Added support to the AVRISP-MKII project for ISP speeds slower than 125KHz via a...
[pub/USBasp.git] / Projects / AVRISP-MKII / Lib / ISP / ISPProtocol.c
1 /*
2 LUFA Library
3 Copyright (C) Dean Camera, 2010.
4
5 dean [at] fourwalledcubicle [dot] com
6 www.fourwalledcubicle.com
7 */
8
9 /*
10 Copyright 2010 Dean Camera (dean [at] fourwalledcubicle [dot] com)
11
12 Permission to use, copy, modify, distribute, and sell this
13 software and its documentation for any purpose is hereby granted
14 without fee, provided that the above copyright notice appear in
15 all copies and that both that the copyright notice and this
16 permission notice and warranty disclaimer appear in supporting
17 documentation, and that the name of the author not be used in
18 advertising or publicity pertaining to distribution of the
19 software without specific, written prior permission.
20
21 The author disclaim all warranties with regard to this
22 software, including all implied warranties of merchantability
23 and fitness. In no event shall the author be liable for any
24 special, indirect or consequential damages or any damages
25 whatsoever resulting from loss of use, data or profits, whether
26 in an action of contract, negligence or other tortious action,
27 arising out of or in connection with the use or performance of
28 this software.
29 */
30
31 /** \file
32 *
33 * ISP Protocol handler, to process V2 Protocol wrapped ISP commands used in Atmel programmer devices.
34 */
35
36 #include "ISPProtocol.h"
37
38 #if defined(ENABLE_ISP_PROTOCOL) || defined(__DOXYGEN__)
39
40 /** Handler for the CMD_ENTER_PROGMODE_ISP command, which attempts to enter programming mode on
41 * the attached device, returning success or failure back to the host.
42 */
43 void ISPProtocol_EnterISPMode(void)
44 {
45 struct
46 {
47 uint8_t TimeoutMS;
48 uint8_t PinStabDelayMS;
49 uint8_t ExecutionDelayMS;
50 uint8_t SynchLoops;
51 uint8_t ByteDelay;
52 uint8_t PollValue;
53 uint8_t PollIndex;
54 uint8_t EnterProgBytes[4];
55 } Enter_ISP_Params;
56
57 Endpoint_Read_Stream_LE(&Enter_ISP_Params, sizeof(Enter_ISP_Params), NO_STREAM_CALLBACK);
58
59 Endpoint_ClearOUT();
60 Endpoint_SelectEndpoint(AVRISP_DATA_IN_EPNUM);
61 Endpoint_SetEndpointDirection(ENDPOINT_DIR_IN);
62
63 uint8_t ResponseStatus = STATUS_CMD_FAILED;
64
65 CurrentAddress = 0;
66
67 /* Set up the synchronous USART to generate the recovery clock on XCK pin */
68 UBRR1 = (F_CPU / 500000UL);
69 UCSR1B = (1 << TXEN1);
70 UCSR1C = (1 << UMSEL10) | (1 << UPM11) | (1 << USBS1) | (1 << UCSZ11) | (1 << UCSZ10) | (1 << UCPOL1);
71 DDRD |= (1 << 5);
72
73 /* Perform execution delay, initialize SPI bus */
74 ISPProtocol_DelayMS(Enter_ISP_Params.ExecutionDelayMS);
75 ISPTarget_Init();
76
77 /* Continuously attempt to synchronize with the target until either the number of attempts specified
78 * by the host has exceeded, or the the device sends back the expected response values */
79 while (Enter_ISP_Params.SynchLoops-- && (ResponseStatus == STATUS_CMD_FAILED) && TimeoutTicksRemaining)
80 {
81 uint8_t ResponseBytes[4];
82
83 ISPTarget_ChangeTargetResetLine(true);
84 ISPProtocol_DelayMS(Enter_ISP_Params.PinStabDelayMS);
85
86 for (uint8_t RByte = 0; RByte < sizeof(ResponseBytes); RByte++)
87 {
88 ISPProtocol_DelayMS(Enter_ISP_Params.ByteDelay);
89 ResponseBytes[RByte] = ISPTarget_TransferByte(Enter_ISP_Params.EnterProgBytes[RByte]);
90 }
91
92 /* Check if polling disabled, or if the polled value matches the expected value */
93 if (!(Enter_ISP_Params.PollIndex) || (ResponseBytes[Enter_ISP_Params.PollIndex - 1] == Enter_ISP_Params.PollValue))
94 {
95 ResponseStatus = STATUS_CMD_OK;
96 }
97 else
98 {
99 ISPTarget_ChangeTargetResetLine(false);
100 ISPProtocol_DelayMS(Enter_ISP_Params.PinStabDelayMS);
101 }
102 }
103
104 Endpoint_Write_Byte(CMD_ENTER_PROGMODE_ISP);
105 Endpoint_Write_Byte(ResponseStatus);
106 Endpoint_ClearIN();
107 }
108
109 /** Handler for the CMD_LEAVE_ISP command, which releases the target from programming mode. */
110 void ISPProtocol_LeaveISPMode(void)
111 {
112 struct
113 {
114 uint8_t PreDelayMS;
115 uint8_t PostDelayMS;
116 } Leave_ISP_Params;
117
118 Endpoint_Read_Stream_LE(&Leave_ISP_Params, sizeof(Leave_ISP_Params), NO_STREAM_CALLBACK);
119
120 Endpoint_ClearOUT();
121 Endpoint_SelectEndpoint(AVRISP_DATA_IN_EPNUM);
122 Endpoint_SetEndpointDirection(ENDPOINT_DIR_IN);
123
124 /* Perform pre-exit delay, release the target /RESET, disable the SPI bus and perform the post-exit delay */
125 ISPProtocol_DelayMS(Leave_ISP_Params.PreDelayMS);
126 ISPTarget_ChangeTargetResetLine(false);
127 ISPTarget_ShutDown();
128 ISPProtocol_DelayMS(Leave_ISP_Params.PostDelayMS);
129
130 /* Turn off the synchronous USART to terminate the recovery clock on XCK pin */
131 UBRR1 = (F_CPU / 500000UL);
132 UCSR1B = (1 << TXEN1);
133 UCSR1C = (1 << UMSEL10) | (1 << UPM11) | (1 << USBS1) | (1 << UCSZ11) | (1 << UCSZ10) | (1 << UCPOL1);
134 DDRD &= ~(1 << 5);
135
136 Endpoint_Write_Byte(CMD_LEAVE_PROGMODE_ISP);
137 Endpoint_Write_Byte(STATUS_CMD_OK);
138 Endpoint_ClearIN();
139 }
140
141 /** Handler for the CMD_PROGRAM_FLASH_ISP and CMD_PROGRAM_EEPROM_ISP commands, writing out bytes,
142 * words or pages of data to the attached device.
143 *
144 * \param[in] V2Command Issued V2 Protocol command byte from the host
145 */
146 void ISPProtocol_ProgramMemory(uint8_t V2Command)
147 {
148 struct
149 {
150 uint16_t BytesToWrite;
151 uint8_t ProgrammingMode;
152 uint8_t DelayMS;
153 uint8_t ProgrammingCommands[3];
154 uint8_t PollValue1;
155 uint8_t PollValue2;
156 uint8_t ProgData[256]; // Note, the Jungo driver has a very short ACK timeout period, need to buffer the
157 } Write_Memory_Params; // whole page and ACK the packet as fast as possible to prevent it from aborting
158
159 Endpoint_Read_Stream_LE(&Write_Memory_Params, (sizeof(Write_Memory_Params) -
160 sizeof(Write_Memory_Params.ProgData)), NO_STREAM_CALLBACK);
161
162
163 Write_Memory_Params.BytesToWrite = SwapEndian_16(Write_Memory_Params.BytesToWrite);
164
165 if (Write_Memory_Params.BytesToWrite > sizeof(Write_Memory_Params.ProgData))
166 {
167 Endpoint_ClearOUT();
168 Endpoint_SelectEndpoint(AVRISP_DATA_IN_EPNUM);
169 Endpoint_SetEndpointDirection(ENDPOINT_DIR_IN);
170
171 Endpoint_Write_Byte(V2Command);
172 Endpoint_Write_Byte(STATUS_CMD_FAILED);
173 Endpoint_ClearIN();
174 return;
175 }
176
177 Endpoint_Read_Stream_LE(&Write_Memory_Params.ProgData, Write_Memory_Params.BytesToWrite, NO_STREAM_CALLBACK);
178
179 Endpoint_ClearOUT();
180 Endpoint_SelectEndpoint(AVRISP_DATA_IN_EPNUM);
181 Endpoint_SetEndpointDirection(ENDPOINT_DIR_IN);
182
183 uint8_t ProgrammingStatus = STATUS_CMD_OK;
184 uint16_t PollAddress = 0;
185 uint8_t PollValue = (V2Command == CMD_PROGRAM_FLASH_ISP) ? Write_Memory_Params.PollValue1 :
186 Write_Memory_Params.PollValue2;
187 uint8_t* NextWriteByte = Write_Memory_Params.ProgData;
188
189 /* Check the programming mode desired by the host, either Paged or Word memory writes */
190 if (Write_Memory_Params.ProgrammingMode & PROG_MODE_PAGED_WRITES_MASK)
191 {
192 uint16_t StartAddress = (CurrentAddress & 0xFFFF);
193
194 /* Check to see if we need to send a LOAD EXTENDED ADDRESS command to the target */
195 if (MustLoadExtendedAddress)
196 {
197 ISPTarget_LoadExtendedAddress();
198 MustLoadExtendedAddress = false;
199 }
200
201 /* Paged mode memory programming */
202 for (uint16_t CurrentByte = 0; CurrentByte < Write_Memory_Params.BytesToWrite; CurrentByte++)
203 {
204 bool IsOddByte = (CurrentByte & 0x01);
205 uint8_t ByteToWrite = *(NextWriteByte++);
206
207 ISPTarget_SendByte(Write_Memory_Params.ProgrammingCommands[0]);
208 ISPTarget_SendByte(CurrentAddress >> 8);
209 ISPTarget_SendByte(CurrentAddress & 0xFF);
210 ISPTarget_SendByte(ByteToWrite);
211
212 /* AVR FLASH addressing requires us to modify the write command based on if we are writing a high
213 * or low byte at the current word address */
214 if (V2Command == CMD_PROGRAM_FLASH_ISP)
215 Write_Memory_Params.ProgrammingCommands[0] ^= READ_WRITE_HIGH_BYTE_MASK;
216
217 /* Check to see the write completion method, to see if we have a valid polling address */
218 if (!(PollAddress) && (ByteToWrite != PollValue))
219 {
220 if (IsOddByte && (V2Command == CMD_PROGRAM_FLASH_ISP))
221 Write_Memory_Params.ProgrammingCommands[2] |= READ_WRITE_HIGH_BYTE_MASK;
222
223 PollAddress = (CurrentAddress & 0xFFFF);
224 }
225
226 /* EEPROM increments the address on each byte, flash needs to increment on each word */
227 if (IsOddByte || (V2Command == CMD_PROGRAM_EEPROM_ISP))
228 CurrentAddress++;
229 }
230
231 /* If the current page must be committed, send the PROGRAM PAGE command to the target */
232 if (Write_Memory_Params.ProgrammingMode & PROG_MODE_COMMIT_PAGE_MASK)
233 {
234 ISPTarget_SendByte(Write_Memory_Params.ProgrammingCommands[1]);
235 ISPTarget_SendByte(StartAddress >> 8);
236 ISPTarget_SendByte(StartAddress & 0xFF);
237 ISPTarget_SendByte(0x00);
238
239 /* Check if polling is possible, if not switch to timed delay mode */
240 if (!(PollAddress))
241 {
242 Write_Memory_Params.ProgrammingMode &= ~PROG_MODE_PAGED_VALUE_MASK;
243 Write_Memory_Params.ProgrammingMode |= PROG_MODE_PAGED_TIMEDELAY_MASK;
244 }
245
246 ProgrammingStatus = ISPTarget_WaitForProgComplete(Write_Memory_Params.ProgrammingMode, PollAddress, PollValue,
247 Write_Memory_Params.DelayMS, Write_Memory_Params.ProgrammingCommands[2]);
248
249 /* Check to see if the FLASH address has crossed the extended address boundary */
250 if ((V2Command == CMD_PROGRAM_FLASH_ISP) && !(CurrentAddress & 0xFFFF))
251 MustLoadExtendedAddress = true;
252 }
253 }
254 else
255 {
256 /* Word/byte mode memory programming */
257 for (uint16_t CurrentByte = 0; CurrentByte < Write_Memory_Params.BytesToWrite; CurrentByte++)
258 {
259 bool IsOddByte = (CurrentByte & 0x01);
260 uint8_t ByteToWrite = *(NextWriteByte++);
261
262 /* Check to see if we need to send a LOAD EXTENDED ADDRESS command to the target */
263 if (MustLoadExtendedAddress)
264 {
265 ISPTarget_LoadExtendedAddress();
266 MustLoadExtendedAddress = false;
267 }
268
269 ISPTarget_SendByte(Write_Memory_Params.ProgrammingCommands[0]);
270 ISPTarget_SendByte(CurrentAddress >> 8);
271 ISPTarget_SendByte(CurrentAddress & 0xFF);
272 ISPTarget_SendByte(ByteToWrite);
273
274 /* AVR FLASH addressing requires us to modify the write command based on if we are writing a high
275 * or low byte at the current word address */
276 if (V2Command == CMD_PROGRAM_FLASH_ISP)
277 Write_Memory_Params.ProgrammingCommands[0] ^= READ_WRITE_HIGH_BYTE_MASK;
278
279 if (ByteToWrite != PollValue)
280 {
281 if (IsOddByte && (V2Command == CMD_PROGRAM_FLASH_ISP))
282 Write_Memory_Params.ProgrammingCommands[2] |= READ_WRITE_HIGH_BYTE_MASK;
283
284 PollAddress = (CurrentAddress & 0xFFFF);
285 }
286
287 ProgrammingStatus = ISPTarget_WaitForProgComplete(Write_Memory_Params.ProgrammingMode, PollAddress, PollValue,
288 Write_Memory_Params.DelayMS, Write_Memory_Params.ProgrammingCommands[2]);
289
290 /* Abort the programming loop early if the byte/word programming failed */
291 if (ProgrammingStatus != STATUS_CMD_OK)
292 break;
293
294 /* EEPROM just increments the address each byte, flash needs to increment on each word and
295 * also check to ensure that a LOAD EXTENDED ADDRESS command is issued each time the extended
296 * address boundary has been crossed */
297 if ((CurrentByte & 0x01) || (V2Command == CMD_PROGRAM_EEPROM_ISP))
298 {
299 CurrentAddress++;
300
301 if ((V2Command != CMD_PROGRAM_EEPROM_ISP) && !(CurrentAddress & 0xFFFF))
302 MustLoadExtendedAddress = true;
303 }
304 }
305 }
306
307 Endpoint_Write_Byte(V2Command);
308 Endpoint_Write_Byte(ProgrammingStatus);
309 Endpoint_ClearIN();
310 }
311
312 /** Handler for the CMD_READ_FLASH_ISP and CMD_READ_EEPROM_ISP commands, reading in bytes,
313 * words or pages of data from the attached device.
314 *
315 * \param[in] V2Command Issued V2 Protocol command byte from the host
316 */
317 void ISPProtocol_ReadMemory(uint8_t V2Command)
318 {
319 struct
320 {
321 uint16_t BytesToRead;
322 uint8_t ReadMemoryCommand;
323 } Read_Memory_Params;
324
325 Endpoint_Read_Stream_LE(&Read_Memory_Params, sizeof(Read_Memory_Params), NO_STREAM_CALLBACK);
326 Read_Memory_Params.BytesToRead = SwapEndian_16(Read_Memory_Params.BytesToRead);
327
328 Endpoint_ClearOUT();
329 Endpoint_SelectEndpoint(AVRISP_DATA_IN_EPNUM);
330 Endpoint_SetEndpointDirection(ENDPOINT_DIR_IN);
331
332 Endpoint_Write_Byte(V2Command);
333 Endpoint_Write_Byte(STATUS_CMD_OK);
334
335 /* Read each byte from the device and write them to the packet for the host */
336 for (uint16_t CurrentByte = 0; CurrentByte < Read_Memory_Params.BytesToRead; CurrentByte++)
337 {
338 /* Check to see if we need to send a LOAD EXTENDED ADDRESS command to the target */
339 if (MustLoadExtendedAddress)
340 {
341 ISPTarget_LoadExtendedAddress();
342 MustLoadExtendedAddress = false;
343 }
344
345 /* Read the next byte from the desired memory space in the device */
346 ISPTarget_SendByte(Read_Memory_Params.ReadMemoryCommand);
347 ISPTarget_SendByte(CurrentAddress >> 8);
348 ISPTarget_SendByte(CurrentAddress & 0xFF);
349 Endpoint_Write_Byte(ISPTarget_ReceiveByte());
350
351 /* Check if the endpoint bank is currently full, if so send the packet */
352 if (!(Endpoint_IsReadWriteAllowed()))
353 {
354 Endpoint_ClearIN();
355 Endpoint_WaitUntilReady();
356 }
357
358 /* AVR FLASH addressing requires us to modify the read command based on if we are reading a high
359 * or low byte at the current word address */
360 if (V2Command == CMD_READ_FLASH_ISP)
361 Read_Memory_Params.ReadMemoryCommand ^= READ_WRITE_HIGH_BYTE_MASK;
362
363 /* EEPROM just increments the address each byte, flash needs to increment on each word and
364 * also check to ensure that a LOAD EXTENDED ADDRESS command is issued each time the extended
365 * address boundary has been crossed */
366 if ((CurrentByte & 0x01) || (V2Command == CMD_READ_EEPROM_ISP))
367 {
368 CurrentAddress++;
369
370 if ((V2Command != CMD_READ_EEPROM_ISP) && !(CurrentAddress & 0xFFFF))
371 MustLoadExtendedAddress = true;
372 }
373 }
374
375 Endpoint_Write_Byte(STATUS_CMD_OK);
376
377 bool IsEndpointFull = !(Endpoint_IsReadWriteAllowed());
378 Endpoint_ClearIN();
379
380 /* Ensure last packet is a short packet to terminate the transfer */
381 if (IsEndpointFull)
382 {
383 Endpoint_WaitUntilReady();
384 Endpoint_ClearIN();
385 Endpoint_WaitUntilReady();
386 }
387 }
388
389 /** Handler for the CMD_CHI_ERASE_ISP command, clearing the target's FLASH memory. */
390 void ISPProtocol_ChipErase(void)
391 {
392 struct
393 {
394 uint8_t EraseDelayMS;
395 uint8_t PollMethod;
396 uint8_t EraseCommandBytes[4];
397 } Erase_Chip_Params;
398
399 Endpoint_Read_Stream_LE(&Erase_Chip_Params, sizeof(Erase_Chip_Params), NO_STREAM_CALLBACK);
400
401 Endpoint_ClearOUT();
402 Endpoint_SelectEndpoint(AVRISP_DATA_IN_EPNUM);
403 Endpoint_SetEndpointDirection(ENDPOINT_DIR_IN);
404
405 uint8_t ResponseStatus = STATUS_CMD_OK;
406
407 /* Send the chip erase commands as given by the host to the device */
408 for (uint8_t SByte = 0; SByte < sizeof(Erase_Chip_Params.EraseCommandBytes); SByte++)
409 ISPTarget_SendByte(Erase_Chip_Params.EraseCommandBytes[SByte]);
410
411 /* Use appropriate command completion check as given by the host (delay or busy polling) */
412 if (!(Erase_Chip_Params.PollMethod))
413 ISPProtocol_DelayMS(Erase_Chip_Params.EraseDelayMS);
414 else
415 ResponseStatus = ISPTarget_WaitWhileTargetBusy();
416
417 Endpoint_Write_Byte(CMD_CHIP_ERASE_ISP);
418 Endpoint_Write_Byte(ResponseStatus);
419 Endpoint_ClearIN();
420 }
421
422 /** Handler for the CMD_READ_FUSE_ISP, CMD_READ_LOCK_ISP, CMD_READ_SIGNATURE_ISP and CMD_READ_OSCCAL commands,
423 * reading the requested configuration byte from the device.
424 *
425 * \param[in] V2Command Issued V2 Protocol command byte from the host
426 */
427 void ISPProtocol_ReadFuseLockSigOSCCAL(uint8_t V2Command)
428 {
429 struct
430 {
431 uint8_t RetByte;
432 uint8_t ReadCommandBytes[4];
433 } Read_FuseLockSigOSCCAL_Params;
434
435 Endpoint_Read_Stream_LE(&Read_FuseLockSigOSCCAL_Params, sizeof(Read_FuseLockSigOSCCAL_Params), NO_STREAM_CALLBACK);
436
437 Endpoint_ClearOUT();
438 Endpoint_SelectEndpoint(AVRISP_DATA_IN_EPNUM);
439 Endpoint_SetEndpointDirection(ENDPOINT_DIR_IN);
440
441 uint8_t ResponseBytes[4];
442
443 /* Send the Fuse or Lock byte read commands as given by the host to the device, store response */
444 for (uint8_t RByte = 0; RByte < sizeof(ResponseBytes); RByte++)
445 ResponseBytes[RByte] = ISPTarget_TransferByte(Read_FuseLockSigOSCCAL_Params.ReadCommandBytes[RByte]);
446
447 Endpoint_Write_Byte(V2Command);
448 Endpoint_Write_Byte(STATUS_CMD_OK);
449 Endpoint_Write_Byte(ResponseBytes[Read_FuseLockSigOSCCAL_Params.RetByte - 1]);
450 Endpoint_Write_Byte(STATUS_CMD_OK);
451 Endpoint_ClearIN();
452 }
453
454 /** Handler for the CMD_WRITE_FUSE_ISP and CMD_WRITE_LOCK_ISP commands, writing the requested configuration
455 * byte to the device.
456 *
457 * \param[in] V2Command Issued V2 Protocol command byte from the host
458 */
459 void ISPProtocol_WriteFuseLock(uint8_t V2Command)
460 {
461 struct
462 {
463 uint8_t WriteCommandBytes[4];
464 } Write_FuseLockSig_Params;
465
466 Endpoint_Read_Stream_LE(&Write_FuseLockSig_Params, sizeof(Write_FuseLockSig_Params), NO_STREAM_CALLBACK);
467
468 Endpoint_ClearOUT();
469 Endpoint_SelectEndpoint(AVRISP_DATA_IN_EPNUM);
470 Endpoint_SetEndpointDirection(ENDPOINT_DIR_IN);
471
472 /* Send the Fuse or Lock byte program commands as given by the host to the device */
473 for (uint8_t SByte = 0; SByte < sizeof(Write_FuseLockSig_Params.WriteCommandBytes); SByte++)
474 ISPTarget_SendByte(Write_FuseLockSig_Params.WriteCommandBytes[SByte]);
475
476 Endpoint_Write_Byte(V2Command);
477 Endpoint_Write_Byte(STATUS_CMD_OK);
478 Endpoint_Write_Byte(STATUS_CMD_OK);
479 Endpoint_ClearIN();
480 }
481
482 /** Handler for the CMD_SPI_MULTI command, writing and reading arbitrary SPI data to and from the attached device. */
483 void ISPProtocol_SPIMulti(void)
484 {
485 struct
486 {
487 uint8_t TxBytes;
488 uint8_t RxBytes;
489 uint8_t RxStartAddr;
490 uint8_t TxData[255];
491 } SPI_Multi_Params;
492
493 Endpoint_Read_Stream_LE(&SPI_Multi_Params, (sizeof(SPI_Multi_Params) - sizeof(SPI_Multi_Params.TxData)), NO_STREAM_CALLBACK);
494 Endpoint_Read_Stream_LE(&SPI_Multi_Params.TxData, SPI_Multi_Params.TxBytes, NO_STREAM_CALLBACK);
495
496 Endpoint_ClearOUT();
497 Endpoint_SelectEndpoint(AVRISP_DATA_IN_EPNUM);
498 Endpoint_SetEndpointDirection(ENDPOINT_DIR_IN);
499
500 Endpoint_Write_Byte(CMD_SPI_MULTI);
501 Endpoint_Write_Byte(STATUS_CMD_OK);
502
503 uint8_t CurrTxPos = 0;
504 uint8_t CurrRxPos = 0;
505
506 /* Write out bytes to transmit until the start of the bytes to receive is met */
507 while (CurrTxPos < SPI_Multi_Params.RxStartAddr)
508 {
509 if (CurrTxPos < SPI_Multi_Params.TxBytes)
510 ISPTarget_SendByte(SPI_Multi_Params.TxData[CurrTxPos]);
511 else
512 ISPTarget_SendByte(0);
513
514 CurrTxPos++;
515 }
516
517 /* Transmit remaining bytes with padding as needed, read in response bytes */
518 while (CurrRxPos < SPI_Multi_Params.RxBytes)
519 {
520 if (CurrTxPos < SPI_Multi_Params.TxBytes)
521 Endpoint_Write_Byte(ISPTarget_TransferByte(SPI_Multi_Params.TxData[CurrTxPos++]));
522 else
523 Endpoint_Write_Byte(ISPTarget_ReceiveByte());
524
525 /* Check to see if we have filled the endpoint bank and need to send the packet */
526 if (!(Endpoint_IsReadWriteAllowed()))
527 {
528 Endpoint_ClearIN();
529 Endpoint_WaitUntilReady();
530 }
531
532 CurrRxPos++;
533 }
534
535 Endpoint_Write_Byte(STATUS_CMD_OK);
536
537 bool IsEndpointFull = !(Endpoint_IsReadWriteAllowed());
538 Endpoint_ClearIN();
539
540 /* Ensure last packet is a short packet to terminate the transfer */
541 if (IsEndpointFull)
542 {
543 Endpoint_WaitUntilReady();
544 Endpoint_ClearIN();
545 Endpoint_WaitUntilReady();
546 }
547 }
548
549 /** Blocking delay for a given number of milliseconds.
550 *
551 * \param[in] DelayMS Number of milliseconds to delay for
552 */
553 void ISPProtocol_DelayMS(uint8_t DelayMS)
554 {
555 while (DelayMS-- && TimeoutTicksRemaining)
556 _delay_ms(1);
557 }
558
559 #endif