Added const modifiers to device mode class drivers.
[pub/USBasp.git] / Bootloaders / DFU / BootloaderDFU.c
1 /*
2 LUFA Library
3 Copyright (C) Dean Camera, 2009.
4
5 dean [at] fourwalledcubicle [dot] com
6 www.fourwalledcubicle.com
7 */
8
9 /*
10 Copyright 2009 Dean Camera (dean [at] fourwalledcubicle [dot] com)
11
12 Permission to use, copy, modify, and distribute this software
13 and its documentation for any purpose and without fee is hereby
14 granted, provided that the above copyright notice appear in all
15 copies and that both that the copyright notice and this
16 permission notice and warranty disclaimer appear in supporting
17 documentation, and that the name of the author not be used in
18 advertising or publicity pertaining to distribution of the
19 software without specific, written prior permission.
20
21 The author disclaim all warranties with regard to this
22 software, including all implied warranties of merchantability
23 and fitness. In no event shall the author be liable for any
24 special, indirect or consequential damages or any damages
25 whatsoever resulting from loss of use, data or profits, whether
26 in an action of contract, negligence or other tortious action,
27 arising out of or in connection with the use or performance of
28 this software.
29 */
30
31 /** \file
32 *
33 * Main source file for the DFU class bootloader. This file contains the complete bootloader logic.
34 */
35
36 #define INCLUDE_FROM_BOOTLOADER_C
37 #include "BootloaderDFU.h"
38
39 /** Flag to indicate if the bootloader is currently running in secure mode, disallowing memory operations
40 * other than erase. This is initially set to the value set by SECURE_MODE, and cleared by the bootloader
41 * once a memory erase has completed.
42 */
43 bool IsSecure = SECURE_MODE;
44
45 /** Flag to indicate if the bootloader should be running, or should exit and allow the application code to run
46 * via a soft reset. When cleared, the bootloader will abort, the USB interface will shut down and the application
47 * jumped to via an indirect jump to location 0x0000 (or other location specified by the host).
48 */
49 bool RunBootloader = true;
50
51 /** Flag to indicate if the bootloader is waiting to exit. When the host requests the bootloader to exit and
52 * jump to the application address it specifies, it sends two sequential commands which must be properly
53 * acknowledged. Upon reception of the first the RunBootloader flag is cleared and the WaitForExit flag is set,
54 * causing the bootloader to wait for the final exit command before shutting down.
55 */
56 bool WaitForExit = false;
57
58 /** Current DFU state machine state, one of the values in the DFU_State_t enum. */
59 uint8_t DFU_State = dfuIDLE;
60
61 /** Status code of the last executed DFU command. This is set to one of the values in the DFU_Status_t enum after
62 * each operation, and returned to the host when a Get Status DFU request is issued.
63 */
64 uint8_t DFU_Status = OK;
65
66 /** Data containing the DFU command sent from the host. */
67 DFU_Command_t SentCommand;
68
69 /** Response to the last issued Read Data DFU command. Unlike other DFU commands, the read command
70 * requires a single byte response from the bootloader containing the read data when the next DFU_UPLOAD command
71 * is issued by the host.
72 */
73 uint8_t ResponseByte;
74
75 /** Pointer to the start of the user application. By default this is 0x0000 (the reset vector), however the host
76 * may specify an alternate address when issuing the application soft-start command.
77 */
78 AppPtr_t AppStartPtr = (AppPtr_t)0x0000;
79
80 /** 64-bit flash page number. This is concatenated with the current 16-bit address on USB AVRs containing more than
81 * 64KB of flash memory.
82 */
83 uint8_t Flash64KBPage = 0;
84
85 /** Memory start address, indicating the current address in the memory being addressed (either FLASH or EEPROM
86 * depending on the issued command from the host).
87 */
88 uint16_t StartAddr = 0x0000;
89
90 /** Memory end address, indicating the end address to read to/write from in the memory being addressed (either FLASH
91 * of EEPROM depending on the issued command from the host).
92 */
93 uint16_t EndAddr = 0x0000;
94
95 /** Main program entry point. This routine configures the hardware required by the bootloader, then continuously
96 * runs the bootloader processing routine until instructed to soft-exit, or hard-reset via the watchdog to start
97 * the loaded application code.
98 */
99 int main(void)
100 {
101 /* Configure hardware required by the bootloader */
102 SetupHardware();
103
104 /* Run the USB management task while the bootloader is supposed to be running */
105 while (RunBootloader || WaitForExit)
106 USB_USBTask();
107
108 /* Reset configured hardware back to their original states for the user application */
109 ResetHardware();
110
111 /* Start the user application */
112 AppStartPtr();
113 }
114
115 /** Configures all hardware required for the bootloader. */
116 void SetupHardware(void)
117 {
118 /* Disable watchdog if enabled by bootloader/fuses */
119 MCUSR &= ~(1 << WDRF);
120 wdt_disable();
121
122 /* Disable clock division */
123 clock_prescale_set(clock_div_1);
124
125 /* Relocate the interrupt vector table to the bootloader section */
126 MCUCR = (1 << IVCE);
127 MCUCR = (1 << IVSEL);
128
129 /* Initialize the USB subsystem */
130 USB_Init();
131 }
132
133 /** Resets all configured hardware required for the bootloader back to their original states. */
134 void ResetHardware(void)
135 {
136 /* Shut down the USB subsystem */
137 USB_ShutDown();
138
139 /* Relocate the interrupt vector table back to the application section */
140 MCUCR = (1 << IVCE);
141 MCUCR = 0;
142 }
143
144 /** Event handler for the USB_Disconnect event. This indicates that the bootloader should exit and the user
145 * application started.
146 */
147 void EVENT_USB_Disconnect(void)
148 {
149 /* Upon disconnection, run user application */
150 RunBootloader = false;
151 }
152
153 /** Event handler for the USB_UnhandledControlPacket event. This is used to catch standard and class specific
154 * control requests that are not handled internally by the USB library (including the DFU commands, which are
155 * all issued via the control endpoint), so that they can be handled appropriately for the application.
156 */
157 void EVENT_USB_UnhandledControlPacket(void)
158 {
159 /* Get the size of the command and data from the wLength value */
160 SentCommand.DataSize = USB_ControlRequest.wLength;
161
162 switch (USB_ControlRequest.bRequest)
163 {
164 case DFU_DNLOAD:
165 Endpoint_ClearSETUP();
166
167 /* Check if bootloader is waiting to terminate */
168 if (WaitForExit)
169 {
170 /* Bootloader is terminating - process last received command */
171 ProcessBootloaderCommand();
172
173 /* Indicate that the last command has now been processed - free to exit bootloader */
174 WaitForExit = false;
175 }
176
177 /* If the request has a data stage, load it into the command struct */
178 if (SentCommand.DataSize)
179 {
180 while (!(Endpoint_IsOUTReceived()));
181
182 /* First byte of the data stage is the DNLOAD request's command */
183 SentCommand.Command = Endpoint_Read_Byte();
184
185 /* One byte of the data stage is the command, so subtract it from the total data bytes */
186 SentCommand.DataSize--;
187
188 /* Load in the rest of the data stage as command parameters */
189 for (uint8_t DataByte = 0; (DataByte < sizeof(SentCommand.Data)) &&
190 Endpoint_BytesInEndpoint(); DataByte++)
191 {
192 SentCommand.Data[DataByte] = Endpoint_Read_Byte();
193 SentCommand.DataSize--;
194 }
195
196 /* Process the command */
197 ProcessBootloaderCommand();
198 }
199
200 /* Check if currently downloading firmware */
201 if (DFU_State == dfuDNLOAD_IDLE)
202 {
203 if (!(SentCommand.DataSize))
204 {
205 DFU_State = dfuIDLE;
206 }
207 else
208 {
209 /* Throw away the filler bytes before the start of the firmware */
210 DiscardFillerBytes(DFU_FILLER_BYTES_SIZE);
211
212 /* Throw away the page alignment filler bytes before the start of the firmware */
213 DiscardFillerBytes(StartAddr % SPM_PAGESIZE);
214
215 /* Calculate the number of bytes remaining to be written */
216 uint16_t BytesRemaining = ((EndAddr - StartAddr) + 1);
217
218 if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x00)) // Write flash
219 {
220 /* Calculate the number of words to be written from the number of bytes to be written */
221 uint16_t WordsRemaining = (BytesRemaining >> 1);
222
223 union
224 {
225 uint16_t Words[2];
226 uint32_t Long;
227 } CurrFlashAddress = {.Words = {StartAddr, Flash64KBPage}};
228
229 uint32_t CurrFlashPageStartAddress = CurrFlashAddress.Long;
230 uint8_t WordsInFlashPage = 0;
231
232 while (WordsRemaining--)
233 {
234 /* Check if endpoint is empty - if so clear it and wait until ready for next packet */
235 if (!(Endpoint_BytesInEndpoint()))
236 {
237 Endpoint_ClearOUT();
238 while (!(Endpoint_IsOUTReceived()));
239 }
240
241 /* Write the next word into the current flash page */
242 boot_page_fill(CurrFlashAddress.Long, Endpoint_Read_Word_LE());
243
244 /* Adjust counters */
245 WordsInFlashPage += 1;
246 CurrFlashAddress.Long += 2;
247
248 /* See if an entire page has been written to the flash page buffer */
249 if ((WordsInFlashPage == (SPM_PAGESIZE >> 1)) || !(WordsRemaining))
250 {
251 /* Commit the flash page to memory */
252 boot_page_write(CurrFlashPageStartAddress);
253 boot_spm_busy_wait();
254
255 /* Check if programming incomplete */
256 if (WordsRemaining)
257 {
258 CurrFlashPageStartAddress = CurrFlashAddress.Long;
259 WordsInFlashPage = 0;
260
261 /* Erase next page's temp buffer */
262 boot_page_erase(CurrFlashAddress.Long);
263 boot_spm_busy_wait();
264 }
265 }
266 }
267
268 /* Once programming complete, start address equals the end address */
269 StartAddr = EndAddr;
270
271 /* Re-enable the RWW section of flash */
272 boot_rww_enable();
273 }
274 else // Write EEPROM
275 {
276 while (BytesRemaining--)
277 {
278 /* Check if endpoint is empty - if so clear it and wait until ready for next packet */
279 if (!(Endpoint_BytesInEndpoint()))
280 {
281 Endpoint_ClearOUT();
282 while (!(Endpoint_IsOUTReceived()));
283 }
284
285 /* Read the byte from the USB interface and write to to the EEPROM */
286 eeprom_write_byte((uint8_t*)StartAddr, Endpoint_Read_Byte());
287
288 /* Adjust counters */
289 StartAddr++;
290 }
291 }
292
293 /* Throw away the currently unused DFU file suffix */
294 DiscardFillerBytes(DFU_FILE_SUFFIX_SIZE);
295 }
296 }
297
298 Endpoint_ClearOUT();
299
300 /* Acknowledge status stage */
301 while (!(Endpoint_IsINReady()));
302 Endpoint_ClearIN();
303
304 break;
305 case DFU_UPLOAD:
306 Endpoint_ClearSETUP();
307
308 while (!(Endpoint_IsINReady()));
309
310 if (DFU_State != dfuUPLOAD_IDLE)
311 {
312 if ((DFU_State == dfuERROR) && IS_ONEBYTE_COMMAND(SentCommand.Data, 0x01)) // Blank Check
313 {
314 /* Blank checking is performed in the DFU_DNLOAD request - if we get here we've told the host
315 that the memory isn't blank, and the host is requesting the first non-blank address */
316 Endpoint_Write_Word_LE(StartAddr);
317 }
318 else
319 {
320 /* Idle state upload - send response to last issued command */
321 Endpoint_Write_Byte(ResponseByte);
322 }
323 }
324 else
325 {
326 /* Determine the number of bytes remaining in the current block */
327 uint16_t BytesRemaining = ((EndAddr - StartAddr) + 1);
328
329 if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x00)) // Read FLASH
330 {
331 /* Calculate the number of words to be written from the number of bytes to be written */
332 uint16_t WordsRemaining = (BytesRemaining >> 1);
333
334 union
335 {
336 uint16_t Words[2];
337 uint32_t Long;
338 } CurrFlashAddress = {.Words = {StartAddr, Flash64KBPage}};
339
340 while (WordsRemaining--)
341 {
342 /* Check if endpoint is full - if so clear it and wait until ready for next packet */
343 if (Endpoint_BytesInEndpoint() == FIXED_CONTROL_ENDPOINT_SIZE)
344 {
345 Endpoint_ClearIN();
346 while (!(Endpoint_IsINReady()));
347 }
348
349 /* Read the flash word and send it via USB to the host */
350 #if (FLASHEND > 0xFFFF)
351 Endpoint_Write_Word_LE(pgm_read_word_far(CurrFlashAddress.Long));
352 #else
353 Endpoint_Write_Word_LE(pgm_read_word(CurrFlashAddress.Long));
354 #endif
355
356 /* Adjust counters */
357 CurrFlashAddress.Long += 2;
358 }
359
360 /* Once reading is complete, start address equals the end address */
361 StartAddr = EndAddr;
362 }
363 else if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x02)) // Read EEPROM
364 {
365 while (BytesRemaining--)
366 {
367 /* Check if endpoint is full - if so clear it and wait until ready for next packet */
368 if (Endpoint_BytesInEndpoint() == FIXED_CONTROL_ENDPOINT_SIZE)
369 {
370 Endpoint_ClearIN();
371 while (!(Endpoint_IsINReady()));
372 }
373
374 /* Read the EEPROM byte and send it via USB to the host */
375 Endpoint_Write_Byte(eeprom_read_byte((uint8_t*)StartAddr));
376
377 /* Adjust counters */
378 StartAddr++;
379 }
380 }
381
382 /* Return to idle state */
383 DFU_State = dfuIDLE;
384 }
385
386 Endpoint_ClearIN();
387
388 /* Acknowledge status stage */
389 while (!(Endpoint_IsOUTReceived()));
390 Endpoint_ClearOUT();
391
392 break;
393 case DFU_GETSTATUS:
394 Endpoint_ClearSETUP();
395
396 /* Write 8-bit status value */
397 Endpoint_Write_Byte(DFU_Status);
398
399 /* Write 24-bit poll timeout value */
400 Endpoint_Write_Byte(0);
401 Endpoint_Write_Word_LE(0);
402
403 /* Write 8-bit state value */
404 Endpoint_Write_Byte(DFU_State);
405
406 /* Write 8-bit state string ID number */
407 Endpoint_Write_Byte(0);
408
409 Endpoint_ClearIN();
410
411 /* Acknowledge status stage */
412 while (!(Endpoint_IsOUTReceived()));
413 Endpoint_ClearOUT();
414
415 break;
416 case DFU_CLRSTATUS:
417 Endpoint_ClearSETUP();
418
419 /* Reset the status value variable to the default OK status */
420 DFU_Status = OK;
421
422 /* Acknowledge status stage */
423 while (!(Endpoint_IsINReady()));
424 Endpoint_ClearIN();
425
426 break;
427 case DFU_GETSTATE:
428 Endpoint_ClearSETUP();
429
430 /* Write the current device state to the endpoint */
431 Endpoint_Write_Byte(DFU_State);
432
433 Endpoint_ClearIN();
434
435 /* Acknowledge status stage */
436 while (!(Endpoint_IsOUTReceived()));
437 Endpoint_ClearOUT();
438
439 break;
440 case DFU_ABORT:
441 Endpoint_ClearSETUP();
442
443 /* Reset the current state variable to the default idle state */
444 DFU_State = dfuIDLE;
445
446 /* Acknowledge status stage */
447 while (!(Endpoint_IsINReady()));
448 Endpoint_ClearIN();
449
450 break;
451 }
452 }
453
454 /** Routine to discard the specified number of bytes from the control endpoint stream. This is used to
455 * discard unused bytes in the stream from the host, including the memory program block suffix.
456 *
457 * \param[in] NumberOfBytes Number of bytes to discard from the host from the control endpoint
458 */
459 static void DiscardFillerBytes(uint8_t NumberOfBytes)
460 {
461 while (NumberOfBytes--)
462 {
463 if (!(Endpoint_BytesInEndpoint()))
464 {
465 Endpoint_ClearOUT();
466
467 /* Wait until next data packet received */
468 while (!(Endpoint_IsOUTReceived()));
469 }
470 else
471 {
472 Endpoint_Discard_Byte();
473 }
474 }
475 }
476
477 /** Routine to process an issued command from the host, via a DFU_DNLOAD request wrapper. This routine ensures
478 * that the command is allowed based on the current secure mode flag value, and passes the command off to the
479 * appropriate handler function.
480 */
481 static void ProcessBootloaderCommand(void)
482 {
483 /* Check if device is in secure mode */
484 if (IsSecure)
485 {
486 /* Don't process command unless it is a READ or chip erase command */
487 if (!(((SentCommand.Command == COMMAND_WRITE) &&
488 IS_TWOBYTE_COMMAND(SentCommand.Data, 0x00, 0xFF)) ||
489 (SentCommand.Command == COMMAND_READ)))
490 {
491 /* Set the state and status variables to indicate the error */
492 DFU_State = dfuERROR;
493 DFU_Status = errWRITE;
494
495 /* Stall command */
496 Endpoint_StallTransaction();
497
498 /* Don't process the command */
499 return;
500 }
501 }
502
503 /* Dispatch the required command processing routine based on the command type */
504 switch (SentCommand.Command)
505 {
506 case COMMAND_PROG_START:
507 ProcessMemProgCommand();
508 break;
509 case COMMAND_DISP_DATA:
510 ProcessMemReadCommand();
511 break;
512 case COMMAND_WRITE:
513 ProcessWriteCommand();
514 break;
515 case COMMAND_READ:
516 ProcessReadCommand();
517 break;
518 case COMMAND_CHANGE_BASE_ADDR:
519 if (IS_TWOBYTE_COMMAND(SentCommand.Data, 0x03, 0x00)) // Set 64KB flash page command
520 Flash64KBPage = SentCommand.Data[2];
521
522 break;
523 }
524 }
525
526 /** Routine to concatenate the given pair of 16-bit memory start and end addresses from the host, and store them
527 * in the StartAddr and EndAddr global variables.
528 */
529 static void LoadStartEndAddresses(void)
530 {
531 union
532 {
533 uint8_t Bytes[2];
534 uint16_t Word;
535 } Address[2] = {{.Bytes = {SentCommand.Data[2], SentCommand.Data[1]}},
536 {.Bytes = {SentCommand.Data[4], SentCommand.Data[3]}}};
537
538 /* Load in the start and ending read addresses from the sent data packet */
539 StartAddr = Address[0].Word;
540 EndAddr = Address[1].Word;
541 }
542
543 /** Handler for a Memory Program command issued by the host. This routine handles the preparations needed
544 * to write subsequent data from the host into the specified memory.
545 */
546 static void ProcessMemProgCommand(void)
547 {
548 if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x00) || // Write FLASH command
549 IS_ONEBYTE_COMMAND(SentCommand.Data, 0x01)) // Write EEPROM command
550 {
551 /* Load in the start and ending read addresses */
552 LoadStartEndAddresses();
553
554 /* If FLASH is being written to, we need to pre-erase the first page to write to */
555 if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x00))
556 {
557 union
558 {
559 uint16_t Words[2];
560 uint32_t Long;
561 } CurrFlashAddress = {.Words = {StartAddr, Flash64KBPage}};
562
563 /* Erase the current page's temp buffer */
564 boot_page_erase(CurrFlashAddress.Long);
565 boot_spm_busy_wait();
566 }
567
568 /* Set the state so that the next DNLOAD requests reads in the firmware */
569 DFU_State = dfuDNLOAD_IDLE;
570 }
571 }
572
573 /** Handler for a Memory Read command issued by the host. This routine handles the preparations needed
574 * to read subsequent data from the specified memory out to the host, as well as implementing the memory
575 * blank check command.
576 */
577 static void ProcessMemReadCommand(void)
578 {
579 if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x00) || // Read FLASH command
580 IS_ONEBYTE_COMMAND(SentCommand.Data, 0x02)) // Read EEPROM command
581 {
582 /* Load in the start and ending read addresses */
583 LoadStartEndAddresses();
584
585 /* Set the state so that the next UPLOAD requests read out the firmware */
586 DFU_State = dfuUPLOAD_IDLE;
587 }
588 else if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x01)) // Blank check FLASH command
589 {
590 uint32_t CurrFlashAddress = 0;
591
592 while (CurrFlashAddress < BOOT_START_ADDR)
593 {
594 /* Check if the current byte is not blank */
595 #if (FLASHEND > 0xFFFF)
596 if (pgm_read_byte_far(CurrFlashAddress) != 0xFF)
597 #else
598 if (pgm_read_byte(CurrFlashAddress) != 0xFF)
599 #endif
600 {
601 /* Save the location of the first non-blank byte for response back to the host */
602 Flash64KBPage = (CurrFlashAddress >> 16);
603 StartAddr = CurrFlashAddress;
604
605 /* Set state and status variables to the appropriate error values */
606 DFU_State = dfuERROR;
607 DFU_Status = errCHECK_ERASED;
608
609 break;
610 }
611
612 CurrFlashAddress++;
613 }
614 }
615 }
616
617 /** Handler for a Data Write command issued by the host. This routine handles non-programming commands such as
618 * bootloader exit (both via software jumps and hardware watchdog resets) and flash memory erasure.
619 */
620 static void ProcessWriteCommand(void)
621 {
622 if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x03)) // Start application
623 {
624 /* Indicate that the bootloader is terminating */
625 WaitForExit = true;
626
627 /* Check if empty request data array - an empty request after a filled request retains the
628 previous valid request data, but initializes the reset */
629 if (!(SentCommand.DataSize))
630 {
631 if (SentCommand.Data[1] == 0x00) // Start via watchdog
632 {
633 /* Start the watchdog to reset the AVR once the communications are finalized */
634 wdt_enable(WDTO_250MS);
635 }
636 else // Start via jump
637 {
638 /* Load in the jump address into the application start address pointer */
639 union
640 {
641 uint8_t Bytes[2];
642 AppPtr_t FuncPtr;
643 } Address = {.Bytes = {SentCommand.Data[4], SentCommand.Data[3]}};
644
645 AppStartPtr = Address.FuncPtr;
646
647 /* Set the flag to terminate the bootloader at next opportunity */
648 RunBootloader = false;
649 }
650 }
651 }
652 else if (IS_TWOBYTE_COMMAND(SentCommand.Data, 0x00, 0xFF)) // Erase flash
653 {
654 uint32_t CurrFlashAddress = 0;
655
656 /* Clear the application section of flash */
657 while (CurrFlashAddress < BOOT_START_ADDR)
658 {
659 boot_page_erase(CurrFlashAddress);
660 boot_spm_busy_wait();
661 boot_page_write(CurrFlashAddress);
662 boot_spm_busy_wait();
663
664 CurrFlashAddress += SPM_PAGESIZE;
665 }
666
667 /* Re-enable the RWW section of flash as writing to the flash locks it out */
668 boot_rww_enable();
669
670 /* Memory has been erased, reset the security bit so that programming/reading is allowed */
671 IsSecure = false;
672 }
673 }
674
675 /** Handler for a Data Read command issued by the host. This routine handles bootloader information retrieval
676 * commands such as device signature and bootloader version retrieval.
677 */
678 static void ProcessReadCommand(void)
679 {
680 const uint8_t BootloaderInfo[3] = {BOOTLOADER_VERSION, BOOTLOADER_ID_BYTE1, BOOTLOADER_ID_BYTE2};
681 const uint8_t SignatureInfo[3] = {AVR_SIGNATURE_1, AVR_SIGNATURE_2, AVR_SIGNATURE_3};
682
683 uint8_t DataIndexToRead = SentCommand.Data[1];
684
685 if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x00)) // Read bootloader info
686 {
687 ResponseByte = BootloaderInfo[DataIndexToRead];
688 }
689 else if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x01)) // Read signature byte
690 {
691 ResponseByte = SignatureInfo[DataIndexToRead - 0x30];
692 }
693 }