Moved all source to the trunk directory.
[pub/lufa.git] / Bootloaders / DFU / BootloaderDFU.c
1 /*
2 LUFA Library
3 Copyright (C) Dean Camera, 2009.
4
5 dean [at] fourwalledcubicle [dot] com
6 www.fourwalledcubicle.com
7 */
8
9 /*
10 Copyright 2009 Dean Camera (dean [at] fourwalledcubicle [dot] com)
11
12 Permission to use, copy, modify, and distribute this software
13 and its documentation for any purpose and without fee is hereby
14 granted, provided that the above copyright notice appear in all
15 copies and that both that the copyright notice and this
16 permission notice and warranty disclaimer appear in supporting
17 documentation, and that the name of the author not be used in
18 advertising or publicity pertaining to distribution of the
19 software without specific, written prior permission.
20
21 The author disclaim all warranties with regard to this
22 software, including all implied warranties of merchantability
23 and fitness. In no event shall the author be liable for any
24 special, indirect or consequential damages or any damages
25 whatsoever resulting from loss of use, data or profits, whether
26 in an action of contract, negligence or other tortious action,
27 arising out of or in connection with the use or performance of
28 this software.
29 */
30
31 /** \file
32 *
33 * Main source file for the DFU class bootloader. This file contains the complete bootloader logic.
34 */
35
36 /** Configuration define. Define this token to true to case the bootloader to reject all memory commands
37 * until a memory erase has been performed. When used in conjunction with the lockbits of the AVR, this
38 * can protect the AVR's firmware from being dumped from a secured AVR. When false, memory operations are
39 * allowed at any time.
40 */
41 #define SECURE_MODE false
42
43 #define INCLUDE_FROM_BOOTLOADER_C
44 #include "BootloaderDFU.h"
45
46 /** Flag to indicate if the bootloader is currently running in secure mode, disallowing memory operations
47 * other than erase. This is initially set to the value set by SECURE_MODE, and cleared by the bootloader
48 * once a memory erase has completed.
49 */
50 bool IsSecure = SECURE_MODE;
51
52 /** Flag to indicate if the bootloader should be running, or should exit and allow the application code to run
53 * via a soft reset. When cleared, the bootloader will abort, the USB interface will shut down and the application
54 * jumped to via an indirect jump to location 0x0000 (or other location specified by the host).
55 */
56 bool RunBootloader = true;
57
58 /** Flag to indicate if the bootloader is waiting to exit. When the host requests the bootloader to exit and
59 * jump to the application address it specifies, it sends two sequential commands which must be properly
60 * acknowedged. Upon reception of the first the RunBootloader flag is cleared and the WaitForExit flag is set,
61 * causing the bootloader to wait for the final exit command before shutting down.
62 */
63 bool WaitForExit = false;
64
65 /** Current DFU state machine state, one of the values in the DFU_State_t enum. */
66 uint8_t DFU_State = dfuIDLE;
67
68 /** Status code of the last executed DFU command. This is set to one of the values in the DFU_Status_t enum after
69 * each operation, and returned to the host when a Get Status DFU request is issued.
70 */
71 uint8_t DFU_Status = OK;
72
73 /** Data containing the DFU command sent from the host. */
74 DFU_Command_t SentCommand;
75
76 /** Response to the last issued Read Data DFU command. Unlike other DFU commands, the read command
77 * requires a single byte response from the bootloader containing the read data when the next DFU_UPLOAD command
78 * is issued by the host.
79 */
80 uint8_t ResponseByte;
81
82 /** Pointer to the start of the user application. By default this is 0x0000 (the reset vector), however the host
83 * may specify an alternate address when issuing the application soft-start command.
84 */
85 AppPtr_t AppStartPtr = (AppPtr_t)0x0000;
86
87 /** 64-bit flash page number. This is concatenated with the current 16-bit address on USB AVRs containing more than
88 * 64KB of flash memory.
89 */
90 uint8_t Flash64KBPage = 0;
91
92 /** Memory start address, indicating the current address in the memory being addressed (either FLASH or EEPROM
93 * depending on the issued command from the host).
94 */
95 uint16_t StartAddr = 0x0000;
96
97 /** Memory end address, indicating the end address to read to/write from in the memory being addressed (either FLASH
98 * of EEPROM depending on the issued command from the host).
99 */
100 uint16_t EndAddr = 0x0000;
101
102 /** Main program entry point. This routine configures the hardware required by the bootloader, then continuously
103 * runs the bootloader processing routine until instructed to soft-exit, or hard-reset via the watchdog to start
104 * the loaded application code.
105 */
106 int main (void)
107 {
108 /* Disable watchdog if enabled by bootloader/fuses */
109 MCUSR &= ~(1 << WDRF);
110 wdt_disable();
111
112 /* Disable Clock Division */
113 SetSystemClockPrescaler(0);
114
115 /* Relocate the interrupt vector table to the bootloader section */
116 MCUCR = (1 << IVCE);
117 MCUCR = (1 << IVSEL);
118
119 /* Initialize the USB subsystem */
120 USB_Init();
121
122 /* Run the USB management task while the bootloader is supposed to be running */
123 while (RunBootloader || WaitForExit)
124 USB_USBTask();
125
126 /* Shut down the USB subsystem */
127 USB_ShutDown();
128
129 /* Relocate the interrupt vector table back to the application section */
130 MCUCR = (1 << IVCE);
131 MCUCR = 0;
132
133 /* Reset any used hardware ports back to their defaults */
134 PORTD = 0;
135 DDRD = 0;
136
137 #if defined(PORTE)
138 PORTE = 0;
139 DDRE = 0;
140 #endif
141
142 /* Start the user application */
143 AppStartPtr();
144 }
145
146 /** Event handler for the USB_Disconnect event. This indicates that the bootloader should exit and the user
147 * application started.
148 */
149 EVENT_HANDLER(USB_Disconnect)
150 {
151 /* Upon disconnection, run user application */
152 RunBootloader = false;
153 }
154
155 /** Event handler for the USB_UnhandledControlPacket event. This is used to catch standard and class specific
156 * control requests that are not handled internally by the USB library (including the DFU commands, which are
157 * all issued via the control endpoint), so that they can be handled appropriately for the application.
158 */
159 EVENT_HANDLER(USB_UnhandledControlPacket)
160 {
161 /* Discard unused wIndex value */
162 Endpoint_Discard_Word();
163
164 /* Discard unused wValue value */
165 Endpoint_Discard_Word();
166
167 /* Get the size of the command and data from the wLength value */
168 SentCommand.DataSize = Endpoint_Read_Word_LE();
169
170 switch (bRequest)
171 {
172 case DFU_DNLOAD:
173 Endpoint_ClearSetupReceived();
174
175 /* Check if bootloader is waiting to terminate */
176 if (WaitForExit)
177 {
178 /* Bootloader is terminating - process last received command */
179 ProcessBootloaderCommand();
180
181 /* Indicate that the last command has now been processed - free to exit bootloader */
182 WaitForExit = false;
183 }
184
185 /* If the request has a data stage, load it into the command struct */
186 if (SentCommand.DataSize)
187 {
188 while (!(Endpoint_IsSetupOUTReceived()));
189
190 /* First byte of the data stage is the DNLOAD request's command */
191 SentCommand.Command = Endpoint_Read_Byte();
192
193 /* One byte of the data stage is the command, so subtract it from the total data bytes */
194 SentCommand.DataSize--;
195
196 /* Load in the rest of the data stage as command parameters */
197 for (uint8_t DataByte = 0; (DataByte < sizeof(SentCommand.Data)) &&
198 Endpoint_BytesInEndpoint(); DataByte++)
199 {
200 SentCommand.Data[DataByte] = Endpoint_Read_Byte();
201 SentCommand.DataSize--;
202 }
203
204 /* Process the command */
205 ProcessBootloaderCommand();
206 }
207
208 /* Check if currently downloading firmware */
209 if (DFU_State == dfuDNLOAD_IDLE)
210 {
211 if (!(SentCommand.DataSize))
212 {
213 DFU_State = dfuIDLE;
214 }
215 else
216 {
217 /* Throw away the filler bytes before the start of the firmware */
218 DiscardFillerBytes(DFU_FILLER_BYTES_SIZE);
219
220 /* Throw away the page alignment filler bytes before the start of the firmware */
221 DiscardFillerBytes(StartAddr % SPM_PAGESIZE);
222
223 /* Calculate the number of bytes remaining to be written */
224 uint16_t BytesRemaining = ((EndAddr - StartAddr) + 1);
225
226 if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x00)) // Write flash
227 {
228 /* Calculate the number of words to be written from the number of bytes to be written */
229 uint16_t WordsRemaining = (BytesRemaining >> 1);
230
231 union
232 {
233 uint16_t Words[2];
234 uint32_t Long;
235 } CurrFlashAddress = {Words: {StartAddr, Flash64KBPage}};
236
237 uint32_t CurrFlashPageStartAddress = CurrFlashAddress.Long;
238 uint8_t WordsInFlashPage = 0;
239
240 while (WordsRemaining--)
241 {
242 /* Check if endpoint is empty - if so clear it and wait until ready for next packet */
243 if (!(Endpoint_BytesInEndpoint()))
244 {
245 Endpoint_ClearSetupOUT();
246 while (!(Endpoint_IsSetupOUTReceived()));
247 }
248
249 /* Write the next word into the current flash page */
250 boot_page_fill(CurrFlashAddress.Long, Endpoint_Read_Word_LE());
251
252 /* Adjust counters */
253 WordsInFlashPage += 1;
254 CurrFlashAddress.Long += 2;
255
256 /* See if an entire page has been written to the flash page buffer */
257 if ((WordsInFlashPage == (SPM_PAGESIZE >> 1)) || !(WordsRemaining))
258 {
259 /* Commit the flash page to memory */
260 boot_page_write(CurrFlashPageStartAddress);
261 boot_spm_busy_wait();
262
263 /* Check if programming incomplete */
264 if (WordsRemaining)
265 {
266 CurrFlashPageStartAddress = CurrFlashAddress.Long;
267 WordsInFlashPage = 0;
268
269 /* Erase next page's temp buffer */
270 boot_page_erase(CurrFlashAddress.Long);
271 boot_spm_busy_wait();
272 }
273 }
274 }
275
276 /* Once programming complete, start address equals the end address */
277 StartAddr = EndAddr;
278
279 /* Re-enable the RWW section of flash */
280 boot_rww_enable();
281 }
282 else // Write EEPROM
283 {
284 while (BytesRemaining--)
285 {
286 /* Check if endpoint is empty - if so clear it and wait until ready for next packet */
287 if (!(Endpoint_BytesInEndpoint()))
288 {
289 Endpoint_ClearSetupOUT();
290 while (!(Endpoint_IsSetupOUTReceived()));
291 }
292
293 /* Read the byte from the USB interface and write to to the EEPROM */
294 eeprom_write_byte((uint8_t*)StartAddr, Endpoint_Read_Byte());
295
296 /* Adjust counters */
297 StartAddr++;
298 }
299 }
300
301 /* Throw away the currently unused DFU file suffix */
302 DiscardFillerBytes(DFU_FILE_SUFFIX_SIZE);
303 }
304 }
305
306 Endpoint_ClearSetupOUT();
307
308 /* Send ZLP to the host to acknowedge the request */
309 Endpoint_ClearSetupIN();
310
311 break;
312 case DFU_UPLOAD:
313 Endpoint_ClearSetupReceived();
314
315 while (!(Endpoint_IsSetupINReady()));
316
317 if (DFU_State != dfuUPLOAD_IDLE)
318 {
319 if ((DFU_State == dfuERROR) && IS_ONEBYTE_COMMAND(SentCommand.Data, 0x01)) // Blank Check
320 {
321 /* Blank checking is performed in the DFU_DNLOAD request - if we get here we've told the host
322 that the memory isn't blank, and the host is requesting the first non-blank address */
323 Endpoint_Write_Word_LE(StartAddr);
324 }
325 else
326 {
327 /* Idle state upload - send response to last issued command */
328 Endpoint_Write_Byte(ResponseByte);
329 }
330 }
331 else
332 {
333 /* Determine the number of bytes remaining in the current block */
334 uint16_t BytesRemaining = ((EndAddr - StartAddr) + 1);
335
336 if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x00)) // Read FLASH
337 {
338 /* Calculate the number of words to be written from the number of bytes to be written */
339 uint16_t WordsRemaining = (BytesRemaining >> 1);
340
341 union
342 {
343 uint16_t Words[2];
344 uint32_t Long;
345 } CurrFlashAddress = {Words: {StartAddr, Flash64KBPage}};
346
347 while (WordsRemaining--)
348 {
349 /* Check if endpoint is full - if so clear it and wait until ready for next packet */
350 if (Endpoint_BytesInEndpoint() == FIXED_CONTROL_ENDPOINT_SIZE)
351 {
352 Endpoint_ClearSetupIN();
353 while (!(Endpoint_IsSetupINReady()));
354 }
355
356 /* Read the flash word and send it via USB to the host */
357 #if defined(RAMPZ)
358 Endpoint_Write_Word_LE(pgm_read_word_far(CurrFlashAddress.Long));
359 #else
360 Endpoint_Write_Word_LE(pgm_read_word(CurrFlashAddress.Long));
361 #endif
362
363 /* Adjust counters */
364 CurrFlashAddress.Long += 2;
365 }
366
367 /* Once reading is complete, start address equals the end address */
368 StartAddr = EndAddr;
369 }
370 else if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x02)) // Read EEPROM
371 {
372 while (BytesRemaining--)
373 {
374 /* Check if endpoint is full - if so clear it and wait until ready for next packet */
375 if (Endpoint_BytesInEndpoint() == FIXED_CONTROL_ENDPOINT_SIZE)
376 {
377 Endpoint_ClearSetupIN();
378 while (!(Endpoint_IsSetupINReady()));
379 }
380
381 /* Read the EEPROM byte and send it via USB to the host */
382 Endpoint_Write_Byte(eeprom_read_byte((uint8_t*)StartAddr));
383
384 /* Adjust counters */
385 StartAddr++;
386 }
387 }
388
389 /* Return to idle state */
390 DFU_State = dfuIDLE;
391 }
392
393 Endpoint_ClearSetupIN();
394
395 /* Send ZLP to the host to acknowedge the request */
396 while (!(Endpoint_IsSetupOUTReceived()));
397 Endpoint_ClearSetupOUT();
398
399 break;
400 case DFU_GETSTATUS:
401 Endpoint_ClearSetupReceived();
402
403 /* Write 8-bit status value */
404 Endpoint_Write_Byte(DFU_Status);
405
406 /* Write 24-bit poll timeout value */
407 Endpoint_Write_Byte(0);
408 Endpoint_Write_Word_LE(0);
409
410 /* Write 8-bit state value */
411 Endpoint_Write_Byte(DFU_State);
412
413 /* Write 8-bit state string ID number */
414 Endpoint_Write_Byte(0);
415
416 Endpoint_ClearSetupIN();
417
418 while (!(Endpoint_IsSetupOUTReceived()));
419 Endpoint_ClearSetupOUT();
420
421 break;
422 case DFU_CLRSTATUS:
423 Endpoint_ClearSetupReceived();
424
425 /* Reset the status value variable to the default OK status */
426 DFU_Status = OK;
427
428 Endpoint_ClearSetupIN();
429
430 break;
431 case DFU_GETSTATE:
432 Endpoint_ClearSetupReceived();
433
434 /* Write the current device state to the endpoint */
435 Endpoint_Write_Byte(DFU_State);
436
437 Endpoint_ClearSetupIN();
438
439 while (!(Endpoint_IsSetupOUTReceived()));
440 Endpoint_ClearSetupOUT();
441
442 break;
443 case DFU_ABORT:
444 Endpoint_ClearSetupReceived();
445
446 /* Reset the current state variable to the default idle state */
447 DFU_State = dfuIDLE;
448
449 Endpoint_ClearSetupIN();
450
451 break;
452 }
453 }
454
455 /** Routine to discard the specified number of bytes from the control endpoint stream. This is used to
456 * discard unused bytes in the stream from the host, including the memory program block suffix.
457 *
458 * \param NumberOfBytes Number of bytes to discard from the host from the control endpoint
459 */
460 static void DiscardFillerBytes(uint8_t NumberOfBytes)
461 {
462 while (NumberOfBytes--)
463 {
464 if (!(Endpoint_BytesInEndpoint()))
465 {
466 Endpoint_ClearSetupOUT();
467
468 /* Wait until next data packet received */
469 while (!(Endpoint_IsSetupOUTReceived()));
470 }
471
472 Endpoint_Discard_Byte();
473 }
474 }
475
476 /** Routine to process an issued command from the host, via a DFU_DNLOAD request wrapper. This routine ensures
477 * that the command is allowed based on the current secure mode flag value, and passes the command off to the
478 * appropriate handler function.
479 */
480 static void ProcessBootloaderCommand(void)
481 {
482 /* Check if device is in secure mode */
483 if (IsSecure)
484 {
485 /* Don't process command unless it is a READ or chip erase command */
486 if (!(((SentCommand.Command == COMMAND_WRITE) &&
487 IS_TWOBYTE_COMMAND(SentCommand.Data, 0x00, 0xFF)) ||
488 (SentCommand.Command == COMMAND_READ)))
489 {
490 /* Set the state and status variables to indicate the error */
491 DFU_State = dfuERROR;
492 DFU_Status = errWRITE;
493
494 /* Stall command */
495 Endpoint_StallTransaction();
496
497 /* Don't process the command */
498 return;
499 }
500 }
501
502 /* Dispatch the required command processing routine based on the command type */
503 switch (SentCommand.Command)
504 {
505 case COMMAND_PROG_START:
506 ProcessMemProgCommand();
507 break;
508 case COMMAND_DISP_DATA:
509 ProcessMemReadCommand();
510 break;
511 case COMMAND_WRITE:
512 ProcessWriteCommand();
513 break;
514 case COMMAND_READ:
515 ProcessReadCommand();
516 break;
517 case COMMAND_CHANGE_BASE_ADDR:
518 if (IS_TWOBYTE_COMMAND(SentCommand.Data, 0x03, 0x00)) // Set 64KB flash page command
519 Flash64KBPage = SentCommand.Data[2];
520
521 break;
522 }
523 }
524
525 /** Routine to concatenate the given pair of 16-bit memory start and end addresses from the host, and store them
526 * in the StartAddr and EndAddr global variables.
527 */
528 static void LoadStartEndAddresses(void)
529 {
530 union
531 {
532 uint8_t Bytes[2];
533 uint16_t Word;
534 } Address[2] = {{Bytes: {SentCommand.Data[2], SentCommand.Data[1]}},
535 {Bytes: {SentCommand.Data[4], SentCommand.Data[3]}}};
536
537 /* Load in the start and ending read addresses from the sent data packet */
538 StartAddr = Address[0].Word;
539 EndAddr = Address[1].Word;
540 }
541
542 /** Handler for a Memory Program command issued by the host. This routine handles the preperations needed
543 * to write subsequent data from the host into the specified memory.
544 */
545 static void ProcessMemProgCommand(void)
546 {
547 if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x00) || // Write FLASH command
548 IS_ONEBYTE_COMMAND(SentCommand.Data, 0x01)) // Write EEPROM command
549 {
550 /* Load in the start and ending read addresses */
551 LoadStartEndAddresses();
552
553 /* If FLASH is being written to, we need to pre-erase the first page to write to */
554 if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x00))
555 {
556 union
557 {
558 uint16_t Words[2];
559 uint32_t Long;
560 } CurrFlashAddress = {Words: {StartAddr, Flash64KBPage}};
561
562 /* Erase the current page's temp buffer */
563 boot_page_erase(CurrFlashAddress.Long);
564 boot_spm_busy_wait();
565 }
566
567 /* Set the state so that the next DNLOAD requests reads in the firmware */
568 DFU_State = dfuDNLOAD_IDLE;
569 }
570 }
571
572 /** Handler for a Memory Read command issued by the host. This routine handles the preperations needed
573 * to read subsequent data from the specified memory out to the host, as well as implementing the memory
574 * blank check command.
575 */
576 static void ProcessMemReadCommand(void)
577 {
578 if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x00) || // Read FLASH command
579 IS_ONEBYTE_COMMAND(SentCommand.Data, 0x02)) // Read EEPROM command
580 {
581 /* Load in the start and ending read addresses */
582 LoadStartEndAddresses();
583
584 /* Set the state so that the next UPLOAD requests read out the firmware */
585 DFU_State = dfuUPLOAD_IDLE;
586 }
587 else if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x01)) // Blank check FLASH command
588 {
589 uint32_t CurrFlashAddress = 0;
590
591 while (CurrFlashAddress < BOOT_START_ADDR)
592 {
593 /* Check if the current byte is not blank */
594 #if defined(RAMPZ)
595 if (pgm_read_byte_far(CurrFlashAddress) != 0xFF)
596 #else
597 if (pgm_read_byte(CurrFlashAddress) != 0xFF)
598 #endif
599 {
600 /* Save the location of the first non-blank byte for response back to the host */
601 Flash64KBPage = (CurrFlashAddress >> 16);
602 StartAddr = CurrFlashAddress;
603
604 /* Set state and status variables to the appropriate error values */
605 DFU_State = dfuERROR;
606 DFU_Status = errCHECK_ERASED;
607
608 break;
609 }
610
611 CurrFlashAddress++;
612 }
613 }
614 }
615
616 /** Handler for a Data Write command issued by the host. This routine handles non-programming commands such as
617 * bootloader exit (both via software jumps and hardware watchdog resets) and flash memory erasure.
618 */
619 static void ProcessWriteCommand(void)
620 {
621 if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x03)) // Start application
622 {
623 /* Indicate that the bootloader is terminating */
624 WaitForExit = true;
625
626 /* Check if empty request data array - an empty request after a filled request retains the
627 previous valid request data, but initializes the reset */
628 if (!(SentCommand.DataSize))
629 {
630 if (SentCommand.Data[1] == 0x00) // Start via watchdog
631 {
632 /* Start the watchdog to reset the AVR once the communications are finalized */
633 wdt_enable(WDTO_250MS);
634 }
635 else // Start via jump
636 {
637 /* Load in the jump address into the application start address pointer */
638 union
639 {
640 uint8_t Bytes[2];
641 AppPtr_t FuncPtr;
642 } Address = {Bytes: {SentCommand.Data[4], SentCommand.Data[3]}};
643
644 AppStartPtr = Address.FuncPtr;
645
646 /* Set the flag to terminate the bootloader at next opportunity */
647 RunBootloader = false;
648 }
649 }
650 }
651 else if (IS_TWOBYTE_COMMAND(SentCommand.Data, 0x00, 0xFF)) // Erase flash
652 {
653 uint32_t CurrFlashAddress = 0;
654
655 /* Clear the application section of flash */
656 while (CurrFlashAddress < BOOT_START_ADDR)
657 {
658 boot_page_erase(CurrFlashAddress);
659 boot_spm_busy_wait();
660 boot_page_write(CurrFlashAddress);
661 boot_spm_busy_wait();
662
663 CurrFlashAddress += SPM_PAGESIZE;
664 }
665
666 /* Re-enable the RWW section of flash as writing to the flash locks it out */
667 boot_rww_enable();
668
669 /* Memory has been erased, reset the security bit so that programming/reading is allowed */
670 IsSecure = false;
671 }
672 }
673
674 /** Handler for a Data Read command issued by the host. This routine handles bootloader information retrieval
675 * commands such as device signature and bootloader version retrieval.
676 */
677 static void ProcessReadCommand(void)
678 {
679 const uint8_t BootloaderInfo[3] = {BOOTLOADER_VERSION, BOOTLOADER_ID_BYTE1, BOOTLOADER_ID_BYTE2};
680 const uint8_t SignatureInfo[3] = {SIGNATURE_BYTE_1, SIGNATURE_BYTE_2, SIGNATURE_BYTE_3};
681
682 uint8_t DataIndexToRead = SentCommand.Data[1];
683
684 if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x00)) // Read bootloader info
685 {
686 ResponseByte = BootloaderInfo[DataIndexToRead];
687 }
688 else if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x01)) // Read signature byte
689 {
690 ResponseByte = SignatureInfo[DataIndexToRead - 0x30];
691 }
692 }