 }
382
383 /** Writes the next response byte to the CDC data IN endpoint, and sends the endpoint back if needed to free up the
384 * bank when full ready for the next byte in the packet to the host.
385 *
386 * \param[in] Response Next response byte to send to the host
387 */
388 static void WriteNextResponseByte(const uint8_t Response)
389 {
390 /* Select the IN endpoint so that the next data byte can be written */
391 Endpoint_SelectEndpoint(CDC_TX_EPADDR);
392
393 /* If IN endpoint full, clear it and wait until ready for the next packet to the host */
394 if (!(Endpoint_IsReadWriteAllowed()))
395 {
396 Endpoint_ClearIN();
397
398 while (!(Endpoint_IsINReady()))
399 {
400 if (USB_DeviceState == DEVICE_STATE_Unattached)
401 return;
402 }
403 }
404
405 /* Write the next byte to the IN endpoint */
406 Endpoint_Write_8(Response);
407 }
408
409 /** Task to read in AVR109 commands from the CDC data OUT endpoint, process them, perform the required actions
410 * and send the appropriate response back to the host.
411 */
412 static void CDC_Task(void)
413 {
414 /* Select the OUT endpoint */
415 Endpoint_SelectEndpoint(CDC_RX_EPADDR);
416
417 /* Check if endpoint has a command in it sent from the host */
418 if (!(Endpoint_IsOUTReceived()))
419 return;
420
421 /* Read in the bootloader command (first byte sent from host) */
422 uint8_t Command = FetchNextCommandByte();
423
424 if (Command == AVR109_COMMAND_ExitBootloader)
425 {
426 RunBootloader = false;
427
428 /* Send confirmation byte back to the host */
429 WriteNextResponseByte('\r');
430 }
431 else if ((Command == AVR109_COMMAND_SetLED) || (Command == AVR109_COMMAND_ClearLED) ||
432 (Command == AVR109_COMMAND_SelectDeviceType))
433 {
434 FetchNextCommandByte();
435
436 /* Send confirmation byte back to the host */
437 WriteNextResponseByte('\r');
438 }
439 else if ((Command == AVR109_COMMAND_EnterProgrammingMode) || (Command == AVR109_COMMAND_LeaveProgrammingMode))
440 {
441 /* Send confirmation byte back to the host */
442 WriteNextResponseByte('\r');
443 }
444 else if (Command == AVR109_COMMAND_ReadPartCode)
445 {
446 /* Return ATMEGA128 part code - this is only to allow AVRProg to use the bootloader */
447 WriteNextResponseByte(0x44);
448 WriteNextResponseByte(0x00);
449 }
450 else if (Command == AVR109_COMMAND_ReadAutoAddressIncrement)
451 {
452 /* Indicate auto-address increment is supported */
453 WriteNextResponseByte('Y');
454 }
455 else if (Command == AVR109_COMMAND_SetCurrentAddress)
456 {
457 /* Set the current address to that given by the host (translate 16-bit word address to byte address) */
458 CurrAddress = (FetchNextCommandByte() << 9);
459 CurrAddress |= (FetchNextCommandByte() << 1);
460
461 /* Send confirmation byte back to the host */
462 WriteNextResponseByte('\r');
463 }
464 else if (Command == AVR109_COMMAND_ReadBootloaderInterface)
465 {
466 /* Indicate serial programmer back to the host */
467 WriteNextResponseByte('S');
468 }
469 else if (Command == AVR109_COMMAND_ReadBootloaderIdentifier)
470 {
471 /* Write the 7-byte software identifier to the endpoint */
472 for (uint8_t CurrByte = 0; CurrByte < 7; CurrByte++)
473 WriteNextResponseByte(SOFTWARE_IDENTIFIER[CurrByte]);
474 }
475 else if (Command == AVR109_COMMAND_ReadBootloaderSWVersion)
476 {
477 WriteNextResponseByte('0' + BOOTLOADER_VERSION_MAJOR);
478 WriteNextResponseByte('0' + BOOTLOADER_VERSION_MINOR);
479 }
480 else if (Command == AVR109_COMMAND_ReadSignature)
481 {
482 WriteNextResponseByte(AVR_SIGNATURE_3);
483 WriteNextResponseByte(AVR_SIGNATURE_2);
484 WriteNextResponseByte(AVR_SIGNATURE_1);
485 }
486 else if (Command == AVR109_COMMAND_EraseFLASH)
487 {
488 /* Clear the application section of flash */
489 for (uint32_t CurrFlashAddress = 0; CurrFlashAddress < (uint32_t)BOOT_START_ADDR; CurrFlashAddress += SPM_PAGESIZE)
490 {
491 boot_page_erase(CurrFlashAddress);
492 boot_spm_busy_wait();
493 boot_page_write(CurrFlashAddress);
494 boot_spm_busy_wait();
495 }
496
497 /* Send confirmation byte back to the host */
498 WriteNextResponseByte('\r');
499 }
500 #if !defined(NO_LOCK_BYTE_WRITE_SUPPORT)
501 else if (Command == AVR109_COMMAND_WriteLockbits)
502 {
503 /* Set the lock bits to those given by the host */
504 boot_lock_bits_set(FetchNextCommandByte());
505
506 /* Send confirmation byte back to the host */
507 WriteNextResponseByte('\r');
508 }
509 #endif
510 else if (Command == AVR109_COMMAND_ReadLockbits)
511 {
512 WriteNextResponseByte(boot_lock_fuse_bits_get(GET_LOCK_BITS));
513 }
514 else if (Command == AVR109_COMMAND_ReadLowFuses)
515 {
516 WriteNextResponseByte(boot_lock_fuse_bits_get(GET_LOW_FUSE_BITS));
517 }
518 else if (Command == AVR109_COMMAND_ReadHighFuses)
519 {
520 WriteNextResponseByte(boot_lock_fuse_bits_get(GET_HIGH_FUSE_BITS));
521 }
522 else if (Command == AVR109_COMMAND_ReadExtendedFuses)
523 {
524 WriteNextResponseByte(boot_lock_fuse_bits_get(GET_EXTENDED_FUSE_BITS));
525 }
526 #if !defined(NO_BLOCK_SUPPORT)
527 else if (Command == AVR109_COMMAND_GetBlockWriteSupport)
528 {
529 WriteNextResponseByte('Y');
530
531 /* Send block size to the host */
532 WriteNextResponseByte(SPM_PAGESIZE >> 8);
533 WriteNextResponseByte(SPM_PAGESIZE & 0xFF);
534 }
535 else if ((Command == AVR109_COMMAND_BlockWrite) || (Command == AVR109_COMMAND_BlockRead))
536 {
537 /* Delegate the block write/read to a separate function for clarity */
538 ReadWriteMemoryBlock(Command);
539 }
540 #endif
541 #if !defined(NO_FLASH_BYTE_SUPPORT)
542 else if (Command == AVR109_COMMAND_FillFlashPageWordHigh)
543 {
544 /* Write the high byte to the current flash page */
545 boot_page_fill(CurrAddress, FetchNextCommandByte());
546
547 /* Send confirmation byte back to the host */
548 WriteNextResponseByte('\r');
549 }
550 else if (Command == AVR109_COMMAND_FillFlashPageWordLow)
551 {
552 /* Write the low byte to the current flash page */
553 boot_page_fill(CurrAddress | 0x01, FetchNextCommandByte());
554
555 /* Increment the address */
556 CurrAddress += 2;
557
558 /* Send confirmation byte back to the host */
559 WriteNextResponseByte('\r');
560 }
561 else if (Command == AVR109_COMMAND_WriteFlashPage)
562 {
563 /* Commit the flash page to memory */
564 boot_page_write(CurrAddress);
565
566 /* Wait until write operation has completed */
567 boot_spm_busy_wait();
568
569 /* Send confirmation byte back to the host */
570 WriteNextResponseByte('\r');
571 }
572 else if (Command == AVR109_COMMAND_ReadFLASHWord)
573 {
574 #if (FLASHEND > 0xFFFF)
575 uint16_t ProgramWord = pgm_read_word_far(CurrAddress);
576 #else
577 uint16_t ProgramWord = pgm_read_word(CurrAddress);
578 #endif
579
580 WriteNextResponseByte(ProgramWord >> 8);
581 WriteNextResponseByte(ProgramWord & 0xFF);
582 }
583 #endif
584 #if !defined(NO_EEPROM_BYTE_SUPPORT)
585 else if (Command == AVR109_COMMAND_WriteEEPROM)
586 {
587 /* Read the byte from the endpoint and write it to the EEPROM */
588 eeprom_write_byte((uint8_t*)((intptr_t)(CurrAddress >> 1)), FetchNextCommandByte());
589
590 /* Increment the address after use */
591 CurrAddress += 2;
592
593 /* Send confirmation byte back to the host */
594 WriteNextResponseByte('\r');
595 }
596 else if (Command == AVR109_COMMAND_ReadEEPROM)
597 {
598 /* Read the EEPROM byte and write it to the endpoint */
599 WriteNextResponseByte(eeprom_read_byte((uint8_t*)((intptr_t)(CurrAddress >> 1))));
600
601 /* Increment the address after use */
602 CurrAddress += 2;
603 }
604 #endif
605 else if (Command != AVR109_COMMAND_Sync)
606 {
607 /* Unknown (non-sync) command, return fail code */
608 WriteNextResponseByte('?');
609 }
610
611 /* Select the IN endpoint */
612 Endpoint_SelectEndpoint(CDC_TX_EPADDR);
613
614 /* Remember if the endpoint is completely full before clearing it */
615 bool IsEndpointFull = !(Endpoint_IsReadWriteAllowed());
616
617 /* Send the endpoint data to the host */
618 Endpoint_ClearIN();
619
620 /* If a full endpoint's worth of data was sent, we need to send an empty packet afterwards to signal end of transfer */
621 if (IsEndpointFull)
622 {
623 while (!(Endpoint_IsINReady()))
624 {
625 if (USB_DeviceState == DEVICE_STATE_Unattached)
626 return;
627 }
628
629 Endpoint_ClearIN();
630 }
631
632 /* Wait until the data has been sent to the host */
633 while (!(Endpoint_IsINReady()))
634 {
635 if (USB_DeviceState == DEVICE_STATE_Unattached)
636 return;
637 }
638
639 /* Select the OUT endpoint */
640 Endpoint_SelectEndpoint(CDC_RX_EPADDR);
641
642 /* Acknowledge the command from the host */
643 Endpoint_ClearOUT();
644 }
645