Changes to blocking interrupts, etc for PR change
authorjacobseptember <jacobseptember@users.noreply.github.com>
Fri, 4 Jan 2019 16:05:43 +0000 (11:05 -0500)
committerGitHub <noreply@github.com>
Fri, 4 Jan 2019 16:05:43 +0000 (11:05 -0500)
ISPProtocol.c [new file with mode: 0644]

diff --git a/ISPProtocol.c b/ISPProtocol.c
new file mode 100644 (file)
index 0000000..ffe2c56
--- /dev/null
@@ -0,0 +1,617 @@
+/*
+             LUFA Library
+     Copyright (C) Dean Camera, 2018.
+
+  dean [at] fourwalledcubicle [dot] com
+           www.lufa-lib.org
+*/
+
+/*
+  Copyright 2018  Dean Camera (dean [at] fourwalledcubicle [dot] com)
+  
+  Function ISPProtocol_Calibrate() copyright 2018 Jacob September
+
+  Permission to use, copy, modify, distribute, and sell this
+  software and its documentation for any purpose is hereby granted
+  without fee, provided that the above copyright notice appear in
+  all copies and that both that the copyright notice and this
+  permission notice and warranty disclaimer appear in supporting
+  documentation, and that the name of the author not be used in
+  advertising or publicity pertaining to distribution of the
+  software without specific, written prior permission.
+
+  The author disclaims all warranties with regard to this
+  software, including all implied warranties of merchantability
+  and fitness.  In no event shall the author be liable for any
+  special, indirect or consequential damages or any damages
+  whatsoever resulting from loss of use, data or profits, whether
+  in an action of contract, negligence or other tortious action,
+  arising out of or in connection with the use or performance of
+  this software.
+*/
+
+/** \file
+ *
+ *  ISP Protocol handler, to process V2 Protocol wrapped ISP commands used in Atmel programmer devices.
+ */
+
+#include "ISPProtocol.h"
+#include <util/atomic.h>
+
+#if defined(ENABLE_ISP_PROTOCOL) || defined(__DOXYGEN__)
+
+/** Handler for the CMD_ENTER_PROGMODE_ISP command, which attempts to enter programming mode on
+ *  the attached device, returning success or failure back to the host.
+ */
+void ISPProtocol_EnterISPMode(void)
+{
+       struct
+       {
+               uint8_t TimeoutMS;
+               uint8_t PinStabDelayMS;
+               uint8_t ExecutionDelayMS;
+               uint8_t SynchLoops;
+               uint8_t ByteDelay;
+               uint8_t PollValue;
+               uint8_t PollIndex;
+               uint8_t EnterProgBytes[4];
+       } Enter_ISP_Params;
+
+       Endpoint_Read_Stream_LE(&Enter_ISP_Params, sizeof(Enter_ISP_Params), NULL);
+
+       Endpoint_ClearOUT();
+       Endpoint_SelectEndpoint(AVRISP_DATA_IN_EPADDR);
+       Endpoint_SetEndpointDirection(ENDPOINT_DIR_IN);
+
+       uint8_t ResponseStatus = STATUS_CMD_FAILED;
+
+       CurrentAddress = 0;
+
+       /* Perform execution delay, initialize SPI bus */
+       ISPProtocol_DelayMS(Enter_ISP_Params.ExecutionDelayMS);
+       ISPTarget_EnableTargetISP();
+
+       ISPTarget_ChangeTargetResetLine(true);
+       ISPProtocol_DelayMS(Enter_ISP_Params.PinStabDelayMS);
+
+       /* Continuously attempt to synchronize with the target until either the number of attempts specified
+        * by the host has exceeded, or the the device sends back the expected response values */
+       while (Enter_ISP_Params.SynchLoops-- && TimeoutTicksRemaining)
+       {
+               uint8_t ResponseBytes[4];
+
+               for (uint8_t RByte = 0; RByte < sizeof(ResponseBytes); RByte++)
+               {
+                       ISPProtocol_DelayMS(Enter_ISP_Params.ByteDelay);
+                       ResponseBytes[RByte] = ISPTarget_TransferByte(Enter_ISP_Params.EnterProgBytes[RByte]);
+               }
+
+               /* Check if polling disabled, or if the polled value matches the expected value */
+               if (!(Enter_ISP_Params.PollIndex) || (ResponseBytes[Enter_ISP_Params.PollIndex - 1] == Enter_ISP_Params.PollValue))
+               {
+                       ResponseStatus = STATUS_CMD_OK;
+                       break;
+               }
+               else
+               {
+                       ISPTarget_ChangeTargetResetLine(false);
+                       ISPProtocol_DelayMS(Enter_ISP_Params.PinStabDelayMS);
+                       ISPTarget_ChangeTargetResetLine(true);
+                       ISPProtocol_DelayMS(Enter_ISP_Params.PinStabDelayMS);
+               }
+       }
+
+       Endpoint_Write_8(CMD_ENTER_PROGMODE_ISP);
+       Endpoint_Write_8(ResponseStatus);
+       Endpoint_ClearIN();
+}
+
+/** Handler for the CMD_LEAVE_ISP command, which releases the target from programming mode. */
+void ISPProtocol_LeaveISPMode(void)
+{
+       struct
+       {
+               uint8_t PreDelayMS;
+               uint8_t PostDelayMS;
+       } Leave_ISP_Params;
+
+       Endpoint_Read_Stream_LE(&Leave_ISP_Params, sizeof(Leave_ISP_Params), NULL);
+
+       Endpoint_ClearOUT();
+       Endpoint_SelectEndpoint(AVRISP_DATA_IN_EPADDR);
+       Endpoint_SetEndpointDirection(ENDPOINT_DIR_IN);
+
+       /* Perform pre-exit delay, release the target /RESET, disable the SPI bus and perform the post-exit delay */
+       ISPProtocol_DelayMS(Leave_ISP_Params.PreDelayMS);
+       ISPTarget_ChangeTargetResetLine(false);
+       ISPTarget_DisableTargetISP();
+       ISPProtocol_DelayMS(Leave_ISP_Params.PostDelayMS);
+
+       Endpoint_Write_8(CMD_LEAVE_PROGMODE_ISP);
+       Endpoint_Write_8(STATUS_CMD_OK);
+       Endpoint_ClearIN();
+}
+
+/** Handler for the CMD_PROGRAM_FLASH_ISP and CMD_PROGRAM_EEPROM_ISP commands, writing out bytes,
+ *  words or pages of data to the attached device.
+ *
+ *  \param[in] V2Command  Issued V2 Protocol command byte from the host
+ */
+void ISPProtocol_ProgramMemory(uint8_t V2Command)
+{
+       struct
+       {
+               uint16_t BytesToWrite;
+               uint8_t  ProgrammingMode;
+               uint8_t  DelayMS;
+               uint8_t  ProgrammingCommands[3];
+               uint8_t  PollValue1;
+               uint8_t  PollValue2;
+               uint8_t  ProgData[256]; // Note, the Jungo driver has a very short ACK timeout period, need to buffer the
+       } Write_Memory_Params;      // whole page and ACK the packet as fast as possible to prevent it from aborting
+
+       Endpoint_Read_Stream_LE(&Write_Memory_Params, (sizeof(Write_Memory_Params) -
+                                                      sizeof(Write_Memory_Params.ProgData)), NULL);
+       Write_Memory_Params.BytesToWrite = SwapEndian_16(Write_Memory_Params.BytesToWrite);
+
+       if (Write_Memory_Params.BytesToWrite > sizeof(Write_Memory_Params.ProgData))
+       {
+               Endpoint_ClearOUT();
+               Endpoint_SelectEndpoint(AVRISP_DATA_IN_EPADDR);
+               Endpoint_SetEndpointDirection(ENDPOINT_DIR_IN);
+
+               Endpoint_Write_8(V2Command);
+               Endpoint_Write_8(STATUS_CMD_FAILED);
+               Endpoint_ClearIN();
+               return;
+       }
+
+       Endpoint_Read_Stream_LE(&Write_Memory_Params.ProgData, Write_Memory_Params.BytesToWrite, NULL);
+
+       // The driver will terminate transfers that are a round multiple of the endpoint bank in size with a ZLP, need
+       // to catch this and discard it before continuing on with packet processing to prevent communication issues
+       if (((sizeof(uint8_t) + sizeof(Write_Memory_Params) - sizeof(Write_Memory_Params.ProgData)) +
+           Write_Memory_Params.BytesToWrite) % AVRISP_DATA_EPSIZE == 0)
+       {
+               Endpoint_ClearOUT();
+               Endpoint_WaitUntilReady();
+       }
+
+       Endpoint_ClearOUT();
+       Endpoint_SelectEndpoint(AVRISP_DATA_IN_EPADDR);
+       Endpoint_SetEndpointDirection(ENDPOINT_DIR_IN);
+
+       uint8_t  ProgrammingStatus = STATUS_CMD_OK;
+       uint8_t  PollValue         = (V2Command == CMD_PROGRAM_FLASH_ISP) ? Write_Memory_Params.PollValue1 :
+                                                                           Write_Memory_Params.PollValue2;
+       uint16_t PollAddress       = 0;
+       uint8_t* NextWriteByte     = Write_Memory_Params.ProgData;
+       uint16_t PageStartAddress  = (CurrentAddress & 0xFFFF);
+
+       for (uint16_t CurrentByte = 0; CurrentByte < Write_Memory_Params.BytesToWrite; CurrentByte++)
+       {
+               uint8_t ByteToWrite     = *(NextWriteByte++);
+               uint8_t ProgrammingMode = Write_Memory_Params.ProgrammingMode;
+
+               /* Check to see if we need to send a LOAD EXTENDED ADDRESS command to the target */
+               if (MustLoadExtendedAddress)
+               {
+                       ISPTarget_LoadExtendedAddress();
+                       MustLoadExtendedAddress = false;
+               }
+
+               ISPTarget_SendByte(Write_Memory_Params.ProgrammingCommands[0]);
+               ISPTarget_SendByte(CurrentAddress >> 8);
+               ISPTarget_SendByte(CurrentAddress & 0xFF);
+               ISPTarget_SendByte(ByteToWrite);
+
+               /* AVR FLASH addressing requires us to modify the write command based on if we are writing a high
+                * or low byte at the current word address */
+               if (V2Command == CMD_PROGRAM_FLASH_ISP)
+                 Write_Memory_Params.ProgrammingCommands[0] ^= READ_WRITE_HIGH_BYTE_MASK;
+
+               /* Check to see if we have a valid polling address */
+               if (!(PollAddress) && (ByteToWrite != PollValue))
+               {
+                       if ((CurrentByte & 0x01) && (V2Command == CMD_PROGRAM_FLASH_ISP))
+                         Write_Memory_Params.ProgrammingCommands[2] |=  READ_WRITE_HIGH_BYTE_MASK;
+                       else
+                         Write_Memory_Params.ProgrammingCommands[2] &= ~READ_WRITE_HIGH_BYTE_MASK;
+
+                       PollAddress = (CurrentAddress & 0xFFFF);
+               }
+
+               /* If in word programming mode, commit the byte to the target's memory */
+               if (!(ProgrammingMode & PROG_MODE_PAGED_WRITES_MASK))
+               {
+                       /* If the current polling address is invalid, switch to timed delay write completion mode */
+                       if (!(PollAddress) && !(ProgrammingMode & PROG_MODE_WORD_READYBUSY_MASK))
+                         ProgrammingMode = (ProgrammingMode & ~PROG_MODE_WORD_VALUE_MASK) | PROG_MODE_WORD_TIMEDELAY_MASK;
+
+                       ProgrammingStatus = ISPTarget_WaitForProgComplete(ProgrammingMode, PollAddress, PollValue,
+                                                                         Write_Memory_Params.DelayMS,
+                                                                         Write_Memory_Params.ProgrammingCommands[2]);
+
+                       /* Abort the programming loop early if the byte/word programming failed */
+                       if (ProgrammingStatus != STATUS_CMD_OK)
+                         break;
+
+                       /* Must reset the polling address afterwards, so it is not erroneously used for the next byte */
+                       PollAddress = 0;
+               }
+
+               /* EEPROM just increments the address each byte, flash needs to increment on each word and
+                * also check to ensure that a LOAD EXTENDED ADDRESS command is issued each time the extended
+                * address boundary has been crossed during FLASH memory programming */
+               if ((CurrentByte & 0x01) || (V2Command == CMD_PROGRAM_EEPROM_ISP))
+               {
+                       CurrentAddress++;
+
+                       if ((V2Command == CMD_PROGRAM_FLASH_ISP) && !(CurrentAddress & 0xFFFF))
+                         MustLoadExtendedAddress = true;
+               }
+       }
+
+       /* If the current page must be committed, send the PROGRAM PAGE command to the target */
+       if (Write_Memory_Params.ProgrammingMode & PROG_MODE_COMMIT_PAGE_MASK)
+       {
+               ISPTarget_SendByte(Write_Memory_Params.ProgrammingCommands[1]);
+               ISPTarget_SendByte(PageStartAddress >> 8);
+               ISPTarget_SendByte(PageStartAddress & 0xFF);
+               ISPTarget_SendByte(0x00);
+
+               /* Check if polling is enabled and possible, if not switch to timed delay mode */
+               if ((Write_Memory_Params.ProgrammingMode & PROG_MODE_PAGED_VALUE_MASK) && !(PollAddress))
+               {
+                       Write_Memory_Params.ProgrammingMode = (Write_Memory_Params.ProgrammingMode & ~PROG_MODE_PAGED_VALUE_MASK) |
+                                                                                                  PROG_MODE_PAGED_TIMEDELAY_MASK;
+               }
+
+               ProgrammingStatus = ISPTarget_WaitForProgComplete(Write_Memory_Params.ProgrammingMode, PollAddress, PollValue,
+                                                                 Write_Memory_Params.DelayMS,
+                                                                 Write_Memory_Params.ProgrammingCommands[2]);
+
+               /* Check to see if the FLASH address has crossed the extended address boundary */
+               if ((V2Command == CMD_PROGRAM_FLASH_ISP) && !(CurrentAddress & 0xFFFF))
+                 MustLoadExtendedAddress = true;
+       }
+
+       Endpoint_Write_8(V2Command);
+       Endpoint_Write_8(ProgrammingStatus);
+       Endpoint_ClearIN();
+}
+
+/** Handler for the CMD_READ_FLASH_ISP and CMD_READ_EEPROM_ISP commands, reading in bytes,
+ *  words or pages of data from the attached device.
+ *
+ *  \param[in] V2Command  Issued V2 Protocol command byte from the host
+ */
+void ISPProtocol_ReadMemory(uint8_t V2Command)
+{
+       struct
+       {
+               uint16_t BytesToRead;
+               uint8_t  ReadMemoryCommand;
+       } Read_Memory_Params;
+
+       Endpoint_Read_Stream_LE(&Read_Memory_Params, sizeof(Read_Memory_Params), NULL);
+       Read_Memory_Params.BytesToRead = SwapEndian_16(Read_Memory_Params.BytesToRead);
+
+       Endpoint_ClearOUT();
+       Endpoint_SelectEndpoint(AVRISP_DATA_IN_EPADDR);
+       Endpoint_SetEndpointDirection(ENDPOINT_DIR_IN);
+
+       Endpoint_Write_8(V2Command);
+       Endpoint_Write_8(STATUS_CMD_OK);
+
+       /* Read each byte from the device and write them to the packet for the host */
+       for (uint16_t CurrentByte = 0; CurrentByte < Read_Memory_Params.BytesToRead; CurrentByte++)
+       {
+               /* Check to see if we need to send a LOAD EXTENDED ADDRESS command to the target */
+               if (MustLoadExtendedAddress)
+               {
+                       ISPTarget_LoadExtendedAddress();
+                       MustLoadExtendedAddress = false;
+               }
+
+               /* Read the next byte from the desired memory space in the device */
+               ISPTarget_SendByte(Read_Memory_Params.ReadMemoryCommand);
+               ISPTarget_SendByte(CurrentAddress >> 8);
+               ISPTarget_SendByte(CurrentAddress & 0xFF);
+               Endpoint_Write_8(ISPTarget_ReceiveByte());
+
+               /* Check if the endpoint bank is currently full, if so send the packet */
+               if (!(Endpoint_IsReadWriteAllowed()))
+               {
+                       Endpoint_ClearIN();
+                       Endpoint_WaitUntilReady();
+               }
+
+               /* AVR FLASH addressing requires us to modify the read command based on if we are reading a high
+                * or low byte at the current word address */
+               if (V2Command == CMD_READ_FLASH_ISP)
+                 Read_Memory_Params.ReadMemoryCommand ^= READ_WRITE_HIGH_BYTE_MASK;
+
+               /* EEPROM just increments the address each byte, flash needs to increment on each word and
+                * also check to ensure that a LOAD EXTENDED ADDRESS command is issued each time the extended
+                * address boundary has been crossed */
+               if ((CurrentByte & 0x01) || (V2Command == CMD_READ_EEPROM_ISP))
+               {
+                       CurrentAddress++;
+
+                       if ((V2Command != CMD_READ_EEPROM_ISP) && !(CurrentAddress & 0xFFFF))
+                         MustLoadExtendedAddress = true;
+               }
+       }
+
+       Endpoint_Write_8(STATUS_CMD_OK);
+
+       bool IsEndpointFull = !(Endpoint_IsReadWriteAllowed());
+       Endpoint_ClearIN();
+
+       /* Ensure last packet is a short packet to terminate the transfer */
+       if (IsEndpointFull)
+       {
+               Endpoint_WaitUntilReady();
+               Endpoint_ClearIN();
+               Endpoint_WaitUntilReady();
+       }
+}
+
+/** Handler for the CMD_CHI_ERASE_ISP command, clearing the target's FLASH memory. */
+void ISPProtocol_ChipErase(void)
+{
+       struct
+       {
+               uint8_t EraseDelayMS;
+               uint8_t PollMethod;
+               uint8_t EraseCommandBytes[4];
+       } Erase_Chip_Params;
+
+       Endpoint_Read_Stream_LE(&Erase_Chip_Params, sizeof(Erase_Chip_Params), NULL);
+
+       Endpoint_ClearOUT();
+       Endpoint_SelectEndpoint(AVRISP_DATA_IN_EPADDR);
+       Endpoint_SetEndpointDirection(ENDPOINT_DIR_IN);
+
+       uint8_t ResponseStatus = STATUS_CMD_OK;
+
+       /* Send the chip erase commands as given by the host to the device */
+       for (uint8_t SByte = 0; SByte < sizeof(Erase_Chip_Params.EraseCommandBytes); SByte++)
+         ISPTarget_SendByte(Erase_Chip_Params.EraseCommandBytes[SByte]);
+
+       /* Use appropriate command completion check as given by the host (delay or busy polling) */
+       if (!(Erase_Chip_Params.PollMethod))
+         ISPProtocol_DelayMS(Erase_Chip_Params.EraseDelayMS);
+       else
+         ResponseStatus = ISPTarget_WaitWhileTargetBusy();
+
+       Endpoint_Write_8(CMD_CHIP_ERASE_ISP);
+       Endpoint_Write_8(ResponseStatus);
+       Endpoint_ClearIN();
+}
+
+/** Global volatile variables used in ISRs relating to ISPProtocol_Calibrate() */
+volatile uint16_t HalfCyclesRemaining;
+volatile uint8_t  ResponseTogglesRemaining;
+
+/** ISR to toggle MOSI pin when TIMER1 overflows */
+ISR(TIMER1_OVF_vect, ISR_BLOCK)
+{
+       PINB |= (1 << PB2);     // toggle PB2 (MOSI) by writing 1 to its bit in PINB
+       HalfCyclesRemaining--;
+}
+
+/** ISR to listen for toggles on MISO pin */
+ISR(PCINT0_vect, ISR_BLOCK)
+{
+       ResponseTogglesRemaining--;
+}
+
+/** Handler for the CMD_OSCCAL command, entering RC-calibration mode as specified in AVR053 */
+void ISPProtocol_Calibrate(void)
+{
+       #define CALIB_CLOCK                     32768
+               // CALIB_TICKS uses 2x frequency because we toggle twice per cycle
+               //  and adds 1/2 denom. to nom. to ensure rounding instead of flooring of integer division
+       #define CALIB_TICKS                     ( (F_CPU+CALIB_CLOCK) / (2*CALIB_CLOCK) )
+               // Per AVR053, calibration guaranteed to take 1024 cycles (2048 half-cycles) or fewer;
+               //  add some cycles for response delay (5-10 after success) and response itself
+       #define HALF_CYCLE_LIMIT        (2*1024 + 50)
+       #define SUCCESS_TOGGLE_NUM      8
+       
+       uint8_t ResponseStatus = STATUS_CMD_OK;
+       
+       /* Don't entirely know why this is needed, something to do with the USB communication back to PC */
+       Endpoint_ClearOUT();
+       Endpoint_SelectEndpoint(AVRISP_DATA_IN_EPADDR);
+       Endpoint_SetEndpointDirection(ENDPOINT_DIR_IN);
+       
+       /* Enable pullup on MISO and release ~RESET */
+       DDRB    =  ~(1 << PB3);                                 // explicitly set all PORTB to outputs except PB3 (MISO)
+       PORTB  |= ( (1 << PB4) | (1 << PB3) );  // set PB4 (TARG_RST) high (i.e. not reset) and enable pullup on PB3 (MISO)
+       
+       /* Set up MISO pin (PCINT3) to listen for toggles */
+       PCMSK0  = (1 << PCINT3);        // set mask to enable PCINT on only Pin 3 (MISO)
+       
+       /* Set up timer that fires at a rate of 65536 Hz - this will drive the MOSI toggle */
+       OCR1A   = CALIB_TICKS - 1;              // zero-indexed counter; for 16MHz system clock, this becomes 243
+       TCCR1A  = ( (1 << WGM11) | (1 << WGM10) );                                      // set for fast PWM, TOP = OCR1A
+       TCCR1B  = ( (1 << WGM13) | (1 << WGM12) | (1 << CS10) );        //  ... and no clock prescaling
+       TCNT1   = 0;                                                                                            // reset counter
+
+       /* Initialize counter variables */
+       HalfCyclesRemaining                     = HALF_CYCLE_LIMIT;
+       ResponseTogglesRemaining        = SUCCESS_TOGGLE_NUM;
+
+       /* Turn on interrupts */
+       PCICR  |= (1 << PCIE0); // enable interrupts for PCINT7:0 (don't touch setting for PCINT12:8)
+       TIMSK1  = (1 << TOIE1); // enable T1 OVF interrupt (and no other T1 interrupts)
+       
+       /* Turn on global interrupts for the following block, restoring current state at end */
+       NONATOMIC_BLOCK(NONATOMIC_RESTORESTATE)
+       {
+               /* Let device do its calibration, wait for reponse on MISO */
+               while ( HalfCyclesRemaining && ResponseTogglesRemaining )
+               {
+                       // do nothing...
+               }
+               
+               /* Disable interrupts */
+               PCICR  &= ~(1 << PCIE0);
+               TIMSK1  = 0;
+       }
+       
+       /* Check if device responded with a success message or if we timed out */
+       if (ResponseTogglesRemaining)
+       {
+               ResponseStatus = STATUS_CMD_TOUT;
+       }
+
+       /* Report back to PC via USB */
+       Endpoint_Write_8(CMD_OSCCAL);
+       Endpoint_Write_8(ResponseStatus);
+       Endpoint_ClearIN();
+       
+} // void ISPProtocol_Calibrate(void)
+
+/** Handler for the CMD_READ_FUSE_ISP, CMD_READ_LOCK_ISP, CMD_READ_SIGNATURE_ISP and CMD_READ_OSCCAL commands,
+ *  reading the requested configuration byte from the device.
+ *
+ *  \param[in] V2Command  Issued V2 Protocol command byte from the host
+ */
+void ISPProtocol_ReadFuseLockSigOSCCAL(uint8_t V2Command)
+{
+       struct
+       {
+               uint8_t RetByte;
+               uint8_t ReadCommandBytes[4];
+       } Read_FuseLockSigOSCCAL_Params;
+
+       Endpoint_Read_Stream_LE(&Read_FuseLockSigOSCCAL_Params, sizeof(Read_FuseLockSigOSCCAL_Params), NULL);
+
+       Endpoint_ClearOUT();
+       Endpoint_SelectEndpoint(AVRISP_DATA_IN_EPADDR);
+       Endpoint_SetEndpointDirection(ENDPOINT_DIR_IN);
+
+       uint8_t ResponseBytes[4];
+
+       /* Send the Fuse or Lock byte read commands as given by the host to the device, store response */
+       for (uint8_t RByte = 0; RByte < sizeof(ResponseBytes); RByte++)
+         ResponseBytes[RByte] = ISPTarget_TransferByte(Read_FuseLockSigOSCCAL_Params.ReadCommandBytes[RByte]);
+
+       Endpoint_Write_8(V2Command);
+       Endpoint_Write_8(STATUS_CMD_OK);
+       Endpoint_Write_8(ResponseBytes[Read_FuseLockSigOSCCAL_Params.RetByte - 1]);
+       Endpoint_Write_8(STATUS_CMD_OK);
+       Endpoint_ClearIN();
+}
+
+/** Handler for the CMD_WRITE_FUSE_ISP and CMD_WRITE_LOCK_ISP commands, writing the requested configuration
+ *  byte to the device.
+ *
+ *  \param[in] V2Command  Issued V2 Protocol command byte from the host
+ */
+void ISPProtocol_WriteFuseLock(uint8_t V2Command)
+{
+       struct
+       {
+               uint8_t WriteCommandBytes[4];
+       } Write_FuseLockSig_Params;
+
+       Endpoint_Read_Stream_LE(&Write_FuseLockSig_Params, sizeof(Write_FuseLockSig_Params), NULL);
+
+       Endpoint_ClearOUT();
+       Endpoint_SelectEndpoint(AVRISP_DATA_IN_EPADDR);
+       Endpoint_SetEndpointDirection(ENDPOINT_DIR_IN);
+
+       /* Send the Fuse or Lock byte program commands as given by the host to the device */
+       for (uint8_t SByte = 0; SByte < sizeof(Write_FuseLockSig_Params.WriteCommandBytes); SByte++)
+         ISPTarget_SendByte(Write_FuseLockSig_Params.WriteCommandBytes[SByte]);
+
+       Endpoint_Write_8(V2Command);
+       Endpoint_Write_8(STATUS_CMD_OK);
+       Endpoint_Write_8(STATUS_CMD_OK);
+       Endpoint_ClearIN();
+}
+
+/** Handler for the CMD_SPI_MULTI command, writing and reading arbitrary SPI data to and from the attached device. */
+void ISPProtocol_SPIMulti(void)
+{
+       struct
+       {
+               uint8_t TxBytes;
+               uint8_t RxBytes;
+               uint8_t RxStartAddr;
+               uint8_t TxData[255];
+       } SPI_Multi_Params;
+
+       Endpoint_Read_Stream_LE(&SPI_Multi_Params, (sizeof(SPI_Multi_Params) - sizeof(SPI_Multi_Params.TxData)), NULL);
+       Endpoint_Read_Stream_LE(&SPI_Multi_Params.TxData, SPI_Multi_Params.TxBytes, NULL);
+
+       Endpoint_ClearOUT();
+       Endpoint_SelectEndpoint(AVRISP_DATA_IN_EPADDR);
+       Endpoint_SetEndpointDirection(ENDPOINT_DIR_IN);
+
+       Endpoint_Write_8(CMD_SPI_MULTI);
+       Endpoint_Write_8(STATUS_CMD_OK);
+
+       uint8_t CurrTxPos = 0;
+       uint8_t CurrRxPos = 0;
+
+       /* Write out bytes to transmit until the start of the bytes to receive is met */
+       while (CurrTxPos < SPI_Multi_Params.RxStartAddr)
+       {
+               if (CurrTxPos < SPI_Multi_Params.TxBytes)
+                 ISPTarget_SendByte(SPI_Multi_Params.TxData[CurrTxPos]);
+               else
+                 ISPTarget_SendByte(0);
+
+               CurrTxPos++;
+       }
+
+       /* Transmit remaining bytes with padding as needed, read in response bytes */
+       while (CurrRxPos < SPI_Multi_Params.RxBytes)
+       {
+               if (CurrTxPos < SPI_Multi_Params.TxBytes)
+                 Endpoint_Write_8(ISPTarget_TransferByte(SPI_Multi_Params.TxData[CurrTxPos++]));
+               else
+                 Endpoint_Write_8(ISPTarget_ReceiveByte());
+
+               /* Check to see if we have filled the endpoint bank and need to send the packet */
+               if (!(Endpoint_IsReadWriteAllowed()))
+               {
+                       Endpoint_ClearIN();
+                       Endpoint_WaitUntilReady();
+               }
+
+               CurrRxPos++;
+       }
+
+       Endpoint_Write_8(STATUS_CMD_OK);
+
+       bool IsEndpointFull = !(Endpoint_IsReadWriteAllowed());
+       Endpoint_ClearIN();
+
+       /* Ensure last packet is a short packet to terminate the transfer */
+       if (IsEndpointFull)
+       {
+               Endpoint_WaitUntilReady();
+               Endpoint_ClearIN();
+               Endpoint_WaitUntilReady();
+       }
+}
+
+/** Blocking delay for a given number of milliseconds. This provides a simple wrapper around
+ *  the avr-libc provided delay function, so that the delay function can be called with a
+ *  constant value (to prevent run-time floating point operations being required).
+ *
+ *  \param[in] DelayMS  Number of milliseconds to delay for
+ */
+void ISPProtocol_DelayMS(uint8_t DelayMS)
+{
+       while (DelayMS-- && TimeoutTicksRemaining)
+         Delay_MS(1);
+}
+
+#endif