Fixed bootloaders not disabling global interrupts during erase and write operations...
[pub/lufa.git] / Bootloaders / CDC / BootloaderCDC.c
1 /*
2 LUFA Library
3 Copyright (C) Dean Camera, 2017.
4
5 dean [at] fourwalledcubicle [dot] com
6 www.lufa-lib.org
7 */
8
9 /*
10 Copyright 2017 Dean Camera (dean [at] fourwalledcubicle [dot] com)
11
12 Permission to use, copy, modify, distribute, and sell this
13 software and its documentation for any purpose is hereby granted
14 without fee, provided that the above copyright notice appear in
15 all copies and that both that the copyright notice and this
16 permission notice and warranty disclaimer appear in supporting
17 documentation, and that the name of the author not be used in
18 advertising or publicity pertaining to distribution of the
19 software without specific, written prior permission.
20
21 The author disclaims all warranties with regard to this
22 software, including all implied warranties of merchantability
23 and fitness. In no event shall the author be liable for any
24 special, indirect or consequential damages or any damages
25 whatsoever resulting from loss of use, data or profits, whether
26 in an action of contract, negligence or other tortious action,
27 arising out of or in connection with the use or performance of
28 this software.
29 */
30
31 /** \file
32 *
33 * Main source file for the CDC class bootloader. This file contains the complete bootloader logic.
34 */
35
36 #define INCLUDE_FROM_BOOTLOADERCDC_C
37 #include "BootloaderCDC.h"
38
39 /** Contains the current baud rate and other settings of the first virtual serial port. This must be retained as some
40 * operating systems will not open the port unless the settings can be set successfully.
41 */
42 static CDC_LineEncoding_t LineEncoding = { .BaudRateBPS = 0,
43 .CharFormat = CDC_LINEENCODING_OneStopBit,
44 .ParityType = CDC_PARITY_None,
45 .DataBits = 8 };
46
47 /** Current address counter. This stores the current address of the FLASH or EEPROM as set by the host,
48 * and is used when reading or writing to the AVRs memory (either FLASH or EEPROM depending on the issued
49 * command.)
50 */
51 static uint32_t CurrAddress;
52
53 /** Flag to indicate if the bootloader should be running, or should exit and allow the application code to run
54 * via a watchdog reset. When cleared the bootloader will exit, starting the watchdog and entering an infinite
55 * loop until the AVR restarts and the application runs.
56 */
57 static bool RunBootloader = true;
58
59 /** Magic lock for forced application start. If the HWBE fuse is programmed and BOOTRST is unprogrammed, the bootloader
60 * will start if the /HWB line of the AVR is held low and the system is reset. However, if the /HWB line is still held
61 * low when the application attempts to start via a watchdog reset, the bootloader will re-start. If set to the value
62 * \ref MAGIC_BOOT_KEY the special init function \ref Application_Jump_Check() will force the application to start.
63 */
64 uint16_t MagicBootKey ATTR_NO_INIT;
65
66
67 /** Special startup routine to check if the bootloader was started via a watchdog reset, and if the magic application
68 * start key has been loaded into \ref MagicBootKey. If the bootloader started via the watchdog and the key is valid,
69 * this will force the user application to start via a software jump.
70 */
71 void Application_Jump_Check(void)
72 {
73 bool JumpToApplication = false;
74
75 #if (BOARD == BOARD_LEONARDO)
76 /* Enable pull-up on the IO13 pin so we can use it to select the mode */
77 PORTC |= (1 << 7);
78 Delay_MS(10);
79
80 /* If IO13 is not jumpered to ground, start the user application instead */
81 JumpToApplication = ((PINC & (1 << 7)) != 0);
82
83 /* Disable pull-up after the check has completed */
84 PORTC &= ~(1 << 7);
85 #elif ((BOARD == BOARD_XPLAIN) || (BOARD == BOARD_XPLAIN_REV1))
86 /* Disable JTAG debugging */
87 JTAG_DISABLE();
88
89 /* Enable pull-up on the JTAG TCK pin so we can use it to select the mode */
90 PORTF |= (1 << 4);
91 Delay_MS(10);
92
93 /* If the TCK pin is not jumpered to ground, start the user application instead */
94 JumpToApplication = ((PINF & (1 << 4)) != 0);
95
96 /* Re-enable JTAG debugging */
97 JTAG_ENABLE();
98 #else
99 /* Check if the device's BOOTRST fuse is set */
100 if (BootloaderAPI_ReadFuse(GET_HIGH_FUSE_BITS) & FUSE_BOOTRST)
101 {
102 /* If the reset source was not an external reset or the key is correct, clear it and jump to the application */
103 if (!(MCUSR & (1 << EXTRF)) || (MagicBootKey == MAGIC_BOOT_KEY))
104 JumpToApplication = true;
105
106 /* Clear reset source */
107 MCUSR &= ~(1 << EXTRF);
108 }
109 else
110 {
111 /* If the reset source was the bootloader and the key is correct, clear it and jump to the application;
112 * this can happen in the HWBE fuse is set, and the HBE pin is low during the watchdog reset */
113 if ((MCUSR & (1 << WDRF)) && (MagicBootKey == MAGIC_BOOT_KEY))
114 JumpToApplication = true;
115
116 /* Clear reset source */
117 MCUSR &= ~(1 << WDRF);
118 }
119 #endif
120
121 /* Don't run the user application if the reset vector is blank (no app loaded) */
122 bool ApplicationValid = (pgm_read_word_near(0) != 0xFFFF);
123
124 /* If a request has been made to jump to the user application, honor it */
125 if (JumpToApplication && ApplicationValid)
126 {
127 /* Turn off the watchdog */
128 MCUSR &= ~(1 << WDRF);
129 wdt_disable();
130
131 /* Clear the boot key and jump to the user application */
132 MagicBootKey = 0;
133
134 // cppcheck-suppress constStatement
135 ((void (*)(void))0x0000)();
136 }
137 }
138
139 /** Main program entry point. This routine configures the hardware required by the bootloader, then continuously
140 * runs the bootloader processing routine until instructed to soft-exit, or hard-reset via the watchdog to start
141 * the loaded application code.
142 */
143 int main(void)
144 {
145 /* Setup hardware required for the bootloader */
146 SetupHardware();
147
148 /* Turn on first LED on the board to indicate that the bootloader has started */
149 LEDs_SetAllLEDs(LEDS_LED1);
150
151 /* Enable global interrupts so that the USB stack can function */
152 GlobalInterruptEnable();
153
154 while (RunBootloader)
155 {
156 CDC_Task();
157 USB_USBTask();
158 }
159
160 /* Wait a short time to end all USB transactions and then disconnect */
161 _delay_us(1000);
162
163 /* Disconnect from the host - USB interface will be reset later along with the AVR */
164 USB_Detach();
165
166 /* Unlock the forced application start mode of the bootloader if it is restarted */
167 MagicBootKey = MAGIC_BOOT_KEY;
168
169 /* Enable the watchdog and force a timeout to reset the AVR */
170 wdt_enable(WDTO_250MS);
171
172 for (;;);
173 }
174
175 /** Configures all hardware required for the bootloader. */
176 static void SetupHardware(void)
177 {
178 /* Disable watchdog if enabled by bootloader/fuses */
179 MCUSR &= ~(1 << WDRF);
180 wdt_disable();
181
182 /* Disable clock division */
183 clock_prescale_set(clock_div_1);
184
185 /* Relocate the interrupt vector table to the bootloader section */
186 MCUCR = (1 << IVCE);
187 MCUCR = (1 << IVSEL);
188
189 /* Initialize the USB and other board hardware drivers */
190 USB_Init();
191 LEDs_Init();
192
193 /* Bootloader active LED toggle timer initialization */
194 TIMSK1 = (1 << TOIE1);
195 TCCR1B = ((1 << CS11) | (1 << CS10));
196 }
197
198 /** ISR to periodically toggle the LEDs on the board to indicate that the bootloader is active. */
199 ISR(TIMER1_OVF_vect, ISR_BLOCK)
200 {
201 LEDs_ToggleLEDs(LEDS_LED1 | LEDS_LED2);
202 }
203
204 /** Event handler for the USB_ConfigurationChanged event. This configures the device's endpoints ready
205 * to relay data to and from the attached USB host.
206 */
207 void EVENT_USB_Device_ConfigurationChanged(void)
208 {
209 /* Setup CDC Notification, Rx and Tx Endpoints */
210 Endpoint_ConfigureEndpoint(CDC_NOTIFICATION_EPADDR, EP_TYPE_INTERRUPT,
211 CDC_NOTIFICATION_EPSIZE, 1);
212
213 Endpoint_ConfigureEndpoint(CDC_TX_EPADDR, EP_TYPE_BULK, CDC_TXRX_EPSIZE, 1);
214
215 Endpoint_ConfigureEndpoint(CDC_RX_EPADDR, EP_TYPE_BULK, CDC_TXRX_EPSIZE, 1);
216 }
217
218 /** Event handler for the USB_ControlRequest event. This is used to catch and process control requests sent to
219 * the device from the USB host before passing along unhandled control requests to the library for processing
220 * internally.
221 */
222 void EVENT_USB_Device_ControlRequest(void)
223 {
224 /* Ignore any requests that aren't directed to the CDC interface */
225 if ((USB_ControlRequest.bmRequestType & (CONTROL_REQTYPE_TYPE | CONTROL_REQTYPE_RECIPIENT)) !=
226 (REQTYPE_CLASS | REQREC_INTERFACE))
227 {
228 return;
229 }
230
231 /* Activity - toggle indicator LEDs */
232 LEDs_ToggleLEDs(LEDS_LED1 | LEDS_LED2);
233
234 /* Process CDC specific control requests */
235 switch (USB_ControlRequest.bRequest)
236 {
237 case CDC_REQ_GetLineEncoding:
238 if (USB_ControlRequest.bmRequestType == (REQDIR_DEVICETOHOST | REQTYPE_CLASS | REQREC_INTERFACE))
239 {
240 Endpoint_ClearSETUP();
241
242 /* Write the line coding data to the control endpoint */
243 Endpoint_Write_Control_Stream_LE(&LineEncoding, sizeof(CDC_LineEncoding_t));
244 Endpoint_ClearOUT();
245 }
246
247 break;
248 case CDC_REQ_SetLineEncoding:
249 if (USB_ControlRequest.bmRequestType == (REQDIR_HOSTTODEVICE | REQTYPE_CLASS | REQREC_INTERFACE))
250 {
251 Endpoint_ClearSETUP();
252
253 /* Read the line coding data in from the host into the global struct */
254 Endpoint_Read_Control_Stream_LE(&LineEncoding, sizeof(CDC_LineEncoding_t));
255 Endpoint_ClearIN();
256 }
257
258 break;
259 case CDC_REQ_SetControlLineState:
260 if (USB_ControlRequest.bmRequestType == (REQDIR_HOSTTODEVICE | REQTYPE_CLASS | REQREC_INTERFACE))
261 {
262 Endpoint_ClearSETUP();
263 Endpoint_ClearStatusStage();
264 }
265
266 break;
267 }
268 }
269
270 #if !defined(NO_BLOCK_SUPPORT)
271 /** Reads or writes a block of EEPROM or FLASH memory to or from the appropriate CDC data endpoint, depending
272 * on the AVR109 protocol command issued.
273 *
274 * \param[in] Command Single character AVR109 protocol command indicating what memory operation to perform
275 */
276 static void ReadWriteMemoryBlock(const uint8_t Command)
277 {
278 uint16_t BlockSize;
279 char MemoryType;
280
281 uint8_t HighByte = 0;
282 uint8_t LowByte = 0;
283
284 BlockSize = (FetchNextCommandByte() << 8);
285 BlockSize |= FetchNextCommandByte();
286
287 MemoryType = FetchNextCommandByte();
288
289 if ((MemoryType != MEMORY_TYPE_FLASH) && (MemoryType != MEMORY_TYPE_EEPROM))
290 {
291 /* Send error byte back to the host */
292 WriteNextResponseByte('?');
293
294 return;
295 }
296
297 /* Check if command is to read a memory block */
298 if (Command == AVR109_COMMAND_BlockRead)
299 {
300 while (BlockSize--)
301 {
302 if (MemoryType == MEMORY_TYPE_FLASH)
303 {
304 /* Read the next FLASH byte from the current FLASH page */
305 #if (FLASHEND > 0xFFFF)
306 WriteNextResponseByte(pgm_read_byte_far(CurrAddress | HighByte));
307 #else
308 WriteNextResponseByte(pgm_read_byte(CurrAddress | HighByte));
309 #endif
310
311 /* If both bytes in current word have been read, increment the address counter */
312 if (HighByte)
313 CurrAddress += 2;
314
315 HighByte = !HighByte;
316 }
317 else
318 {
319 /* Read the next EEPROM byte into the endpoint */
320 WriteNextResponseByte(eeprom_read_byte((uint8_t*)(intptr_t)(CurrAddress >> 1)));
321
322 /* Increment the address counter after use */
323 CurrAddress += 2;
324 }
325 }
326 }
327 else
328 {
329 uint32_t PageStartAddress = CurrAddress;
330
331 if (MemoryType == MEMORY_TYPE_FLASH)
332 BootloaderAPI_ErasePage(PageStartAddress);
333
334 while (BlockSize--)
335 {
336 if (MemoryType == MEMORY_TYPE_FLASH)
337 {
338 /* If both bytes in current word have been written, increment the address counter */
339 if (HighByte)
340 {
341 /* Write the next FLASH word to the current FLASH page */
342 BootloaderAPI_FillWord(CurrAddress, ((FetchNextCommandByte() << 8) | LowByte));
343
344 /* Increment the address counter after use */
345 CurrAddress += 2;
346 }
347 else
348 {
349 LowByte = FetchNextCommandByte();
350 }
351
352 HighByte = !HighByte;
353 }
354 else
355 {
356 /* Write the next EEPROM byte from the endpoint */
357 eeprom_update_byte((uint8_t*)((intptr_t)(CurrAddress >> 1)), FetchNextCommandByte());
358
359 /* Increment the address counter after use */
360 CurrAddress += 2;
361 }
362 }
363
364 /* If in FLASH programming mode, commit the page after writing */
365 if (MemoryType == MEMORY_TYPE_FLASH)
366 {
367 /* Commit the flash page to memory */
368 BootloaderAPI_WritePage(PageStartAddress);
369 }
370
371 /* Send response byte back to the host */
372 WriteNextResponseByte('\r');
373 }
374 }
375 #endif
376
377 /** Retrieves the next byte from the host in the CDC data OUT endpoint, and clears the endpoint bank if needed
378 * to allow reception of the next data packet from the host.
379 *
380 * \return Next received byte from the host in the CDC data OUT endpoint
381 */
382 static uint8_t FetchNextCommandByte(void)
383 {
384 /* Select the OUT endpoint so that the next data byte can be read */
385 Endpoint_SelectEndpoint(CDC_RX_EPADDR);
386
387 /* If OUT endpoint empty, clear it and wait for the next packet from the host */
388 while (!(Endpoint_IsReadWriteAllowed()))
389 {
390 Endpoint_ClearOUT();
391
392 while (!(Endpoint_IsOUTReceived()))
393 {
394 if (USB_DeviceState == DEVICE_STATE_Unattached)
395 return 0;
396 }
397 }
398
399 /* Fetch the next byte from the OUT endpoint */
400 return Endpoint_Read_8();
401 }
402
403 /** Writes the next response byte to the CDC data IN endpoint, and sends the endpoint back if needed to free up the
404 * bank when full ready for the next byte in the packet to the host.
405 *
406 * \param[in] Response Next response byte to send to the host
407 */
408 static void WriteNextResponseByte(const uint8_t Response)
409 {
410 /* Select the IN endpoint so that the next data byte can be written */
411 Endpoint_SelectEndpoint(CDC_TX_EPADDR);
412
413 /* If IN endpoint full, clear it and wait until ready for the next packet to the host */
414 if (!(Endpoint_IsReadWriteAllowed()))
415 {
416 Endpoint_ClearIN();
417
418 while (!(Endpoint_IsINReady()))
419 {
420 if (USB_DeviceState == DEVICE_STATE_Unattached)
421 return;
422 }
423 }
424
425 /* Write the next byte to the IN endpoint */
426 Endpoint_Write_8(Response);
427 }
428
429 /** Task to read in AVR109 commands from the CDC data OUT endpoint, process them, perform the required actions
430 * and send the appropriate response back to the host.
431 */
432 static void CDC_Task(void)
433 {
434 /* Select the OUT endpoint */
435 Endpoint_SelectEndpoint(CDC_RX_EPADDR);
436
437 /* Check if endpoint has a command in it sent from the host */
438 if (!(Endpoint_IsOUTReceived()))
439 return;
440
441 /* Read in the bootloader command (first byte sent from host) */
442 uint8_t Command = FetchNextCommandByte();
443
444 if (Command == AVR109_COMMAND_ExitBootloader)
445 {
446 RunBootloader = false;
447
448 /* Send confirmation byte back to the host */
449 WriteNextResponseByte('\r');
450 }
451 else if ((Command == AVR109_COMMAND_SetLED) || (Command == AVR109_COMMAND_ClearLED) ||
452 (Command == AVR109_COMMAND_SelectDeviceType))
453 {
454 FetchNextCommandByte();
455
456 /* Send confirmation byte back to the host */
457 WriteNextResponseByte('\r');
458 }
459 else if ((Command == AVR109_COMMAND_EnterProgrammingMode) || (Command == AVR109_COMMAND_LeaveProgrammingMode))
460 {
461 /* Send confirmation byte back to the host */
462 WriteNextResponseByte('\r');
463 }
464 else if (Command == AVR109_COMMAND_ReadPartCode)
465 {
466 /* Return ATMEGA128 part code - this is only to allow AVRProg to use the bootloader */
467 WriteNextResponseByte(0x44);
468 WriteNextResponseByte(0x00);
469 }
470 else if (Command == AVR109_COMMAND_ReadAutoAddressIncrement)
471 {
472 /* Indicate auto-address increment is supported */
473 WriteNextResponseByte('Y');
474 }
475 else if (Command == AVR109_COMMAND_SetCurrentAddress)
476 {
477 /* Set the current address to that given by the host (translate 16-bit word address to byte address) */
478 CurrAddress = (FetchNextCommandByte() << 9);
479 CurrAddress |= (FetchNextCommandByte() << 1);
480
481 /* Send confirmation byte back to the host */
482 WriteNextResponseByte('\r');
483 }
484 else if (Command == AVR109_COMMAND_ReadBootloaderInterface)
485 {
486 /* Indicate serial programmer back to the host */
487 WriteNextResponseByte('S');
488 }
489 else if (Command == AVR109_COMMAND_ReadBootloaderIdentifier)
490 {
491 /* Write the 7-byte software identifier to the endpoint */
492 for (uint8_t CurrByte = 0; CurrByte < 7; CurrByte++)
493 WriteNextResponseByte(SOFTWARE_IDENTIFIER[CurrByte]);
494 }
495 else if (Command == AVR109_COMMAND_ReadBootloaderSWVersion)
496 {
497 WriteNextResponseByte('0' + BOOTLOADER_VERSION_MAJOR);
498 WriteNextResponseByte('0' + BOOTLOADER_VERSION_MINOR);
499 }
500 else if (Command == AVR109_COMMAND_ReadSignature)
501 {
502 WriteNextResponseByte(AVR_SIGNATURE_3);
503 WriteNextResponseByte(AVR_SIGNATURE_2);
504 WriteNextResponseByte(AVR_SIGNATURE_1);
505 }
506 else if (Command == AVR109_COMMAND_EraseFLASH)
507 {
508 /* Clear the application section of flash */
509 for (uint32_t CurrFlashAddress = 0; CurrFlashAddress < (uint32_t)BOOT_START_ADDR; CurrFlashAddress += SPM_PAGESIZE)
510 BootloaderAPI_ErasePage(CurrFlashAddress);
511
512 /* Send confirmation byte back to the host */
513 WriteNextResponseByte('\r');
514 }
515 #if !defined(NO_LOCK_BYTE_WRITE_SUPPORT)
516 else if (Command == AVR109_COMMAND_WriteLockbits)
517 {
518 /* Set the lock bits to those given by the host */
519 BootloaderAPI_WriteLock(FetchNextCommandByte());
520
521 /* Send confirmation byte back to the host */
522 WriteNextResponseByte('\r');
523 }
524 #endif
525 else if (Command == AVR109_COMMAND_ReadLockbits)
526 {
527 WriteNextResponseByte(BootloaderAPI_ReadLock());
528 }
529 else if (Command == AVR109_COMMAND_ReadLowFuses)
530 {
531 WriteNextResponseByte(BootloaderAPI_ReadFuse(GET_LOW_FUSE_BITS));
532 }
533 else if (Command == AVR109_COMMAND_ReadHighFuses)
534 {
535 WriteNextResponseByte(BootloaderAPI_ReadFuse(GET_HIGH_FUSE_BITS));
536 }
537 else if (Command == AVR109_COMMAND_ReadExtendedFuses)
538 {
539 WriteNextResponseByte(BootloaderAPI_ReadFuse(GET_EXTENDED_FUSE_BITS));
540 }
541 #if !defined(NO_BLOCK_SUPPORT)
542 else if (Command == AVR109_COMMAND_GetBlockWriteSupport)
543 {
544 WriteNextResponseByte('Y');
545
546 /* Send block size to the host */
547 WriteNextResponseByte(SPM_PAGESIZE >> 8);
548 WriteNextResponseByte(SPM_PAGESIZE & 0xFF);
549 }
550 else if ((Command == AVR109_COMMAND_BlockWrite) || (Command == AVR109_COMMAND_BlockRead))
551 {
552 /* Delegate the block write/read to a separate function for clarity */
553 ReadWriteMemoryBlock(Command);
554 }
555 #endif
556 #if !defined(NO_FLASH_BYTE_SUPPORT)
557 else if (Command == AVR109_COMMAND_FillFlashPageWordHigh)
558 {
559 /* Write the high byte to the current flash page */
560 BootloaderAPI_FillWord(CurrAddress, FetchNextCommandByte());
561
562 /* Send confirmation byte back to the host */
563 WriteNextResponseByte('\r');
564 }
565 else if (Command == AVR109_COMMAND_FillFlashPageWordLow)
566 {
567 /* Write the low byte to the current flash page */
568 BootloaderAPI_FillWord(CurrAddress | 0x01, FetchNextCommandByte());
569
570 /* Increment the address */
571 CurrAddress += 2;
572
573 /* Send confirmation byte back to the host */
574 WriteNextResponseByte('\r');
575 }
576 else if (Command == AVR109_COMMAND_WriteFlashPage)
577 {
578 /* Commit the flash page to memory */
579 BootloaderAPI_WritePage(CurrAddress);
580
581 /* Send confirmation byte back to the host */
582 WriteNextResponseByte('\r');
583 }
584 else if (Command == AVR109_COMMAND_ReadFLASHWord)
585 {
586 #if (FLASHEND > 0xFFFF)
587 uint16_t ProgramWord = pgm_read_word_far(CurrAddress);
588 #else
589 uint16_t ProgramWord = pgm_read_word(CurrAddress);
590 #endif
591
592 WriteNextResponseByte(ProgramWord >> 8);
593 WriteNextResponseByte(ProgramWord & 0xFF);
594 }
595 #endif
596 #if !defined(NO_EEPROM_BYTE_SUPPORT)
597 else if (Command == AVR109_COMMAND_WriteEEPROM)
598 {
599 /* Read the byte from the endpoint and write it to the EEPROM */
600 eeprom_update_byte((uint8_t*)((intptr_t)(CurrAddress >> 1)), FetchNextCommandByte());
601
602 /* Increment the address after use */
603 CurrAddress += 2;
604
605 /* Send confirmation byte back to the host */
606 WriteNextResponseByte('\r');
607 }
608 else if (Command == AVR109_COMMAND_ReadEEPROM)
609 {
610 /* Read the EEPROM byte and write it to the endpoint */
611 WriteNextResponseByte(eeprom_read_byte((uint8_t*)((intptr_t)(CurrAddress >> 1))));
612
613 /* Increment the address after use */
614 CurrAddress += 2;
615 }
616 #endif
617 else if (Command != AVR109_COMMAND_Sync)
618 {
619 /* Unknown (non-sync) command, return fail code */
620 WriteNextResponseByte('?');
621 }
622
623 /* Select the IN endpoint */
624 Endpoint_SelectEndpoint(CDC_TX_EPADDR);
625
626 /* Remember if the endpoint is completely full before clearing it */
627 bool IsEndpointFull = !(Endpoint_IsReadWriteAllowed());
628
629 /* Send the endpoint data to the host */
630 Endpoint_ClearIN();
631
632 /* If a full endpoint's worth of data was sent, we need to send an empty packet afterwards to signal end of transfer */
633 if (IsEndpointFull)
634 {
635 while (!(Endpoint_IsINReady()))
636 {
637 if (USB_DeviceState == DEVICE_STATE_Unattached)
638 return;
639 }
640
641 Endpoint_ClearIN();
642 }
643
644 /* Wait until the data has been sent to the host */
645 while (!(Endpoint_IsINReady()))
646 {
647 if (USB_DeviceState == DEVICE_STATE_Unattached)
648 return;
649 }
650
651 /* Select the OUT endpoint */
652 Endpoint_SelectEndpoint(CDC_RX_EPADDR);
653
654 /* Acknowledge the command from the host */
655 Endpoint_ClearOUT();
656 }