3 Copyright (C) Dean Camera, 2012.
5 dean [at] fourwalledcubicle [dot] com
10 Copyright 2012 Dean Camera (dean [at] fourwalledcubicle [dot] com)
12 Permission to use, copy, modify, distribute, and sell this
13 software and its documentation for any purpose is hereby granted
14 without fee, provided that the above copyright notice appear in
15 all copies and that both that the copyright notice and this
16 permission notice and warranty disclaimer appear in supporting
17 documentation, and that the name of the author not be used in
18 advertising or publicity pertaining to distribution of the
19 software without specific, written prior permission.
21 The author disclaim all warranties with regard to this
22 software, including all implied warranties of merchantability
23 and fitness. In no event shall the author be liable for any
24 special, indirect or consequential damages or any damages
25 whatsoever resulting from loss of use, data or profits, whether
26 in an action of contract, negligence or other tortious action,
27 arising out of or in connection with the use or performance of
33 * Main source file for the DFU class bootloader. This file contains the complete bootloader logic.
36 #define INCLUDE_FROM_BOOTLOADER_C
37 #include "BootloaderDFU.h"
39 /** Flag to indicate if the bootloader is currently running in secure mode, disallowing memory operations
40 * other than erase. This is initially set to the value set by SECURE_MODE, and cleared by the bootloader
41 * once a memory erase has completed in a bootloader session.
43 static bool IsSecure
= SECURE_MODE
;
45 /** Flag to indicate if the bootloader should be running, or should exit and allow the application code to run
46 * via a soft reset. When cleared, the bootloader will abort, the USB interface will shut down and the application
47 * jumped to via an indirect jump to location 0x0000 (or other location specified by the host).
49 static bool RunBootloader
= true;
51 /** Flag to indicate if the bootloader is waiting to exit. When the host requests the bootloader to exit and
52 * jump to the application address it specifies, it sends two sequential commands which must be properly
53 * acknowledged. Upon reception of the first the RunBootloader flag is cleared and the WaitForExit flag is set,
54 * causing the bootloader to wait for the final exit command before shutting down.
56 static bool WaitForExit
= false;
58 /** Current DFU state machine state, one of the values in the DFU_State_t enum. */
59 static uint8_t DFU_State
= dfuIDLE
;
61 /** Status code of the last executed DFU command. This is set to one of the values in the DFU_Status_t enum after
62 * each operation, and returned to the host when a Get Status DFU request is issued.
64 static uint8_t DFU_Status
= OK
;
66 /** Data containing the DFU command sent from the host. */
67 static DFU_Command_t SentCommand
;
69 /** Response to the last issued Read Data DFU command. Unlike other DFU commands, the read command
70 * requires a single byte response from the bootloader containing the read data when the next DFU_UPLOAD command
71 * is issued by the host.
73 static uint8_t ResponseByte
;
75 /** Pointer to the start of the user application. By default this is 0x0000 (the reset vector), however the host
76 * may specify an alternate address when issuing the application soft-start command.
78 static AppPtr_t AppStartPtr
= (AppPtr_t
)0x0000;
80 /** 64-bit flash page number. This is concatenated with the current 16-bit address on USB AVRs containing more than
81 * 64KB of flash memory.
83 static uint8_t Flash64KBPage
= 0;
85 /** Memory start address, indicating the current address in the memory being addressed (either FLASH or EEPROM
86 * depending on the issued command from the host).
88 static uint16_t StartAddr
= 0x0000;
90 /** Memory end address, indicating the end address to read from/write to in the memory being addressed (either FLASH
91 * of EEPROM depending on the issued command from the host).
93 static uint16_t EndAddr
= 0x0000;
95 /** Magic lock for forced application start. If the HWBE fuse is programmed and BOOTRST is unprogrammed, the bootloader
96 * will start if the /HWB line of the AVR is held low and the system is reset. However, if the /HWB line is still held
97 * low when the application attempts to start via a watchdog reset, the bootloader will re-start. If set to the value
98 * \ref MAGIC_BOOT_KEY the special init function \ref Application_Jump_Check() will force the application to start.
100 uint16_t MagicBootKey ATTR_NO_INIT
;
103 /** Special startup routine to check if the bootloader was started via a watchdog reset, and if the magic application
104 * start key has been loaded into \ref MagicBootKey. If the bootloader started via the watchdog and the key is valid,
105 * this will force the user application to start via a software jump.
107 void Application_Jump_Check(void)
109 bool JumpToApplication
= false;
111 #if ((BOARD == BOARD_XPLAIN) || (BOARD == BOARD_XPLAIN_REV1))
112 /* Disable JTAG debugging */
115 /* Enable pull-up on the JTAG TCK pin so we can use it to select the mode */
119 /* If the TCK pin is not jumpered to ground, start the user application instead */
120 JumpToApplication
|= ((PINF
& (1 << 4)) != 0);
122 /* Re-enable JTAG debugging */
126 /* If the reset source was the bootloader and the key is correct, clear it and jump to the application */
127 if ((MCUSR
& (1 << WDRF
)) && (MagicBootKey
== MAGIC_BOOT_KEY
))
128 JumpToApplication
|= true;
130 /* If a request has been made to jump to the user application, honor it */
131 if (JumpToApplication
)
133 /* Turn off the watchdog */
137 /* Clear the boot key and jump to the user application */
140 // cppcheck-suppress constStatement
141 ((void (*)(void))0x0000)();
145 /** Main program entry point. This routine configures the hardware required by the bootloader, then continuously
146 * runs the bootloader processing routine until instructed to soft-exit, or hard-reset via the watchdog to start
147 * the loaded application code.
151 /* Configure hardware required by the bootloader */
154 /* Turn on first LED on the board to indicate that the bootloader has started */
155 LEDs_SetAllLEDs(LEDS_LED1
);
157 /* Enable global interrupts so that the USB stack can function */
160 /* Run the USB management task while the bootloader is supposed to be running */
161 while (RunBootloader
|| WaitForExit
)
164 /* Reset configured hardware back to their original states for the user application */
167 /* Start the user application */
171 /** Configures all hardware required for the bootloader. */
172 static void SetupHardware(void)
174 /* Disable watchdog if enabled by bootloader/fuses */
175 MCUSR
&= ~(1 << WDRF
);
178 /* Disable clock division */
179 clock_prescale_set(clock_div_1
);
181 /* Relocate the interrupt vector table to the bootloader section */
183 MCUCR
= (1 << IVSEL
);
185 /* Initialize the USB and other board hardware drivers */
189 /* Bootloader active LED toggle timer initialization */
190 TIMSK1
= (1 << TOIE1
);
191 TCCR1B
= ((1 << CS11
) | (1 << CS10
));
194 /** Resets all configured hardware required for the bootloader back to their original states. */
195 static void ResetHardware(void)
197 /* Shut down the USB and other board hardware drivers */
201 /* Disable Bootloader active LED toggle timer */
205 /* Relocate the interrupt vector table back to the application section */
210 /** ISR to periodically toggle the LEDs on the board to indicate that the bootloader is active. */
211 ISR(TIMER1_OVF_vect
, ISR_BLOCK
)
213 LEDs_ToggleLEDs(LEDS_LED1
| LEDS_LED2
);
216 /** Event handler for the USB_ControlRequest event. This is used to catch and process control requests sent to
217 * the device from the USB host before passing along unhandled control requests to the library for processing
220 void EVENT_USB_Device_ControlRequest(void)
222 /* Ignore any requests that aren't directed to the DFU interface */
223 if ((USB_ControlRequest
.bmRequestType
& (CONTROL_REQTYPE_TYPE
| CONTROL_REQTYPE_RECIPIENT
)) !=
224 (REQTYPE_CLASS
| REQREC_INTERFACE
))
229 /* Activity - toggle indicator LEDs */
230 LEDs_ToggleLEDs(LEDS_LED1
| LEDS_LED2
);
232 /* Get the size of the command and data from the wLength value */
233 SentCommand
.DataSize
= USB_ControlRequest
.wLength
;
235 switch (USB_ControlRequest
.bRequest
)
238 Endpoint_ClearSETUP();
240 /* Check if bootloader is waiting to terminate */
243 /* Bootloader is terminating - process last received command */
244 ProcessBootloaderCommand();
246 /* Indicate that the last command has now been processed - free to exit bootloader */
250 /* If the request has a data stage, load it into the command struct */
251 if (SentCommand
.DataSize
)
253 while (!(Endpoint_IsOUTReceived()))
255 if (USB_DeviceState
== DEVICE_STATE_Unattached
)
259 /* First byte of the data stage is the DNLOAD request's command */
260 SentCommand
.Command
= Endpoint_Read_8();
262 /* One byte of the data stage is the command, so subtract it from the total data bytes */
263 SentCommand
.DataSize
--;
265 /* Load in the rest of the data stage as command parameters */
266 for (uint8_t DataByte
= 0; (DataByte
< sizeof(SentCommand
.Data
)) &&
267 Endpoint_BytesInEndpoint(); DataByte
++)
269 SentCommand
.Data
[DataByte
] = Endpoint_Read_8();
270 SentCommand
.DataSize
--;
273 /* Process the command */
274 ProcessBootloaderCommand();
277 /* Check if currently downloading firmware */
278 if (DFU_State
== dfuDNLOAD_IDLE
)
280 if (!(SentCommand
.DataSize
))
286 /* Throw away the filler bytes before the start of the firmware */
287 DiscardFillerBytes(DFU_FILLER_BYTES_SIZE
);
289 /* Throw away the packet alignment filler bytes before the start of the firmware */
290 DiscardFillerBytes(StartAddr
% FIXED_CONTROL_ENDPOINT_SIZE
);
292 /* Calculate the number of bytes remaining to be written */
293 uint16_t BytesRemaining
= ((EndAddr
- StartAddr
) + 1);
295 if (IS_ONEBYTE_COMMAND(SentCommand
.Data
, 0x00)) // Write flash
297 /* Calculate the number of words to be written from the number of bytes to be written */
298 uint16_t WordsRemaining
= (BytesRemaining
>> 1);
304 } CurrFlashAddress
= {.Words
= {StartAddr
, Flash64KBPage
}};
306 uint32_t CurrFlashPageStartAddress
= CurrFlashAddress
.Long
;
307 uint8_t WordsInFlashPage
= 0;
309 while (WordsRemaining
--)
311 /* Check if endpoint is empty - if so clear it and wait until ready for next packet */
312 if (!(Endpoint_BytesInEndpoint()))
316 while (!(Endpoint_IsOUTReceived()))
318 if (USB_DeviceState
== DEVICE_STATE_Unattached
)
323 /* Write the next word into the current flash page */
324 boot_page_fill(CurrFlashAddress
.Long
, Endpoint_Read_16_LE());
326 /* Adjust counters */
327 WordsInFlashPage
+= 1;
328 CurrFlashAddress
.Long
+= 2;
330 /* See if an entire page has been written to the flash page buffer */
331 if ((WordsInFlashPage
== (SPM_PAGESIZE
>> 1)) || !(WordsRemaining
))
333 /* Commit the flash page to memory */
334 boot_page_write(CurrFlashPageStartAddress
);
335 boot_spm_busy_wait();
337 /* Check if programming incomplete */
340 CurrFlashPageStartAddress
= CurrFlashAddress
.Long
;
341 WordsInFlashPage
= 0;
343 /* Erase next page's temp buffer */
344 boot_page_erase(CurrFlashAddress
.Long
);
345 boot_spm_busy_wait();
350 /* Once programming complete, start address equals the end address */
353 /* Re-enable the RWW section of flash */
358 while (BytesRemaining
--)
360 /* Check if endpoint is empty - if so clear it and wait until ready for next packet */
361 if (!(Endpoint_BytesInEndpoint()))
365 while (!(Endpoint_IsOUTReceived()))
367 if (USB_DeviceState
== DEVICE_STATE_Unattached
)
372 /* Read the byte from the USB interface and write to to the EEPROM */
373 eeprom_write_byte((uint8_t*)StartAddr
, Endpoint_Read_8());
375 /* Adjust counters */
380 /* Throw away the currently unused DFU file suffix */
381 DiscardFillerBytes(DFU_FILE_SUFFIX_SIZE
);
387 Endpoint_ClearStatusStage();
391 Endpoint_ClearSETUP();
393 while (!(Endpoint_IsINReady()))
395 if (USB_DeviceState
== DEVICE_STATE_Unattached
)
399 if (DFU_State
!= dfuUPLOAD_IDLE
)
401 if ((DFU_State
== dfuERROR
) && IS_ONEBYTE_COMMAND(SentCommand
.Data
, 0x01)) // Blank Check
403 /* Blank checking is performed in the DFU_DNLOAD request - if we get here we've told the host
404 that the memory isn't blank, and the host is requesting the first non-blank address */
405 Endpoint_Write_16_LE(StartAddr
);
409 /* Idle state upload - send response to last issued command */
410 Endpoint_Write_8(ResponseByte
);
415 /* Determine the number of bytes remaining in the current block */
416 uint16_t BytesRemaining
= ((EndAddr
- StartAddr
) + 1);
418 if (IS_ONEBYTE_COMMAND(SentCommand
.Data
, 0x00)) // Read FLASH
420 /* Calculate the number of words to be written from the number of bytes to be written */
421 uint16_t WordsRemaining
= (BytesRemaining
>> 1);
427 } CurrFlashAddress
= {.Words
= {StartAddr
, Flash64KBPage
}};
429 while (WordsRemaining
--)
431 /* Check if endpoint is full - if so clear it and wait until ready for next packet */
432 if (Endpoint_BytesInEndpoint() == FIXED_CONTROL_ENDPOINT_SIZE
)
436 while (!(Endpoint_IsINReady()))
438 if (USB_DeviceState
== DEVICE_STATE_Unattached
)
443 /* Read the flash word and send it via USB to the host */
444 #if (FLASHEND > 0xFFFF)
445 Endpoint_Write_16_LE(pgm_read_word_far(CurrFlashAddress
.Long
));
447 Endpoint_Write_16_LE(pgm_read_word(CurrFlashAddress
.Long
));
450 /* Adjust counters */
451 CurrFlashAddress
.Long
+= 2;
454 /* Once reading is complete, start address equals the end address */
457 else if (IS_ONEBYTE_COMMAND(SentCommand
.Data
, 0x02)) // Read EEPROM
459 while (BytesRemaining
--)
461 /* Check if endpoint is full - if so clear it and wait until ready for next packet */
462 if (Endpoint_BytesInEndpoint() == FIXED_CONTROL_ENDPOINT_SIZE
)
466 while (!(Endpoint_IsINReady()))
468 if (USB_DeviceState
== DEVICE_STATE_Unattached
)
473 /* Read the EEPROM byte and send it via USB to the host */
474 Endpoint_Write_8(eeprom_read_byte((uint8_t*)StartAddr
));
476 /* Adjust counters */
481 /* Return to idle state */
487 Endpoint_ClearStatusStage();
489 case DFU_REQ_GETSTATUS
:
490 Endpoint_ClearSETUP();
492 /* Write 8-bit status value */
493 Endpoint_Write_8(DFU_Status
);
495 /* Write 24-bit poll timeout value */
497 Endpoint_Write_16_LE(0);
499 /* Write 8-bit state value */
500 Endpoint_Write_8(DFU_State
);
502 /* Write 8-bit state string ID number */
507 Endpoint_ClearStatusStage();
509 case DFU_REQ_CLRSTATUS
:
510 Endpoint_ClearSETUP();
512 /* Reset the status value variable to the default OK status */
515 Endpoint_ClearStatusStage();
517 case DFU_REQ_GETSTATE
:
518 Endpoint_ClearSETUP();
520 /* Write the current device state to the endpoint */
521 Endpoint_Write_8(DFU_State
);
525 Endpoint_ClearStatusStage();
528 Endpoint_ClearSETUP();
530 /* Reset the current state variable to the default idle state */
533 Endpoint_ClearStatusStage();
538 /** Routine to discard the specified number of bytes from the control endpoint stream. This is used to
539 * discard unused bytes in the stream from the host, including the memory program block suffix.
541 * \param[in] NumberOfBytes Number of bytes to discard from the host from the control endpoint
543 static void DiscardFillerBytes(uint8_t NumberOfBytes
)
545 while (NumberOfBytes
--)
547 if (!(Endpoint_BytesInEndpoint()))
551 /* Wait until next data packet received */
552 while (!(Endpoint_IsOUTReceived()))
554 if (USB_DeviceState
== DEVICE_STATE_Unattached
)
560 Endpoint_Discard_8();
565 /** Routine to process an issued command from the host, via a DFU_DNLOAD request wrapper. This routine ensures
566 * that the command is allowed based on the current secure mode flag value, and passes the command off to the
567 * appropriate handler function.
569 static void ProcessBootloaderCommand(void)
571 /* Check if device is in secure mode */
574 /* Don't process command unless it is a READ or chip erase command */
575 if (!(((SentCommand
.Command
== COMMAND_WRITE
) &&
576 IS_TWOBYTE_COMMAND(SentCommand
.Data
, 0x00, 0xFF)) ||
577 (SentCommand
.Command
== COMMAND_READ
)))
579 /* Set the state and status variables to indicate the error */
580 DFU_State
= dfuERROR
;
581 DFU_Status
= errWRITE
;
584 Endpoint_StallTransaction();
586 /* Don't process the command */
591 /* Dispatch the required command processing routine based on the command type */
592 switch (SentCommand
.Command
)
594 case COMMAND_PROG_START
:
595 ProcessMemProgCommand();
597 case COMMAND_DISP_DATA
:
598 ProcessMemReadCommand();
601 ProcessWriteCommand();
604 ProcessReadCommand();
606 case COMMAND_CHANGE_BASE_ADDR
:
607 if (IS_TWOBYTE_COMMAND(SentCommand
.Data
, 0x03, 0x00)) // Set 64KB flash page command
608 Flash64KBPage
= SentCommand
.Data
[2];
614 /** Routine to concatenate the given pair of 16-bit memory start and end addresses from the host, and store them
615 * in the StartAddr and EndAddr global variables.
617 static void LoadStartEndAddresses(void)
623 } Address
[2] = {{.Bytes
= {SentCommand
.Data
[2], SentCommand
.Data
[1]}},
624 {.Bytes
= {SentCommand
.Data
[4], SentCommand
.Data
[3]}}};
626 /* Load in the start and ending read addresses from the sent data packet */
627 StartAddr
= Address
[0].Word
;
628 EndAddr
= Address
[1].Word
;
631 /** Handler for a Memory Program command issued by the host. This routine handles the preparations needed
632 * to write subsequent data from the host into the specified memory.
634 static void ProcessMemProgCommand(void)
636 if (IS_ONEBYTE_COMMAND(SentCommand
.Data
, 0x00) || // Write FLASH command
637 IS_ONEBYTE_COMMAND(SentCommand
.Data
, 0x01)) // Write EEPROM command
639 /* Load in the start and ending read addresses */
640 LoadStartEndAddresses();
642 /* If FLASH is being written to, we need to pre-erase the first page to write to */
643 if (IS_ONEBYTE_COMMAND(SentCommand
.Data
, 0x00))
649 } CurrFlashAddress
= {.Words
= {StartAddr
, Flash64KBPage
}};
651 /* Erase the current page's temp buffer */
652 boot_page_erase(CurrFlashAddress
.Long
);
653 boot_spm_busy_wait();
656 /* Set the state so that the next DNLOAD requests reads in the firmware */
657 DFU_State
= dfuDNLOAD_IDLE
;
661 /** Handler for a Memory Read command issued by the host. This routine handles the preparations needed
662 * to read subsequent data from the specified memory out to the host, as well as implementing the memory
663 * blank check command.
665 static void ProcessMemReadCommand(void)
667 if (IS_ONEBYTE_COMMAND(SentCommand
.Data
, 0x00) || // Read FLASH command
668 IS_ONEBYTE_COMMAND(SentCommand
.Data
, 0x02)) // Read EEPROM command
670 /* Load in the start and ending read addresses */
671 LoadStartEndAddresses();
673 /* Set the state so that the next UPLOAD requests read out the firmware */
674 DFU_State
= dfuUPLOAD_IDLE
;
676 else if (IS_ONEBYTE_COMMAND(SentCommand
.Data
, 0x01)) // Blank check FLASH command
678 uint32_t CurrFlashAddress
= 0;
680 while (CurrFlashAddress
< (uint32_t)BOOT_START_ADDR
)
682 /* Check if the current byte is not blank */
683 #if (FLASHEND > 0xFFFF)
684 if (pgm_read_byte_far(CurrFlashAddress
) != 0xFF)
686 if (pgm_read_byte(CurrFlashAddress
) != 0xFF)
689 /* Save the location of the first non-blank byte for response back to the host */
690 Flash64KBPage
= (CurrFlashAddress
>> 16);
691 StartAddr
= CurrFlashAddress
;
693 /* Set state and status variables to the appropriate error values */
694 DFU_State
= dfuERROR
;
695 DFU_Status
= errCHECK_ERASED
;
705 /** Handler for a Data Write command issued by the host. This routine handles non-programming commands such as
706 * bootloader exit (both via software jumps and hardware watchdog resets) and flash memory erasure.
708 static void ProcessWriteCommand(void)
710 if (IS_ONEBYTE_COMMAND(SentCommand
.Data
, 0x03)) // Start application
712 /* Indicate that the bootloader is terminating */
715 /* Check if data supplied for the Start Program command - no data executes the program */
716 if (SentCommand
.DataSize
)
718 if (SentCommand
.Data
[1] == 0x01) // Start via jump
724 } Address
= {.Bytes
= {SentCommand
.Data
[4], SentCommand
.Data
[3]}};
726 /* Load in the jump address into the application start address pointer */
727 AppStartPtr
= Address
.FuncPtr
;
732 if (SentCommand
.Data
[1] == 0x00) // Start via watchdog
734 /* Unlock the forced application start mode of the bootloader if it is restarted */
735 MagicBootKey
= MAGIC_BOOT_KEY
;
737 /* Start the watchdog to reset the AVR once the communications are finalized */
738 wdt_enable(WDTO_250MS
);
740 else // Start via jump
742 /* Set the flag to terminate the bootloader at next opportunity */
743 RunBootloader
= false;
747 else if (IS_TWOBYTE_COMMAND(SentCommand
.Data
, 0x00, 0xFF)) // Erase flash
749 uint32_t CurrFlashAddress
= 0;
751 /* Clear the application section of flash */
752 while (CurrFlashAddress
< (uint32_t)BOOT_START_ADDR
)
754 boot_page_erase(CurrFlashAddress
);
755 boot_spm_busy_wait();
756 boot_page_write(CurrFlashAddress
);
757 boot_spm_busy_wait();
759 CurrFlashAddress
+= SPM_PAGESIZE
;
762 /* Re-enable the RWW section of flash as writing to the flash locks it out */
765 /* Memory has been erased, reset the security bit so that programming/reading is allowed */
770 /** Handler for a Data Read command issued by the host. This routine handles bootloader information retrieval
771 * commands such as device signature and bootloader version retrieval.
773 static void ProcessReadCommand(void)
775 const uint8_t BootloaderInfo
[3] = {BOOTLOADER_VERSION
, BOOTLOADER_ID_BYTE1
, BOOTLOADER_ID_BYTE2
};
776 const uint8_t SignatureInfo
[3] = {AVR_SIGNATURE_1
, AVR_SIGNATURE_2
, AVR_SIGNATURE_3
};
778 uint8_t DataIndexToRead
= SentCommand
.Data
[1];
780 if (IS_ONEBYTE_COMMAND(SentCommand
.Data
, 0x00)) // Read bootloader info
781 ResponseByte
= BootloaderInfo
[DataIndexToRead
];
782 else if (IS_ONEBYTE_COMMAND(SentCommand
.Data
, 0x01)) // Read signature byte
783 ResponseByte
= SignatureInfo
[DataIndexToRead
- 0x30];