3      Copyright (C) Dean Camera, 2010. 
   5   dean [at] fourwalledcubicle [dot] com 
   6       www.fourwalledcubicle.com 
  10   Copyright 2010  Dean Camera (dean [at] fourwalledcubicle [dot] com) 
  12   Permission to use, copy, modify, distribute, and sell this  
  13   software and its documentation for any purpose is hereby granted 
  14   without fee, provided that the above copyright notice appear in  
  15   all copies and that both that the copyright notice and this 
  16   permission notice and warranty disclaimer appear in supporting  
  17   documentation, and that the name of the author not be used in  
  18   advertising or publicity pertaining to distribution of the  
  19   software without specific, written prior permission. 
  21   The author disclaim all warranties with regard to this 
  22   software, including all implied warranties of merchantability 
  23   and fitness.  In no event shall the author be liable for any 
  24   special, indirect or consequential damages or any damages 
  25   whatsoever resulting from loss of use, data or profits, whether 
  26   in an action of contract, negligence or other tortious action, 
  27   arising out of or in connection with the use or performance of 
  32  *  \brief Master include file for the SPI peripheral driver. 
  34  *  Hardware SPI subsystem driver for the supported USB AVRs models. 
  37 /** \ingroup Group_PeripheralDrivers 
  38  *  @defgroup Group_SPI SPI Driver - LUFA/Drivers/Peripheral/SPI.h 
  40  *  \section Sec_Dependencies Module Source Dependencies 
  41  *  The following files must be built with any user project that uses this module: 
  44  *  \section Module Description 
  45  *  Driver for the hardware SPI port available on most AVR models. This module provides 
  46  *  an easy to use driver for the setup of and transfer of data over the AVR's SPI port. 
  57         /* Enable C linkage for C++ Compilers: */ 
  58                 #if defined(__cplusplus) 
  62         /* Private Interface - For use in library only: */ 
  63         #if !defined(__DOXYGEN__) 
  65                         #define SPI_USE_DOUBLESPEED            (1 << SPE) 
  68         /* Public Interface - May be used in end-application: */ 
  70                         /** SPI prescaler mask for SPI_Init(). Divides the system clock by a factor of 2. */ 
  71                         #define SPI_SPEED_FCPU_DIV_2           SPI_USE_DOUBLESPEED 
  73                         /** SPI prescaler mask for SPI_Init(). Divides the system clock by a factor of 4. */ 
  74                         #define SPI_SPEED_FCPU_DIV_4           0 
  76                         /** SPI prescaler mask for SPI_Init(). Divides the system clock by a factor of 8. */ 
  77                         #define SPI_SPEED_FCPU_DIV_8           (SPI_USE_DOUBLESPEED | (1 << SPR0)) 
  79                         /** SPI prescaler mask for SPI_Init(). Divides the system clock by a factor of 16. */ 
  80                         #define SPI_SPEED_FCPU_DIV_16          (1 << SPR0) 
  82                         /** SPI prescaler mask for SPI_Init(). Divides the system clock by a factor of 32. */ 
  83                         #define SPI_SPEED_FCPU_DIV_32          (SPI_USE_DOUBLESPEED | (1 << SPR1)) 
  85                         /** SPI prescaler mask for SPI_Init(). Divides the system clock by a factor of 64. */ 
  86                         #define SPI_SPEED_FCPU_DIV_64          (SPI_USE_DOUBLESPEED | (1 << SPR1) | (1 << SPR0)) 
  88                         /** SPI prescaler mask for SPI_Init(). Divides the system clock by a factor of 128. */ 
  89                         #define SPI_SPEED_FCPU_DIV_128         ((1 << SPR1) | (1 << SPR0)) 
  91                         /** SPI clock polarity mask for SPI_Init(). Indicates that the SCK should lead on the rising edge. */ 
  92                         #define SPI_SCK_LEAD_RISING            (0 << CPOL) 
  94                         /** SPI clock polarity mask for SPI_Init(). Indicates that the SCK should lead on the falling edge. */ 
  95                         #define SPI_SCK_LEAD_FALLING           (1 << CPOL) 
  97                         /** SPI data sample mode mask for SPI_Init(). Indicates that the data should sampled on the leading edge. */ 
  98                         #define SPI_SAMPLE_LEADING             (0 << CPHA) 
 100                         /** SPI data sample mode mask for SPI_Init(). Indicates that the data should be sampled on the trailing edge. */ 
 101                         #define SPI_SAMPLE_TRAILING            (1 << CPHA) 
 103                         /** SPI mode mask for SPI_Init(). Indicates that the SPI interface should be initialized into slave mode. */ 
 104                         #define SPI_MODE_SLAVE                 (0 << MSTR) 
 106                         /** SPI mode mask for SPI_Init(). Indicates that the SPI interface should be initialized into master mode. */ 
 107                         #define SPI_MODE_MASTER                (1 << MSTR) 
 109                 /* Inline Functions: */ 
 110                         /** Initializes the SPI subsystem, ready for transfers. Must be called before calling any other 
 113                          *  \param[in] SPIOptions  SPI Options, a mask consisting of one of each of the SPI_SPEED_*, 
 114                          *                         SPI_SCK_*, SPI_SAMPLE_* and SPI_MODE_* masks. 
 116                         static inline void SPI_Init(const uint8_t SPIOptions
) 
 118                                 DDRB  
|= ((1 << 1) | (1 << 2)); 
 119                                 PORTB 
|= ((1 << 0) | (1 << 3)); 
 121                                 SPCR   
= ((1 << SPE
) | SPIOptions
); 
 123                                 if (SPIOptions 
& SPI_USE_DOUBLESPEED
) 
 124                                   SPSR 
|= (1 << SPI2X
); 
 126                                   SPSR 
&= ~(1 << SPI2X
); 
 129                         /** Turns off the SPI driver, disabling and returning used hardware to their default configuration. */ 
 130                         static inline void SPI_ShutDown(void) 
 132                                 DDRB  
&= ~((1 << 1) | (1 << 2)); 
 133                                 PORTB 
&= ~((1 << 0) | (1 << 3)); 
 139                         /** Sends and receives a byte through the SPI interface, blocking until the transfer is complete. 
 141                          *  \param[in] Byte  Byte to send through the SPI interface. 
 143                          *  \return Response byte from the attached SPI device. 
 145                         static inline uint8_t SPI_TransferByte(const uint8_t Byte
) ATTR_ALWAYS_INLINE
; 
 146                         static inline uint8_t SPI_TransferByte(const uint8_t Byte
) 
 149                                 while (!(SPSR 
& (1 << SPIF
))); 
 153                         /** Sends a byte through the SPI interface, blocking until the transfer is complete. The response 
 154                          *  byte sent to from the attached SPI device is ignored. 
 156                          *  \param[in] Byte  Byte to send through the SPI interface. 
 158                         static inline void SPI_SendByte(const uint8_t Byte
) ATTR_ALWAYS_INLINE
; 
 159                         static inline void SPI_SendByte(const uint8_t Byte
) 
 162                                 while (!(SPSR 
& (1 << SPIF
))); 
 165                         /** Sends a dummy byte through the SPI interface, blocking until the transfer is complete. The response 
 166                          *  byte from the attached SPI device is returned. 
 168                          *  \return The response byte from the attached SPI device. 
 170                         static inline uint8_t SPI_ReceiveByte(void) ATTR_ALWAYS_INLINE ATTR_WARN_UNUSED_RESULT
; 
 171                         static inline uint8_t SPI_ReceiveByte(void) 
 174                                 while (!(SPSR 
& (1 << SPIF
))); 
 178         /* Disable C linkage for C++ Compilers: */ 
 179                 #if defined(__cplusplus)