Add short delays before detaching from the USB bus in the bootloaders (thanks to...
[pub/USBasp.git] / Bootloaders / DFU / BootloaderDFU.c
1 /*
2 LUFA Library
3 Copyright (C) Dean Camera, 2018.
4
5 dean [at] fourwalledcubicle [dot] com
6 www.lufa-lib.org
7 */
8
9 /*
10 Copyright 2018 Dean Camera (dean [at] fourwalledcubicle [dot] com)
11
12 Permission to use, copy, modify, distribute, and sell this
13 software and its documentation for any purpose is hereby granted
14 without fee, provided that the above copyright notice appear in
15 all copies and that both that the copyright notice and this
16 permission notice and warranty disclaimer appear in supporting
17 documentation, and that the name of the author not be used in
18 advertising or publicity pertaining to distribution of the
19 software without specific, written prior permission.
20
21 The author disclaims all warranties with regard to this
22 software, including all implied warranties of merchantability
23 and fitness. In no event shall the author be liable for any
24 special, indirect or consequential damages or any damages
25 whatsoever resulting from loss of use, data or profits, whether
26 in an action of contract, negligence or other tortious action,
27 arising out of or in connection with the use or performance of
28 this software.
29 */
30
31 /** \file
32 *
33 * Main source file for the DFU class bootloader. This file contains the complete bootloader logic.
34 */
35
36 #define INCLUDE_FROM_BOOTLOADER_C
37 #include "BootloaderDFU.h"
38
39 /** Flag to indicate if the bootloader is currently running in secure mode, disallowing memory operations
40 * other than erase. This is initially set to the value set by SECURE_MODE, and cleared by the bootloader
41 * once a memory erase has completed in a bootloader session.
42 */
43 static bool IsSecure = SECURE_MODE;
44
45 /** Flag to indicate if the bootloader should be running, or should exit and allow the application code to run
46 * via a soft reset. When cleared, the bootloader will abort, the USB interface will shut down and the application
47 * jumped to via an indirect jump to location 0x0000 (or other location specified by the host).
48 */
49 static bool RunBootloader = true;
50
51 /** Flag to indicate if the bootloader is waiting to exit. When the host requests the bootloader to exit and
52 * jump to the application address it specifies, it sends two sequential commands which must be properly
53 * acknowledged. Upon reception of the first the RunBootloader flag is cleared and the WaitForExit flag is set,
54 * causing the bootloader to wait for the final exit command before shutting down.
55 */
56 static bool WaitForExit = false;
57
58 /** Current DFU state machine state, one of the values in the DFU_State_t enum. */
59 static uint8_t DFU_State = dfuIDLE;
60
61 /** Status code of the last executed DFU command. This is set to one of the values in the DFU_Status_t enum after
62 * each operation, and returned to the host when a Get Status DFU request is issued.
63 */
64 static uint8_t DFU_Status = OK;
65
66 /** Data containing the DFU command sent from the host. */
67 static DFU_Command_t SentCommand;
68
69 /** Response to the last issued Read Data DFU command. Unlike other DFU commands, the read command
70 * requires a single byte response from the bootloader containing the read data when the next DFU_UPLOAD command
71 * is issued by the host.
72 */
73 static uint8_t ResponseByte;
74
75 /** Pointer to the start of the user application. By default this is 0x0000 (the reset vector), however the host
76 * may specify an alternate address when issuing the application soft-start command.
77 */
78 static AppPtr_t AppStartPtr = (AppPtr_t)0x0000;
79
80 /** 64-bit flash page number. This is concatenated with the current 16-bit address on USB AVRs containing more than
81 * 64KB of flash memory.
82 */
83 static uint8_t Flash64KBPage = 0;
84
85 /** Memory start address, indicating the current address in the memory being addressed (either FLASH or EEPROM
86 * depending on the issued command from the host).
87 */
88 static uint16_t StartAddr = 0x0000;
89
90 /** Memory end address, indicating the end address to read from/write to in the memory being addressed (either FLASH
91 * of EEPROM depending on the issued command from the host).
92 */
93 static uint16_t EndAddr = 0x0000;
94
95 /** Magic lock for forced application start. If the HWBE fuse is programmed and BOOTRST is unprogrammed, the bootloader
96 * will start if the /HWB line of the AVR is held low and the system is reset. However, if the /HWB line is still held
97 * low when the application attempts to start via a watchdog reset, the bootloader will re-start. If set to the value
98 * \ref MAGIC_BOOT_KEY the special init function \ref Application_Jump_Check() will force the application to start.
99 */
100 uint16_t MagicBootKey ATTR_NO_INIT;
101
102
103 /** Special startup routine to check if the bootloader was started via a watchdog reset, and if the magic application
104 * start key has been loaded into \ref MagicBootKey. If the bootloader started via the watchdog and the key is valid,
105 * this will force the user application to start via a software jump.
106 */
107 void Application_Jump_Check(void)
108 {
109 bool JumpToApplication = false;
110
111 #if (BOARD == BOARD_LEONARDO)
112 /* Enable pull-up on the IO13 pin so we can use it to select the mode */
113 PORTC |= (1 << 7);
114 Delay_MS(10);
115
116 /* If IO13 is not jumpered to ground, start the user application instead */
117 JumpToApplication = ((PINC & (1 << 7)) != 0);
118
119 /* Disable pull-up after the check has completed */
120 PORTC &= ~(1 << 7);
121 #elif ((BOARD == BOARD_XPLAIN) || (BOARD == BOARD_XPLAIN_REV1))
122 /* Disable JTAG debugging */
123 JTAG_DISABLE();
124
125 /* Enable pull-up on the JTAG TCK pin so we can use it to select the mode */
126 PORTF |= (1 << 4);
127 Delay_MS(10);
128
129 /* If the TCK pin is not jumpered to ground, start the user application instead */
130 JumpToApplication = ((PINF & (1 << 4)) != 0);
131
132 /* Re-enable JTAG debugging */
133 JTAG_ENABLE();
134 #else
135 /* Check if the device's BOOTRST fuse is set */
136 if (BootloaderAPI_ReadFuse(GET_HIGH_FUSE_BITS) & FUSE_BOOTRST)
137 {
138 /* If the reset source was not an external reset or the key is correct, clear it and jump to the application */
139 if (!(MCUSR & (1 << EXTRF)) || (MagicBootKey == MAGIC_BOOT_KEY))
140 JumpToApplication = true;
141
142 /* Clear reset source */
143 MCUSR &= ~(1 << EXTRF);
144 }
145 else
146 {
147 /* If the reset source was the bootloader and the key is correct, clear it and jump to the application;
148 * this can happen in the HWBE fuse is set, and the HBE pin is low during the watchdog reset */
149 if ((MCUSR & (1 << WDRF)) && (MagicBootKey == MAGIC_BOOT_KEY))
150 JumpToApplication = true;
151
152 /* Clear reset source */
153 MCUSR &= ~(1 << WDRF);
154 }
155 #endif
156
157 /* Don't run the user application if the reset vector is blank (no app loaded) */
158 bool ApplicationValid = (pgm_read_word_near(0) != 0xFFFF);
159
160 /* If a request has been made to jump to the user application, honor it */
161 if (JumpToApplication && ApplicationValid)
162 {
163 /* Turn off the watchdog */
164 MCUSR &= ~(1 << WDRF);
165 wdt_disable();
166
167 /* Clear the boot key and jump to the user application */
168 MagicBootKey = 0;
169
170 // cppcheck-suppress constStatement
171 ((void (*)(void))0x0000)();
172 }
173 }
174
175 /** Main program entry point. This routine configures the hardware required by the bootloader, then continuously
176 * runs the bootloader processing routine until instructed to soft-exit, or hard-reset via the watchdog to start
177 * the loaded application code.
178 */
179 int main(void)
180 {
181 /* Configure hardware required by the bootloader */
182 SetupHardware();
183
184 /* Turn on first LED on the board to indicate that the bootloader has started */
185 LEDs_SetAllLEDs(LEDS_LED1);
186
187 /* Enable global interrupts so that the USB stack can function */
188 GlobalInterruptEnable();
189
190 /* Run the USB management task while the bootloader is supposed to be running */
191 while (RunBootloader || WaitForExit)
192 USB_USBTask();
193
194 /* Wait a short time to end all USB transactions and then disconnect */
195 _delay_us(1000);
196
197 /* Reset configured hardware back to their original states for the user application */
198 ResetHardware();
199
200 /* Start the user application */
201 AppStartPtr();
202 }
203
204 /** Configures all hardware required for the bootloader. */
205 static void SetupHardware(void)
206 {
207 /* Disable watchdog if enabled by bootloader/fuses */
208 MCUSR &= ~(1 << WDRF);
209 wdt_disable();
210
211 /* Disable clock division */
212 clock_prescale_set(clock_div_1);
213
214 /* Relocate the interrupt vector table to the bootloader section */
215 MCUCR = (1 << IVCE);
216 MCUCR = (1 << IVSEL);
217
218 /* Initialize the USB and other board hardware drivers */
219 USB_Init();
220 LEDs_Init();
221
222 /* Bootloader active LED toggle timer initialization */
223 TIMSK1 = (1 << TOIE1);
224 TCCR1B = ((1 << CS11) | (1 << CS10));
225 }
226
227 /** Resets all configured hardware required for the bootloader back to their original states. */
228 static void ResetHardware(void)
229 {
230 /* Shut down the USB and other board hardware drivers */
231 USB_Disable();
232 LEDs_Disable();
233
234 /* Disable Bootloader active LED toggle timer */
235 TIMSK1 = 0;
236 TCCR1B = 0;
237
238 /* Relocate the interrupt vector table back to the application section */
239 MCUCR = (1 << IVCE);
240 MCUCR = 0;
241 }
242
243 /** ISR to periodically toggle the LEDs on the board to indicate that the bootloader is active. */
244 ISR(TIMER1_OVF_vect, ISR_BLOCK)
245 {
246 LEDs_ToggleLEDs(LEDS_LED1 | LEDS_LED2);
247 }
248
249 /** Event handler for the USB_ControlRequest event. This is used to catch and process control requests sent to
250 * the device from the USB host before passing along unhandled control requests to the library for processing
251 * internally.
252 */
253 void EVENT_USB_Device_ControlRequest(void)
254 {
255 /* Ignore any requests that aren't directed to the DFU interface */
256 if ((USB_ControlRequest.bmRequestType & (CONTROL_REQTYPE_TYPE | CONTROL_REQTYPE_RECIPIENT)) !=
257 (REQTYPE_CLASS | REQREC_INTERFACE))
258 {
259 return;
260 }
261
262 /* Activity - toggle indicator LEDs */
263 LEDs_ToggleLEDs(LEDS_LED1 | LEDS_LED2);
264
265 /* Get the size of the command and data from the wLength value */
266 SentCommand.DataSize = USB_ControlRequest.wLength;
267
268 switch (USB_ControlRequest.bRequest)
269 {
270 case DFU_REQ_DNLOAD:
271 Endpoint_ClearSETUP();
272
273 /* Check if bootloader is waiting to terminate */
274 if (WaitForExit)
275 {
276 /* Bootloader is terminating - process last received command */
277 ProcessBootloaderCommand();
278
279 /* Indicate that the last command has now been processed - free to exit bootloader */
280 WaitForExit = false;
281 }
282
283 /* If the request has a data stage, load it into the command struct */
284 if (SentCommand.DataSize)
285 {
286 while (!(Endpoint_IsOUTReceived()))
287 {
288 if (USB_DeviceState == DEVICE_STATE_Unattached)
289 return;
290 }
291
292 /* First byte of the data stage is the DNLOAD request's command */
293 SentCommand.Command = Endpoint_Read_8();
294
295 /* One byte of the data stage is the command, so subtract it from the total data bytes */
296 SentCommand.DataSize--;
297
298 /* Load in the rest of the data stage as command parameters */
299 for (uint8_t DataByte = 0; (DataByte < sizeof(SentCommand.Data)) &&
300 Endpoint_BytesInEndpoint(); DataByte++)
301 {
302 SentCommand.Data[DataByte] = Endpoint_Read_8();
303 SentCommand.DataSize--;
304 }
305
306 /* Process the command */
307 ProcessBootloaderCommand();
308 }
309
310 /* Check if currently downloading firmware */
311 if (DFU_State == dfuDNLOAD_IDLE)
312 {
313 if (!(SentCommand.DataSize))
314 {
315 DFU_State = dfuIDLE;
316 }
317 else
318 {
319 /* Throw away the filler bytes before the start of the firmware */
320 DiscardFillerBytes(DFU_FILLER_BYTES_SIZE);
321
322 /* Throw away the packet alignment filler bytes before the start of the firmware */
323 DiscardFillerBytes(StartAddr % FIXED_CONTROL_ENDPOINT_SIZE);
324
325 /* Calculate the number of bytes remaining to be written */
326 uint16_t BytesRemaining = ((EndAddr - StartAddr) + 1);
327
328 if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x00)) // Write flash
329 {
330 /* Calculate the number of words to be written from the number of bytes to be written */
331 uint16_t WordsRemaining = (BytesRemaining >> 1);
332
333 union
334 {
335 uint16_t Words[2];
336 uint32_t Long;
337 } CurrFlashAddress = {.Words = {StartAddr, Flash64KBPage}};
338
339 uint32_t CurrFlashPageStartAddress = CurrFlashAddress.Long;
340 uint8_t WordsInFlashPage = 0;
341
342 while (WordsRemaining--)
343 {
344 /* Check if endpoint is empty - if so clear it and wait until ready for next packet */
345 if (!(Endpoint_BytesInEndpoint()))
346 {
347 Endpoint_ClearOUT();
348
349 while (!(Endpoint_IsOUTReceived()))
350 {
351 if (USB_DeviceState == DEVICE_STATE_Unattached)
352 return;
353 }
354 }
355
356 /* Write the next word into the current flash page */
357 BootloaderAPI_FillWord(CurrFlashAddress.Long, Endpoint_Read_16_LE());
358
359 /* Adjust counters */
360 WordsInFlashPage += 1;
361 CurrFlashAddress.Long += 2;
362
363 /* See if an entire page has been written to the flash page buffer */
364 if ((WordsInFlashPage == (SPM_PAGESIZE >> 1)) || !(WordsRemaining))
365 {
366 /* Commit the flash page to memory */
367 BootloaderAPI_WritePage(CurrFlashPageStartAddress);
368
369 /* Check if programming incomplete */
370 if (WordsRemaining)
371 {
372 CurrFlashPageStartAddress = CurrFlashAddress.Long;
373 WordsInFlashPage = 0;
374
375 /* Erase next page's temp buffer */
376 BootloaderAPI_ErasePage(CurrFlashAddress.Long);
377 }
378 }
379 }
380
381 /* Once programming complete, start address equals the end address */
382 StartAddr = EndAddr;
383 }
384 else // Write EEPROM
385 {
386 while (BytesRemaining--)
387 {
388 /* Check if endpoint is empty - if so clear it and wait until ready for next packet */
389 if (!(Endpoint_BytesInEndpoint()))
390 {
391 Endpoint_ClearOUT();
392
393 while (!(Endpoint_IsOUTReceived()))
394 {
395 if (USB_DeviceState == DEVICE_STATE_Unattached)
396 return;
397 }
398 }
399
400 /* Read the byte from the USB interface and write to to the EEPROM */
401 eeprom_update_byte((uint8_t*)StartAddr, Endpoint_Read_8());
402
403 /* Adjust counters */
404 StartAddr++;
405 }
406 }
407
408 /* Throw away the currently unused DFU file suffix */
409 DiscardFillerBytes(DFU_FILE_SUFFIX_SIZE);
410 }
411 }
412
413 Endpoint_ClearOUT();
414
415 Endpoint_ClearStatusStage();
416
417 break;
418 case DFU_REQ_UPLOAD:
419 Endpoint_ClearSETUP();
420
421 while (!(Endpoint_IsINReady()))
422 {
423 if (USB_DeviceState == DEVICE_STATE_Unattached)
424 return;
425 }
426
427 if (DFU_State != dfuUPLOAD_IDLE)
428 {
429 if ((DFU_State == dfuERROR) && IS_ONEBYTE_COMMAND(SentCommand.Data, 0x01)) // Blank Check
430 {
431 /* Blank checking is performed in the DFU_DNLOAD request - if we get here we've told the host
432 that the memory isn't blank, and the host is requesting the first non-blank address */
433 Endpoint_Write_16_LE(StartAddr);
434 }
435 else
436 {
437 /* Idle state upload - send response to last issued command */
438 Endpoint_Write_8(ResponseByte);
439 }
440 }
441 else
442 {
443 /* Determine the number of bytes remaining in the current block */
444 uint16_t BytesRemaining = ((EndAddr - StartAddr) + 1);
445
446 if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x00)) // Read FLASH
447 {
448 /* Calculate the number of words to be written from the number of bytes to be written */
449 uint16_t WordsRemaining = (BytesRemaining >> 1);
450
451 union
452 {
453 uint16_t Words[2];
454 uint32_t Long;
455 } CurrFlashAddress = {.Words = {StartAddr, Flash64KBPage}};
456
457 while (WordsRemaining--)
458 {
459 /* Check if endpoint is full - if so clear it and wait until ready for next packet */
460 if (Endpoint_BytesInEndpoint() == FIXED_CONTROL_ENDPOINT_SIZE)
461 {
462 Endpoint_ClearIN();
463
464 while (!(Endpoint_IsINReady()))
465 {
466 if (USB_DeviceState == DEVICE_STATE_Unattached)
467 return;
468 }
469 }
470
471 /* Read the flash word and send it via USB to the host */
472 #if (FLASHEND > 0xFFFF)
473 Endpoint_Write_16_LE(pgm_read_word_far(CurrFlashAddress.Long));
474 #else
475 Endpoint_Write_16_LE(pgm_read_word(CurrFlashAddress.Long));
476 #endif
477
478 /* Adjust counters */
479 CurrFlashAddress.Long += 2;
480 }
481
482 /* Once reading is complete, start address equals the end address */
483 StartAddr = EndAddr;
484 }
485 else if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x02)) // Read EEPROM
486 {
487 while (BytesRemaining--)
488 {
489 /* Check if endpoint is full - if so clear it and wait until ready for next packet */
490 if (Endpoint_BytesInEndpoint() == FIXED_CONTROL_ENDPOINT_SIZE)
491 {
492 Endpoint_ClearIN();
493
494 while (!(Endpoint_IsINReady()))
495 {
496 if (USB_DeviceState == DEVICE_STATE_Unattached)
497 return;
498 }
499 }
500
501 /* Read the EEPROM byte and send it via USB to the host */
502 Endpoint_Write_8(eeprom_read_byte((uint8_t*)StartAddr));
503
504 /* Adjust counters */
505 StartAddr++;
506 }
507 }
508
509 /* Return to idle state */
510 DFU_State = dfuIDLE;
511 }
512
513 Endpoint_ClearIN();
514
515 Endpoint_ClearStatusStage();
516 break;
517 case DFU_REQ_GETSTATUS:
518 Endpoint_ClearSETUP();
519
520 while (!(Endpoint_IsINReady()))
521 {
522 if (USB_DeviceState == DEVICE_STATE_Unattached)
523 return;
524 }
525
526 /* Write 8-bit status value */
527 Endpoint_Write_8(DFU_Status);
528
529 /* Write 24-bit poll timeout value */
530 Endpoint_Write_8(0);
531 Endpoint_Write_16_LE(0);
532
533 /* Write 8-bit state value */
534 Endpoint_Write_8(DFU_State);
535
536 /* Write 8-bit state string ID number */
537 Endpoint_Write_8(0);
538
539 Endpoint_ClearIN();
540
541 Endpoint_ClearStatusStage();
542 break;
543 case DFU_REQ_CLRSTATUS:
544 Endpoint_ClearSETUP();
545
546 /* Reset the status value variable to the default OK status */
547 DFU_Status = OK;
548
549 Endpoint_ClearStatusStage();
550 break;
551 case DFU_REQ_GETSTATE:
552 Endpoint_ClearSETUP();
553
554 while (!(Endpoint_IsINReady()))
555 {
556 if (USB_DeviceState == DEVICE_STATE_Unattached)
557 return;
558 }
559
560 /* Write the current device state to the endpoint */
561 Endpoint_Write_8(DFU_State);
562
563 Endpoint_ClearIN();
564
565 Endpoint_ClearStatusStage();
566 break;
567 case DFU_REQ_ABORT:
568 Endpoint_ClearSETUP();
569
570 /* Reset the current state variable to the default idle state */
571 DFU_State = dfuIDLE;
572
573 Endpoint_ClearStatusStage();
574 break;
575 }
576 }
577
578 /** Routine to discard the specified number of bytes from the control endpoint stream. This is used to
579 * discard unused bytes in the stream from the host, including the memory program block suffix.
580 *
581 * \param[in] NumberOfBytes Number of bytes to discard from the host from the control endpoint
582 */
583 static void DiscardFillerBytes(uint8_t NumberOfBytes)
584 {
585 while (NumberOfBytes--)
586 {
587 if (!(Endpoint_BytesInEndpoint()))
588 {
589 Endpoint_ClearOUT();
590
591 /* Wait until next data packet received */
592 while (!(Endpoint_IsOUTReceived()))
593 {
594 if (USB_DeviceState == DEVICE_STATE_Unattached)
595 return;
596 }
597 }
598 else
599 {
600 Endpoint_Discard_8();
601 }
602 }
603 }
604
605 /** Routine to process an issued command from the host, via a DFU_DNLOAD request wrapper. This routine ensures
606 * that the command is allowed based on the current secure mode flag value, and passes the command off to the
607 * appropriate handler function.
608 */
609 static void ProcessBootloaderCommand(void)
610 {
611 /* Check if device is in secure mode */
612 if (IsSecure)
613 {
614 /* Don't process command unless it is a READ or chip erase command */
615 if (!(((SentCommand.Command == COMMAND_WRITE) &&
616 IS_TWOBYTE_COMMAND(SentCommand.Data, 0x00, 0xFF)) ||
617 (SentCommand.Command == COMMAND_READ)))
618 {
619 /* Set the state and status variables to indicate the error */
620 DFU_State = dfuERROR;
621 DFU_Status = errWRITE;
622
623 /* Stall command */
624 Endpoint_StallTransaction();
625
626 /* Don't process the command */
627 return;
628 }
629 }
630
631 /* Dispatch the required command processing routine based on the command type */
632 switch (SentCommand.Command)
633 {
634 case COMMAND_PROG_START:
635 ProcessMemProgCommand();
636 break;
637 case COMMAND_DISP_DATA:
638 ProcessMemReadCommand();
639 break;
640 case COMMAND_WRITE:
641 ProcessWriteCommand();
642 break;
643 case COMMAND_READ:
644 ProcessReadCommand();
645 break;
646 case COMMAND_CHANGE_BASE_ADDR:
647 if (IS_TWOBYTE_COMMAND(SentCommand.Data, 0x03, 0x00)) // Set 64KB flash page command
648 Flash64KBPage = SentCommand.Data[2];
649
650 break;
651 }
652 }
653
654 /** Routine to concatenate the given pair of 16-bit memory start and end addresses from the host, and store them
655 * in the StartAddr and EndAddr global variables.
656 */
657 static void LoadStartEndAddresses(void)
658 {
659 union
660 {
661 uint8_t Bytes[2];
662 uint16_t Word;
663 } Address[2] = {{.Bytes = {SentCommand.Data[2], SentCommand.Data[1]}},
664 {.Bytes = {SentCommand.Data[4], SentCommand.Data[3]}}};
665
666 /* Load in the start and ending read addresses from the sent data packet */
667 StartAddr = Address[0].Word;
668 EndAddr = Address[1].Word;
669 }
670
671 /** Handler for a Memory Program command issued by the host. This routine handles the preparations needed
672 * to write subsequent data from the host into the specified memory.
673 */
674 static void ProcessMemProgCommand(void)
675 {
676 if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x00) || // Write FLASH command
677 IS_ONEBYTE_COMMAND(SentCommand.Data, 0x01)) // Write EEPROM command
678 {
679 /* Load in the start and ending read addresses */
680 LoadStartEndAddresses();
681
682 /* If FLASH is being written to, we need to pre-erase the first page to write to */
683 if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x00))
684 {
685 union
686 {
687 uint16_t Words[2];
688 uint32_t Long;
689 } CurrFlashAddress = {.Words = {StartAddr, Flash64KBPage}};
690
691 /* Erase the current page's temp buffer */
692 BootloaderAPI_ErasePage(CurrFlashAddress.Long);
693 }
694
695 /* Set the state so that the next DNLOAD requests reads in the firmware */
696 DFU_State = dfuDNLOAD_IDLE;
697 }
698 }
699
700 /** Handler for a Memory Read command issued by the host. This routine handles the preparations needed
701 * to read subsequent data from the specified memory out to the host, as well as implementing the memory
702 * blank check command.
703 */
704 static void ProcessMemReadCommand(void)
705 {
706 if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x00) || // Read FLASH command
707 IS_ONEBYTE_COMMAND(SentCommand.Data, 0x02)) // Read EEPROM command
708 {
709 /* Load in the start and ending read addresses */
710 LoadStartEndAddresses();
711
712 /* Set the state so that the next UPLOAD requests read out the firmware */
713 DFU_State = dfuUPLOAD_IDLE;
714 }
715 else if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x01)) // Blank check FLASH command
716 {
717 uint32_t CurrFlashAddress = 0;
718
719 while (CurrFlashAddress < (uint32_t)BOOT_START_ADDR)
720 {
721 /* Check if the current byte is not blank */
722 #if (FLASHEND > 0xFFFF)
723 if (pgm_read_byte_far(CurrFlashAddress) != 0xFF)
724 #else
725 if (pgm_read_byte(CurrFlashAddress) != 0xFF)
726 #endif
727 {
728 /* Save the location of the first non-blank byte for response back to the host */
729 Flash64KBPage = (CurrFlashAddress >> 16);
730 StartAddr = CurrFlashAddress;
731
732 /* Set state and status variables to the appropriate error values */
733 DFU_State = dfuERROR;
734 DFU_Status = errCHECK_ERASED;
735
736 break;
737 }
738
739 CurrFlashAddress++;
740 }
741 }
742 }
743
744 /** Handler for a Data Write command issued by the host. This routine handles non-programming commands such as
745 * bootloader exit (both via software jumps and hardware watchdog resets) and flash memory erasure.
746 */
747 static void ProcessWriteCommand(void)
748 {
749 if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x03)) // Start application
750 {
751 /* Indicate that the bootloader is terminating */
752 WaitForExit = true;
753
754 /* Check if data supplied for the Start Program command - no data executes the program */
755 if (SentCommand.DataSize)
756 {
757 if (SentCommand.Data[1] == 0x01) // Start via jump
758 {
759 union
760 {
761 uint8_t Bytes[2];
762 AppPtr_t FuncPtr;
763 } Address = {.Bytes = {SentCommand.Data[4], SentCommand.Data[3]}};
764
765 /* Load in the jump address into the application start address pointer */
766 AppStartPtr = Address.FuncPtr;
767 }
768 }
769 else
770 {
771 if (SentCommand.Data[1] == 0x00) // Start via watchdog
772 {
773 /* Unlock the forced application start mode of the bootloader if it is restarted */
774 MagicBootKey = MAGIC_BOOT_KEY;
775
776 /* Start the watchdog to reset the AVR once the communications are finalized */
777 wdt_enable(WDTO_250MS);
778 }
779 else // Start via jump
780 {
781 /* Set the flag to terminate the bootloader at next opportunity if a valid application has been loaded */
782 if (pgm_read_word_near(0) == 0xFFFF)
783 RunBootloader = false;
784 }
785 }
786 }
787 else if (IS_TWOBYTE_COMMAND(SentCommand.Data, 0x00, 0xFF)) // Erase flash
788 {
789 /* Clear the application section of flash */
790 for (uint32_t CurrFlashAddress = 0; CurrFlashAddress < (uint32_t)BOOT_START_ADDR; CurrFlashAddress += SPM_PAGESIZE)
791 BootloaderAPI_ErasePage(CurrFlashAddress);
792
793 /* Memory has been erased, reset the security bit so that programming/reading is allowed */
794 IsSecure = false;
795 }
796 }
797
798 /** Handler for a Data Read command issued by the host. This routine handles bootloader information retrieval
799 * commands such as device signature and bootloader version retrieval.
800 */
801 static void ProcessReadCommand(void)
802 {
803 const uint8_t BootloaderInfo[3] = {BOOTLOADER_VERSION, BOOTLOADER_ID_BYTE1, BOOTLOADER_ID_BYTE2};
804 const uint8_t SignatureInfo[4] = {0x58, AVR_SIGNATURE_1, AVR_SIGNATURE_2, AVR_SIGNATURE_3};
805
806 uint8_t DataIndexToRead = SentCommand.Data[1];
807 bool ReadAddressInvalid = false;
808
809 if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x00)) // Read bootloader info
810 {
811 if (DataIndexToRead < 3)
812 ResponseByte = BootloaderInfo[DataIndexToRead];
813 else
814 ReadAddressInvalid = true;
815 }
816 else if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x01)) // Read signature byte
817 {
818 switch (DataIndexToRead)
819 {
820 case 0x30:
821 ResponseByte = SignatureInfo[0];
822 break;
823 case 0x31:
824 ResponseByte = SignatureInfo[1];
825 break;
826 case 0x60:
827 ResponseByte = SignatureInfo[2];
828 break;
829 case 0x61:
830 ResponseByte = SignatureInfo[3];
831 break;
832 default:
833 ReadAddressInvalid = true;
834 break;
835 }
836 }
837
838 if (ReadAddressInvalid)
839 {
840 /* Set the state and status variables to indicate the error */
841 DFU_State = dfuERROR;
842 DFU_Status = errADDRESS;
843 }
844 }