Added incomplete MIDIToneGenerator project.
[pub/USBasp.git] / LUFA / Drivers / USB / LowLevel / Pipe.h
1 /*
2 LUFA Library
3 Copyright (C) Dean Camera, 2010.
4
5 dean [at] fourwalledcubicle [dot] com
6 www.fourwalledcubicle.com
7 */
8
9 /*
10 Copyright 2010 Dean Camera (dean [at] fourwalledcubicle [dot] com)
11
12 Permission to use, copy, modify, distribute, and sell this
13 software and its documentation for any purpose is hereby granted
14 without fee, provided that the above copyright notice appear in
15 all copies and that both that the copyright notice and this
16 permission notice and warranty disclaimer appear in supporting
17 documentation, and that the name of the author not be used in
18 advertising or publicity pertaining to distribution of the
19 software without specific, written prior permission.
20
21 The author disclaim all warranties with regard to this
22 software, including all implied warranties of merchantability
23 and fitness. In no event shall the author be liable for any
24 special, indirect or consequential damages or any damages
25 whatsoever resulting from loss of use, data or profits, whether
26 in an action of contract, negligence or other tortious action,
27 arising out of or in connection with the use or performance of
28 this software.
29 */
30
31 /** \ingroup Group_USB
32 * @defgroup Group_PipeManagement Pipe Management
33 *
34 * This module contains functions, macros and enums related to pipe management when in USB Host mode. This
35 * module contains the pipe management macros, as well as pipe interrupt and data send/receive functions
36 * for various data types.
37 *
38 * @{
39 */
40
41 /** @defgroup Group_PipeRW Pipe Data Reading and Writing
42 *
43 * Functions, macros, variables, enums and types related to data reading and writing from and to pipes.
44 */
45
46 /** \ingroup Group_PipeRW
47 * @defgroup Group_PipePrimitiveRW Read/Write of Primitive Data Types
48 *
49 * Functions, macros, variables, enums and types related to data reading and writing of primitive data types
50 * from and to pipes.
51 */
52
53 /** \ingroup Group_PipeRW
54 * @defgroup Group_PipeStreamRW Read/Write of Multi-Byte Streams
55 *
56 * Functions, macros, variables, enums and types related to data reading and writing of data streams from
57 * and to pipes.
58 */
59
60 /** @defgroup Group_PipePacketManagement Pipe Packet Management
61 *
62 * Functions, macros, variables, enums and types related to packet management of pipes.
63 */
64
65 /** @defgroup Group_PipeControlReq Pipe Control Request Management
66 *
67 * Module for host mode request processing. This module allows for the transmission of standard, class and
68 * vendor control requests to the default control endpoint of an attached device while in host mode.
69 *
70 * \see Chapter 9 of the USB 2.0 specification.
71 */
72
73 #ifndef __PIPE_H__
74 #define __PIPE_H__
75
76 /* Includes: */
77 #include <avr/io.h>
78 #include <avr/pgmspace.h>
79 #include <avr/eeprom.h>
80 #include <stdbool.h>
81
82 #include "../../../Common/Common.h"
83 #include "../HighLevel/USBTask.h"
84
85 #if !defined(NO_STREAM_CALLBACKS) || defined(__DOXYGEN__)
86 #include "../HighLevel/StreamCallbacks.h"
87 #endif
88
89 /* Enable C linkage for C++ Compilers: */
90 #if defined(__cplusplus)
91 extern "C" {
92 #endif
93
94 /* Preprocessor Checks: */
95 #if !defined(__INCLUDE_FROM_USB_DRIVER)
96 #error Do not include this file directly. Include LUFA/Drivers/USB/USB.h instead.
97 #endif
98
99 /* Public Interface - May be used in end-application: */
100 /* Macros: */
101 /** Mask for \ref Pipe_GetErrorFlags(), indicating that an overflow error occurred in the pipe on the received data. */
102 #define PIPE_ERRORFLAG_OVERFLOW (1 << 6)
103
104 /** Mask for \ref Pipe_GetErrorFlags(), indicating that an underflow error occurred in the pipe on the received data. */
105 #define PIPE_ERRORFLAG_UNDERFLOW (1 << 5)
106
107 /** Mask for \ref Pipe_GetErrorFlags(), indicating that a CRC error occurred in the pipe on the received data. */
108 #define PIPE_ERRORFLAG_CRC16 (1 << 4)
109
110 /** Mask for \ref Pipe_GetErrorFlags(), indicating that a hardware timeout error occurred in the pipe. */
111 #define PIPE_ERRORFLAG_TIMEOUT (1 << 3)
112
113 /** Mask for \ref Pipe_GetErrorFlags(), indicating that a hardware PID error occurred in the pipe. */
114 #define PIPE_ERRORFLAG_PID (1 << 2)
115
116 /** Mask for \ref Pipe_GetErrorFlags(), indicating that a hardware data PID error occurred in the pipe. */
117 #define PIPE_ERRORFLAG_DATAPID (1 << 1)
118
119 /** Mask for \ref Pipe_GetErrorFlags(), indicating that a hardware data toggle error occurred in the pipe. */
120 #define PIPE_ERRORFLAG_DATATGL (1 << 0)
121
122 /** Token mask for \ref Pipe_ConfigurePipe(). This sets the pipe as a SETUP token (for CONTROL type pipes),
123 * which will trigger a control request on the attached device when data is written to the pipe.
124 */
125 #define PIPE_TOKEN_SETUP (0 << PTOKEN0)
126
127 /** Token mask for \ref Pipe_ConfigurePipe(). This sets the pipe as a IN token (for non-CONTROL type pipes),
128 * indicating that the pipe data will flow from device to host.
129 */
130 #define PIPE_TOKEN_IN (1 << PTOKEN0)
131
132 /** Token mask for \ref Pipe_ConfigurePipe(). This sets the pipe as a OUT token (for non-CONTROL type pipes),
133 * indicating that the pipe data will flow from host to device.
134 */
135 #define PIPE_TOKEN_OUT (2 << PTOKEN0)
136
137 /** Mask for the bank mode selection for the \ref Pipe_ConfigurePipe() macro. This indicates that the pipe
138 * should have one single bank, which requires less USB FIFO memory but results in slower transfers as
139 * only one USB device (the AVR or the attached device) can access the pipe's bank at the one time.
140 */
141 #define PIPE_BANK_SINGLE (0 << EPBK0)
142
143 /** Mask for the bank mode selection for the \ref Pipe_ConfigurePipe() macro. This indicates that the pipe
144 * should have two banks, which requires more USB FIFO memory but results in faster transfers as one
145 * USB device (the AVR or the attached device) can access one bank while the other accesses the second
146 * bank.
147 */
148 #define PIPE_BANK_DOUBLE (1 << EPBK0)
149
150 /** Pipe address for the default control pipe, which always resides in address 0. This is
151 * defined for convenience to give more readable code when used with the pipe macros.
152 */
153 #define PIPE_CONTROLPIPE 0
154
155 /** Default size of the default control pipe's bank, until altered by the Endpoint0Size value
156 * in the device descriptor of the attached device.
157 */
158 #define PIPE_CONTROLPIPE_DEFAULT_SIZE 64
159
160 /** Pipe number mask, for masking against pipe addresses to retrieve the pipe's numerical address
161 * in the device.
162 */
163 #define PIPE_PIPENUM_MASK 0x07
164
165 /** Total number of pipes (including the default control pipe at address 0) which may be used in
166 * the device. Different USB AVR models support different amounts of pipes, this value reflects
167 * the maximum number of pipes for the currently selected AVR model.
168 */
169 #define PIPE_TOTAL_PIPES 7
170
171 /** Size in bytes of the largest pipe bank size possible in the device. Not all banks on each AVR
172 * model supports the largest bank size possible on the device; different pipe numbers support
173 * different maximum bank sizes. This value reflects the largest possible bank of any pipe on the
174 * currently selected USB AVR model.
175 */
176 #define PIPE_MAX_SIZE 256
177
178 /** Endpoint number mask, for masking against endpoint addresses to retrieve the endpoint's
179 * numerical address in the attached device.
180 */
181 #define PIPE_EPNUM_MASK 0x0F
182
183 /** Endpoint direction mask, for masking against endpoint addresses to retrieve the endpoint's
184 * direction for comparing with the ENDPOINT_DESCRIPTOR_DIR_* masks.
185 */
186 #define PIPE_EPDIR_MASK 0x80
187
188 /* Pseudo-Function Macros: */
189 #if defined(__DOXYGEN__)
190 /** Indicates the number of bytes currently stored in the current pipes's selected bank.
191 *
192 * \note The return width of this function may differ, depending on the maximum pipe bank size
193 * of the selected AVR model.
194 *
195 * \ingroup Group_PipeRW
196 *
197 * \return Total number of bytes in the currently selected Pipe's FIFO buffer
198 */
199 static inline uint16_t Pipe_BytesInPipe(void);
200
201 /** Returns the pipe address of the currently selected pipe. This is typically used to save the
202 * currently selected pipe number so that it can be restored after another pipe has been manipulated.
203 *
204 * \return Index of the currently selected pipe
205 */
206 static inline uint8_t Pipe_GetCurrentPipe(void);
207
208 /** Selects the given pipe number. Any pipe operations which do not require the pipe number to be
209 * indicated will operate on the currently selected pipe.
210 *
211 * \param[in] PipeNumber Index of the pipe to select
212 */
213 static inline void Pipe_SelectPipe(uint8_t PipeNumber);
214
215 /** Resets the desired pipe, including the pipe banks and flags.
216 *
217 * \param[in] PipeNumber Index of the pipe to reset
218 */
219 static inline void Pipe_ResetPipe(uint8_t PipeNumber);
220
221 /** Enables the currently selected pipe so that data can be sent and received through it to and from
222 * an attached device.
223 *
224 * \note Pipes must first be configured properly via \ref Pipe_ConfigurePipe().
225 */
226 static inline void Pipe_EnablePipe(void);
227
228 /** Disables the currently selected pipe so that data cannot be sent and received through it to and
229 * from an attached device.
230 */
231 static inline void Pipe_DisablePipe(void);
232
233 /** Determines if the currently selected pipe is enabled, but not necessarily configured.
234 *
235 * \return Boolean True if the currently selected pipe is enabled, false otherwise
236 */
237 static inline bool Pipe_IsEnabled(void);
238
239 /** Gets the current pipe token, indicating the pipe's data direction and type.
240 *
241 * \return The current pipe token, as a PIPE_TOKEN_* mask
242 */
243 static inline uint8_t Pipe_GetPipeToken(void);
244
245 /** Sets the token for the currently selected pipe to one of the tokens specified by the PIPE_TOKEN_*
246 * masks. This can be used on CONTROL type pipes, to allow for bidirectional transfer of data during
247 * control requests, or on regular pipes to allow for half-duplex bidirectional data transfer to devices
248 * which have two endpoints of opposite direction sharing the same endpoint address within the device.
249 *
250 * \param[in] Token New pipe token to set the selected pipe to, as a PIPE_TOKEN_* mask
251 */
252 static inline void Pipe_SetPipeToken(uint8_t Token);
253
254 /** Configures the currently selected pipe to allow for an unlimited number of IN requests. */
255 static inline void Pipe_SetInfiniteINRequests(void);
256
257 /** Configures the currently selected pipe to only allow the specified number of IN requests to be
258 * accepted by the pipe before it is automatically frozen.
259 *
260 * \param[in] TotalINRequests Total number of IN requests that the pipe may receive before freezing
261 */
262 static inline void Pipe_SetFiniteINRequests(uint8_t TotalINRequests);
263
264 /** Determines if the currently selected pipe is configured.
265 *
266 * \return Boolean true if the selected pipe is configured, false otherwise
267 */
268 static inline bool Pipe_IsConfigured(void);
269
270 /** Retrieves the endpoint number of the endpoint within the attached device that the currently selected
271 * pipe is bound to.
272 *
273 * \return Endpoint number the currently selected pipe is bound to
274 */
275 static inline uint8_t Pipe_BoundEndpointNumber(void);
276
277 /** Sets the period between interrupts for an INTERRUPT type pipe to a specified number of milliseconds.
278 *
279 * \param[in] Milliseconds Number of milliseconds between each pipe poll
280 */
281 static inline void Pipe_SetInterruptPeriod(uint8_t Milliseconds);
282
283 /** Returns a mask indicating which pipe's interrupt periods have elapsed, indicating that the pipe should
284 * be serviced.
285 *
286 * \return Mask whose bits indicate which pipes have interrupted
287 */
288 static inline uint8_t Pipe_GetPipeInterrupts(void);
289
290 /** Determines if the specified pipe number has interrupted (valid only for INTERRUPT type
291 * pipes).
292 *
293 * \param[in] PipeNumber Index of the pipe whose interrupt flag should be tested
294 *
295 * \return Boolean true if the specified pipe has interrupted, false otherwise
296 */
297 static inline bool Pipe_HasPipeInterrupted(uint8_t PipeNumber);
298
299 /** Unfreezes the selected pipe, allowing it to communicate with an attached device. */
300 static inline void Pipe_Unfreeze(void);
301
302 /** Freezes the selected pipe, preventing it from communicating with an attached device. */
303 static inline void Pipe_Freeze(void);
304
305 /** Determines if the currently selected pipe is frozen, and not able to accept data.
306 *
307 * \return Boolean true if the currently selected pipe is frozen, false otherwise
308 */
309 static inline bool Pipe_IsFrozen(void);
310
311 /** Clears the master pipe error flag. */
312 static inline void Pipe_ClearError(void);
313
314 /** Determines if the master pipe error flag is set for the currently selected pipe, indicating that
315 * some sort of hardware error has occurred on the pipe.
316 *
317 * \see \ref Pipe_GetErrorFlags() macro for information on retrieving the exact error flag.
318 *
319 * \return Boolean true if an error has occurred on the selected pipe, false otherwise
320 */
321 static inline bool Pipe_IsError(void);
322
323 /** Clears all the currently selected pipe's hardware error flags, but does not clear the master error
324 * flag for the pipe.
325 */
326 static inline void Pipe_ClearErrorFlags(void);
327
328 /** Gets a mask of the hardware error flags which have occurred on the currently selected pipe. This
329 * value can then be masked against the PIPE_ERRORFLAG_* masks to determine what error has occurred.
330 *
331 * \return Mask comprising of PIPE_ERRORFLAG_* bits indicating what error has occurred on the selected pipe
332 */
333 static inline uint8_t Pipe_GetErrorFlags(void);
334
335 /** Determines if the currently selected pipe may be read from (if data is waiting in the pipe
336 * bank and the pipe is an IN direction, or if the bank is not yet full if the pipe is an OUT
337 * direction). This function will return false if an error has occurred in the pipe, or if the pipe
338 * is an IN direction and no packet (or an empty packet) has been received, or if the pipe is an OUT
339 * direction and the pipe bank is full.
340 *
341 * \note This function is not valid on CONTROL type pipes.
342 *
343 * \ingroup Group_PipePacketManagement
344 *
345 * \return Boolean true if the currently selected pipe may be read from or written to, depending on its direction
346 */
347 static inline bool Pipe_IsReadWriteAllowed(void);
348
349 /** Determines if an IN request has been received on the currently selected pipe.
350 *
351 * \ingroup Group_PipePacketManagement
352 *
353 * \return Boolean true if the current pipe has received an IN packet, false otherwise.
354 */
355 static inline bool Pipe_IsINReceived(void);
356
357 /** Determines if the currently selected pipe is ready to send an OUT request.
358 *
359 * \ingroup Group_PipePacketManagement
360 *
361 * \return Boolean true if the current pipe is ready for an OUT packet, false otherwise.
362 */
363 static inline bool Pipe_IsOUTReady(void);
364
365 /** Determines if no SETUP request is currently being sent to the attached device on the selected
366 * CONTROL type pipe.
367 *
368 * \ingroup Group_PipePacketManagement
369 *
370 * \return Boolean true if the current pipe is ready for a SETUP packet, false otherwise.
371 */
372 static inline bool Pipe_IsSETUPSent(void);
373
374 /** Sends the currently selected CONTROL type pipe's contents to the device as a SETUP packet.
375 *
376 * \ingroup Group_PipePacketManagement
377 */
378 static inline void Pipe_ClearSETUP(void);
379
380 /** Acknowledges the reception of a setup IN request from the attached device on the currently selected
381 * pipe, freeing the bank ready for the next packet.
382 *
383 * \ingroup Group_PipePacketManagement
384 */
385 static inline void Pipe_ClearIN(void);
386
387 /** Sends the currently selected pipe's contents to the device as an OUT packet on the selected pipe, freeing
388 * the bank ready for the next packet.
389 *
390 * \ingroup Group_PipePacketManagement
391 */
392 static inline void Pipe_ClearOUT(void);
393
394 /** Determines if the device sent a NAK (Negative Acknowledge) in response to the last sent packet on
395 * the currently selected pipe. This occurs when the host sends a packet to the device, but the device
396 * is not currently ready to handle the packet (i.e. its endpoint banks are full). Once a NAK has been
397 * received, it must be cleared using \ref Pipe_ClearNAKReceived() before the previous (or any other) packet
398 * can be re-sent.
399 *
400 * \ingroup Group_PipePacketManagement
401 *
402 * \return Boolean true if an NAK has been received on the current pipe, false otherwise
403 */
404 static inline bool Pipe_IsNAKReceived(void);
405
406 /** Clears the NAK condition on the currently selected pipe.
407 *
408 * \ingroup Group_PipePacketManagement
409 *
410 * \see \ref Pipe_IsNAKReceived() for more details.
411 */
412 static inline void Pipe_ClearNAKReceived(void);
413
414 /** Determines if the currently selected pipe has had the STALL condition set by the attached device.
415 *
416 * \ingroup Group_PipePacketManagement
417 *
418 * \return Boolean true if the current pipe has been stalled by the attached device, false otherwise
419 */
420 static inline bool Pipe_IsStalled(void);
421
422 /** Clears the STALL condition detection flag on the currently selected pipe, but does not clear the
423 * STALL condition itself (this must be done via a ClearFeature control request to the device).
424 *
425 * \ingroup Group_PipePacketManagement
426 */
427 static inline void Pipe_ClearStall(void);
428 #else
429 #define Pipe_BytesInPipe() UPBCX
430
431 #define Pipe_GetCurrentPipe() (UPNUM & PIPE_PIPENUM_MASK)
432
433 #define Pipe_SelectPipe(pipenum) MACROS{ UPNUM = (pipenum); }MACROE
434
435 #define Pipe_ResetPipe(pipenum) MACROS{ UPRST = (1 << (pipenum)); UPRST = 0; }MACROE
436
437 #define Pipe_EnablePipe() MACROS{ UPCONX |= (1 << PEN); }MACROE
438
439 #define Pipe_DisablePipe() MACROS{ UPCONX &= ~(1 << PEN); }MACROE
440
441 #define Pipe_IsEnabled() ((UPCONX & (1 << PEN)) ? true : false)
442
443 #define Pipe_GetPipeToken() (UPCFG0X & PIPE_TOKEN_MASK)
444
445 #define Pipe_SetPipeToken(token) MACROS{ UPCFG0X = ((UPCFG0X & ~PIPE_TOKEN_MASK) | (token)); }MACROE
446
447 #define Pipe_SetInfiniteINRequests() MACROS{ UPCONX |= (1 << INMODE); }MACROE
448
449 #define Pipe_SetFiniteINRequests(n) MACROS{ UPCONX &= ~(1 << INMODE); UPINRQX = (n); }MACROE
450
451 #define Pipe_IsConfigured() ((UPSTAX & (1 << CFGOK)) ? true : false)
452
453 #define Pipe_BoundEndpointNumber() ((UPCFG0X >> PEPNUM0) & PIPE_EPNUM_MASK)
454
455 #define Pipe_SetInterruptPeriod(ms) MACROS{ UPCFG2X = (ms); }MACROE
456
457 #define Pipe_GetPipeInterrupts() UPINT
458
459 #define Pipe_HasPipeInterrupted(n) ((UPINT & (1 << (n))) ? true : false)
460
461 #define Pipe_Unfreeze() MACROS{ UPCONX &= ~(1 << PFREEZE); }MACROE
462
463 #define Pipe_Freeze() MACROS{ UPCONX |= (1 << PFREEZE); }MACROE
464
465 #define Pipe_IsFrozen() ((UPCONX & (1 << PFREEZE)) ? true : false)
466
467 #define Pipe_ClearError() MACROS{ UPINTX &= ~(1 << PERRI); }MACROE
468
469 #define Pipe_IsError() ((UPINTX & (1 << PERRI)) ? true : false)
470
471 #define Pipe_ClearErrorFlags() MACROS{ UPERRX = 0; }MACROE
472
473 #define Pipe_GetErrorFlags() ((UPERRX & (PIPE_ERRORFLAG_CRC16 | PIPE_ERRORFLAG_TIMEOUT | \
474 PIPE_ERRORFLAG_PID | PIPE_ERRORFLAG_DATAPID | \
475 PIPE_ERRORFLAG_DATATGL)) | \
476 (UPSTAX & PIPE_ERRORFLAG_OVERFLOW | PIPE_ERRORFLAG_UNDERFLOW))
477
478 #define Pipe_IsReadWriteAllowed() ((UPINTX & (1 << RWAL)) ? true : false)
479
480 #define Pipe_IsINReceived() ((UPINTX & (1 << RXINI)) ? true : false)
481
482 #define Pipe_IsOUTReady() ((UPINTX & (1 << TXOUTI)) ? true : false)
483
484 #define Pipe_IsSETUPSent() ((UPINTX & (1 << TXSTPI)) ? true : false)
485
486 #define Pipe_ClearIN() MACROS{ uint8_t Temp = UPINTX; UPINTX = (Temp & ~(1 << RXINI)); \
487 UPINTX = (Temp & ~(1 << FIFOCON)); }MACROE
488
489 #define Pipe_ClearOUT() MACROS{ uint8_t Temp = UPINTX; UPINTX = (Temp & ~(1 << TXOUTI)); \
490 UPINTX = (Temp & ~(1 << FIFOCON)); }MACROE
491
492 #define Pipe_ClearSETUP() MACROS{ uint8_t Temp = UPINTX; UPINTX = (Temp & ~(1 << TXSTPI)); \
493 UPINTX = (Temp & ~(1 << FIFOCON)); }MACROE
494
495 #define Pipe_IsNAKReceived() ((UPINTX & (1 << NAKEDI)) ? true : false)
496
497 #define Pipe_ClearNAKReceived() MACROS{ UPINTX &= ~(1 << NAKEDI); }MACROE
498
499 #define Pipe_IsStalled() ((UPINTX & (1 << RXSTALLI)) ? true : false)
500
501 #define Pipe_ClearStall() MACROS{ UPINTX &= ~(1 << RXSTALLI); }MACROE
502 #endif
503
504 /* Enums: */
505 /** Enum for the possible error return codes of the Pipe_WaitUntilReady function
506 *
507 * \ingroup Group_PipeRW
508 */
509 enum Pipe_WaitUntilReady_ErrorCodes_t
510 {
511 PIPE_READYWAIT_NoError = 0, /**< Pipe ready for next packet, no error */
512 PIPE_READYWAIT_PipeStalled = 1, /**< The device stalled the pipe while waiting. */
513 PIPE_READYWAIT_DeviceDisconnected = 2, /**< Device was disconnected from the host while waiting. */
514 PIPE_READYWAIT_Timeout = 3, /**< The device failed to accept or send the next packet
515 * within the software timeout period set by the
516 * \ref USB_STREAM_TIMEOUT_MS macro.
517 */
518 };
519
520 /** Enum for the possible error return codes of the Pipe_*_Stream_* functions.
521 *
522 * \ingroup Group_PipeRW
523 */
524 enum Pipe_Stream_RW_ErrorCodes_t
525 {
526 PIPE_RWSTREAM_NoError = 0, /**< Command completed successfully, no error. */
527 PIPE_RWSTREAM_PipeStalled = 1, /**< The device stalled the pipe during the transfer. */
528 PIPE_RWSTREAM_DeviceDisconnected = 2, /**< Device was disconnected from the host during
529 * the transfer.
530 */
531 PIPE_RWSTREAM_Timeout = 3, /**< The device failed to accept or send the next packet
532 * within the software timeout period set by the
533 * \ref USB_STREAM_TIMEOUT_MS macro.
534 */
535 PIPE_RWSTREAM_CallbackAborted = 4, /**< Indicates that the stream's callback function aborted
536 * the transfer early.
537 */
538 };
539
540 /* Inline Functions: */
541 /** Reads one byte from the currently selected pipe's bank, for OUT direction pipes.
542 *
543 * \ingroup Group_PipePrimitiveRW
544 *
545 * \return Next byte in the currently selected pipe's FIFO buffer
546 */
547 static inline uint8_t Pipe_Read_Byte(void) ATTR_WARN_UNUSED_RESULT ATTR_ALWAYS_INLINE;
548 static inline uint8_t Pipe_Read_Byte(void)
549 {
550 return UPDATX;
551 }
552
553 /** Writes one byte from the currently selected pipe's bank, for IN direction pipes.
554 *
555 * \ingroup Group_PipePrimitiveRW
556 *
557 * \param[in] Byte Next byte to write into the the currently selected pipe's FIFO buffer
558 */
559 static inline void Pipe_Write_Byte(const uint8_t Byte) ATTR_ALWAYS_INLINE;
560 static inline void Pipe_Write_Byte(const uint8_t Byte)
561 {
562 UPDATX = Byte;
563 }
564
565 /** Discards one byte from the currently selected pipe's bank, for OUT direction pipes.
566 *
567 * \ingroup Group_PipePrimitiveRW
568 */
569 static inline void Pipe_Discard_Byte(void) ATTR_ALWAYS_INLINE;
570 static inline void Pipe_Discard_Byte(void)
571 {
572 uint8_t Dummy;
573
574 Dummy = UPDATX;
575 }
576
577 /** Reads two bytes from the currently selected pipe's bank in little endian format, for OUT
578 * direction pipes.
579 *
580 * \ingroup Group_PipePrimitiveRW
581 *
582 * \return Next word in the currently selected pipe's FIFO buffer
583 */
584 static inline uint16_t Pipe_Read_Word_LE(void) ATTR_WARN_UNUSED_RESULT ATTR_ALWAYS_INLINE;
585 static inline uint16_t Pipe_Read_Word_LE(void)
586 {
587 union
588 {
589 uint16_t Word;
590 uint8_t Bytes[2];
591 } Data;
592
593 Data.Bytes[0] = UPDATX;
594 Data.Bytes[1] = UPDATX;
595
596 return Data.Word;
597 }
598
599 /** Reads two bytes from the currently selected pipe's bank in big endian format, for OUT
600 * direction pipes.
601 *
602 * \ingroup Group_PipePrimitiveRW
603 *
604 * \return Next word in the currently selected pipe's FIFO buffer
605 */
606 static inline uint16_t Pipe_Read_Word_BE(void) ATTR_WARN_UNUSED_RESULT ATTR_ALWAYS_INLINE;
607 static inline uint16_t Pipe_Read_Word_BE(void)
608 {
609 union
610 {
611 uint16_t Word;
612 uint8_t Bytes[2];
613 } Data;
614
615 Data.Bytes[1] = UPDATX;
616 Data.Bytes[0] = UPDATX;
617
618 return Data.Word;
619 }
620
621 /** Writes two bytes to the currently selected pipe's bank in little endian format, for IN
622 * direction pipes.
623 *
624 * \ingroup Group_PipePrimitiveRW
625 *
626 * \param[in] Word Next word to write to the currently selected pipe's FIFO buffer
627 */
628 static inline void Pipe_Write_Word_LE(const uint16_t Word) ATTR_ALWAYS_INLINE;
629 static inline void Pipe_Write_Word_LE(const uint16_t Word)
630 {
631 UPDATX = (Word & 0xFF);
632 UPDATX = (Word >> 8);
633 }
634
635 /** Writes two bytes to the currently selected pipe's bank in big endian format, for IN
636 * direction pipes.
637 *
638 * \ingroup Group_PipePrimitiveRW
639 *
640 * \param[in] Word Next word to write to the currently selected pipe's FIFO buffer
641 */
642 static inline void Pipe_Write_Word_BE(const uint16_t Word) ATTR_ALWAYS_INLINE;
643 static inline void Pipe_Write_Word_BE(const uint16_t Word)
644 {
645 UPDATX = (Word >> 8);
646 UPDATX = (Word & 0xFF);
647 }
648
649 /** Discards two bytes from the currently selected pipe's bank, for OUT direction pipes.
650 *
651 * \ingroup Group_PipePrimitiveRW
652 */
653 static inline void Pipe_Discard_Word(void) ATTR_ALWAYS_INLINE;
654 static inline void Pipe_Discard_Word(void)
655 {
656 uint8_t Dummy;
657
658 Dummy = UPDATX;
659 Dummy = UPDATX;
660 }
661
662 /** Reads four bytes from the currently selected pipe's bank in little endian format, for OUT
663 * direction pipes.
664 *
665 * \ingroup Group_PipePrimitiveRW
666 *
667 * \return Next double word in the currently selected pipe's FIFO buffer
668 */
669 static inline uint32_t Pipe_Read_DWord_LE(void) ATTR_WARN_UNUSED_RESULT ATTR_ALWAYS_INLINE;
670 static inline uint32_t Pipe_Read_DWord_LE(void)
671 {
672 union
673 {
674 uint32_t DWord;
675 uint8_t Bytes[4];
676 } Data;
677
678 Data.Bytes[0] = UPDATX;
679 Data.Bytes[1] = UPDATX;
680 Data.Bytes[2] = UPDATX;
681 Data.Bytes[3] = UPDATX;
682
683 return Data.DWord;
684 }
685
686 /** Reads four bytes from the currently selected pipe's bank in big endian format, for OUT
687 * direction pipes.
688 *
689 * \ingroup Group_PipePrimitiveRW
690 *
691 * \return Next double word in the currently selected pipe's FIFO buffer
692 */
693 static inline uint32_t Pipe_Read_DWord_BE(void) ATTR_WARN_UNUSED_RESULT ATTR_ALWAYS_INLINE;
694 static inline uint32_t Pipe_Read_DWord_BE(void)
695 {
696 union
697 {
698 uint32_t DWord;
699 uint8_t Bytes[4];
700 } Data;
701
702 Data.Bytes[3] = UPDATX;
703 Data.Bytes[2] = UPDATX;
704 Data.Bytes[1] = UPDATX;
705 Data.Bytes[0] = UPDATX;
706
707 return Data.DWord;
708 }
709
710 /** Writes four bytes to the currently selected pipe's bank in little endian format, for IN
711 * direction pipes.
712 *
713 * \ingroup Group_PipePrimitiveRW
714 *
715 * \param[in] DWord Next double word to write to the currently selected pipe's FIFO buffer
716 */
717 static inline void Pipe_Write_DWord_LE(const uint32_t DWord) ATTR_ALWAYS_INLINE;
718 static inline void Pipe_Write_DWord_LE(const uint32_t DWord)
719 {
720 UPDATX = (DWord & 0xFF);
721 UPDATX = (DWord >> 8);
722 UPDATX = (DWord >> 16);
723 UPDATX = (DWord >> 24);
724 }
725
726 /** Writes four bytes to the currently selected pipe's bank in big endian format, for IN
727 * direction pipes.
728 *
729 * \ingroup Group_PipePrimitiveRW
730 *
731 * \param[in] DWord Next double word to write to the currently selected pipe's FIFO buffer
732 */
733 static inline void Pipe_Write_DWord_BE(const uint32_t DWord) ATTR_ALWAYS_INLINE;
734 static inline void Pipe_Write_DWord_BE(const uint32_t DWord)
735 {
736 UPDATX = (DWord >> 24);
737 UPDATX = (DWord >> 16);
738 UPDATX = (DWord >> 8);
739 UPDATX = (DWord & 0xFF);
740 }
741
742 /** Discards four bytes from the currently selected pipe's bank, for OUT direction pipes.
743 *
744 * \ingroup Group_PipePrimitiveRW
745 */
746 static inline void Pipe_Discard_DWord(void) ATTR_ALWAYS_INLINE;
747 static inline void Pipe_Discard_DWord(void)
748 {
749 uint8_t Dummy;
750
751 Dummy = UPDATX;
752 Dummy = UPDATX;
753 Dummy = UPDATX;
754 Dummy = UPDATX;
755 }
756
757 /* External Variables: */
758 /** Global indicating the maximum packet size of the default control pipe located at address
759 * 0 in the device. This value is set to the value indicated in the attached device's device
760 * descriptor once the USB interface is initialized into host mode and a device is attached
761 * to the USB bus.
762 *
763 * \note This variable should be treated as read-only in the user application, and never manually
764 * changed in value.
765 */
766 extern uint8_t USB_ControlPipeSize;
767
768 /* Function Prototypes: */
769 #if !defined(NO_STREAM_CALLBACKS) || defined(__DOXYGEN__)
770 #define __CALLBACK_PARAM , StreamCallbackPtr_t Callback
771 #else
772 #define __CALLBACK_PARAM
773 #endif
774
775 /** Configures the specified pipe number with the given pipe type, token, target endpoint number in the
776 * attached device, bank size and banking mode. Pipes should be allocated in ascending order by their
777 * address in the device (i.e. pipe 1 should be configured before pipe 2 and so on) to prevent fragmentation
778 * of the USB FIFO memory.
779 *
780 * The pipe type may be one of the EP_TYPE_* macros listed in LowLevel.h, the token may be one of the
781 * PIPE_TOKEN_* masks.
782 *
783 * The bank size must indicate the maximum packet size that the pipe can handle. Different pipe
784 * numbers can handle different maximum packet sizes - refer to the chosen USB AVR's datasheet to
785 * determine the maximum bank size for each pipe.
786 *
787 * The banking mode may be either \ref PIPE_BANK_SINGLE or \ref PIPE_BANK_DOUBLE.
788 *
789 * A newly configured pipe is frozen by default, and must be unfrozen before use via the \ref Pipe_Unfreeze()
790 * before being used. Pipes should be kept frozen unless waiting for data from a device while in IN mode, or
791 * sending data to the device in OUT mode. IN type pipes are also automatically configured to accept infinite
792 * numbers of IN requests without automatic freezing - this can be overridden by a call to
793 * \ref Pipe_SetFiniteINRequests().
794 *
795 * \note The default control pipe does not have to be manually configured, as it is automatically
796 * configured by the library internally.
797 *
798 * \note This routine will select the specified pipe, and the pipe will remain selected once the
799 * routine completes regardless of if the pipe configuration succeeds.
800 *
801 * \return Boolean true if the configuration is successful, false otherwise
802 */
803 bool Pipe_ConfigurePipe(const uint8_t Number, const uint8_t Type, const uint8_t Token, const uint8_t EndpointNumber,
804 const uint16_t Size, const uint8_t Banks);
805
806 /** Spin-loops until the currently selected non-control pipe is ready for the next packed of data to be read
807 * or written to it, aborting in the case of an error condition (such as a timeout or device disconnect).
808 *
809 * \ingroup Group_PipeRW
810 *
811 * \return A value from the Pipe_WaitUntilReady_ErrorCodes_t enum.
812 */
813 uint8_t Pipe_WaitUntilReady(void);
814
815 /** Determines if a pipe has been bound to the given device endpoint address. If a pipe which is bound to the given
816 * endpoint is found, it is automatically selected.
817 *
818 * \param[in] EndpointAddress Address and direction mask of the endpoint within the attached device to check
819 *
820 * \return Boolean true if a pipe bound to the given endpoint address of the specified direction is found, false
821 * otherwise
822 */
823 bool Pipe_IsEndpointBound(const uint8_t EndpointAddress);
824
825 /** Reads and discards the given number of bytes from the pipe, discarding fully read packets from the host
826 * as needed. The last packet is not automatically discarded once the remaining bytes has been read; the
827 * user is responsible for manually discarding the last packet from the device via the \ref Pipe_ClearIN() macro.
828 * Between each USB packet, the given stream callback function is executed repeatedly until the next packet is ready,
829 * allowing for early aborts of stream transfers.
830 *
831 * The callback routine should be created according to the information in \ref Group_StreamCallbacks.
832 * If the token NO_STREAM_CALLBACKS is passed via the -D option to the compiler, stream callbacks are
833 * disabled and this function has the Callback parameter omitted.
834 *
835 * The pipe token is set automatically, thus this can be used on bi-directional pipes directly without
836 * having to explicitly change the data direction with a call to \ref Pipe_SetPipeToken().
837 *
838 * \ingroup Group_PipeStreamRW
839 *
840 * \param[in] Length Number of bytes to send via the currently selected pipe.
841 * \param[in] Callback Name of a callback routine to call between successive USB packet transfers, NULL if no callback
842 *
843 * \return A value from the \ref Pipe_Stream_RW_ErrorCodes_t enum.
844 */
845 uint8_t Pipe_Discard_Stream(uint16_t Length __CALLBACK_PARAM);
846
847 /** Writes the given number of bytes to the pipe from the given buffer in little endian,
848 * sending full packets to the device as needed. The last packet filled is not automatically sent;
849 * the user is responsible for manually sending the last written packet to the host via the
850 * \ref Pipe_ClearOUT() macro. Between each USB packet, the given stream callback function is
851 * executed repeatedly until the next packet is ready, allowing for early aborts of stream transfers.
852 *
853 * The callback routine should be created according to the information in \ref Group_StreamCallbacks.
854 * If the token NO_STREAM_CALLBACKS is passed via the -D option to the compiler, stream callbacks are
855 * disabled and this function has the Callback parameter omitted.
856 *
857 * The pipe token is set automatically, thus this can be used on bi-directional pipes directly without
858 * having to explicitly change the data direction with a call to \ref Pipe_SetPipeToken().
859 *
860 * \ingroup Group_PipeStreamRW
861 *
862 * \param[in] Buffer Pointer to the source data buffer to read from.
863 * \param[in] Length Number of bytes to read for the currently selected pipe into the buffer.
864 * \param[in] Callback Name of a callback routine to call between successive USB packet transfers, NULL if no callback
865 *
866 * \return A value from the \ref Pipe_Stream_RW_ErrorCodes_t enum.
867 */
868 uint8_t Pipe_Write_Stream_LE(const void* Buffer, uint16_t Length __CALLBACK_PARAM) ATTR_NON_NULL_PTR_ARG(1);
869
870 /** EEPROM buffer source version of \ref Pipe_Write_Stream_LE().
871 *
872 * \ingroup Group_PipeStreamRW
873 *
874 * \param[in] Buffer Pointer to the source data buffer to read from.
875 * \param[in] Length Number of bytes to read for the currently selected pipe into the buffer.
876 * \param[in] Callback Name of a callback routine to call between successive USB packet transfers, NULL if no callback
877 *
878 * \return A value from the \ref Pipe_Stream_RW_ErrorCodes_t enum.
879 */
880 uint8_t Pipe_Write_EStream_LE(const void* Buffer, uint16_t Length __CALLBACK_PARAM) ATTR_NON_NULL_PTR_ARG(1);
881
882 /** FLASH buffer source version of \ref Pipe_Write_Stream_LE().
883 *
884 * \note The FLASH data must be located in the first 64KB of FLASH for this function to work correctly.
885 *
886 * \ingroup Group_PipeStreamRW
887 *
888 * \param[in] Buffer Pointer to the source data buffer to read from.
889 * \param[in] Length Number of bytes to read for the currently selected pipe into the buffer.
890 * \param[in] Callback Name of a callback routine to call between successive USB packet transfers, NULL if no callback
891 *
892 * \return A value from the \ref Pipe_Stream_RW_ErrorCodes_t enum.
893 */
894 uint8_t Pipe_Write_PStream_LE(const void* Buffer, uint16_t Length __CALLBACK_PARAM) ATTR_NON_NULL_PTR_ARG(1);
895
896 /** Writes the given number of bytes to the pipe from the given buffer in big endian,
897 * sending full packets to the device as needed. The last packet filled is not automatically sent;
898 * the user is responsible for manually sending the last written packet to the host via the
899 * \ref Pipe_ClearOUT() macro. Between each USB packet, the given stream callback function is
900 * executed repeatedly until the next packet is ready, allowing for early aborts of stream transfers.
901 *
902 * The callback routine should be created according to the information in \ref Group_StreamCallbacks.
903 * If the token NO_STREAM_CALLBACKS is passed via the -D option to the compiler, stream callbacks are
904 * disabled and this function has the Callback parameter omitted.
905 *
906 * The pipe token is set automatically, thus this can be used on bi-directional pipes directly without
907 * having to explicitly change the data direction with a call to \ref Pipe_SetPipeToken().
908 *
909 * \ingroup Group_PipeStreamRW
910 *
911 * \param[in] Buffer Pointer to the source data buffer to read from.
912 * \param[in] Length Number of bytes to read for the currently selected pipe into the buffer.
913 * \param[in] Callback Name of a callback routine to call between successive USB packet transfers, NULL if no callback
914 *
915 * \return A value from the \ref Pipe_Stream_RW_ErrorCodes_t enum.
916 */
917 uint8_t Pipe_Write_Stream_BE(const void* Buffer, uint16_t Length __CALLBACK_PARAM) ATTR_NON_NULL_PTR_ARG(1);
918
919 /** EEPROM buffer source version of \ref Pipe_Write_Stream_BE().
920 *
921 * \ingroup Group_PipeStreamRW
922 *
923 * \param[in] Buffer Pointer to the source data buffer to read from.
924 * \param[in] Length Number of bytes to read for the currently selected pipe into the buffer.
925 * \param[in] Callback Name of a callback routine to call between successive USB packet transfers, NULL if no callback
926 *
927 * \return A value from the \ref Pipe_Stream_RW_ErrorCodes_t enum.
928 */
929 uint8_t Pipe_Write_EStream_BE(const void* Buffer, uint16_t Length __CALLBACK_PARAM) ATTR_NON_NULL_PTR_ARG(1);
930
931 /** FLASH buffer source version of \ref Pipe_Write_Stream_BE().
932 *
933 * \note The FLASH data must be located in the first 64KB of FLASH for this function to work correctly.
934 *
935 * \ingroup Group_PipeStreamRW
936 *
937 * \param[in] Buffer Pointer to the source data buffer to read from.
938 * \param[in] Length Number of bytes to read for the currently selected pipe into the buffer.
939 * \param[in] Callback Name of a callback routine to call between successive USB packet transfers, NULL if no callback
940 *
941 * \return A value from the \ref Pipe_Stream_RW_ErrorCodes_t enum.
942 */
943 uint8_t Pipe_Write_PStream_BE(const void* Buffer, uint16_t Length __CALLBACK_PARAM) ATTR_NON_NULL_PTR_ARG(1);
944
945 /** Reads the given number of bytes from the pipe into the given buffer in little endian,
946 * sending full packets to the device as needed. The last packet filled is not automatically sent;
947 * the user is responsible for manually sending the last written packet to the host via the
948 * \ref Pipe_ClearIN() macro. Between each USB packet, the given stream callback function is
949 * executed repeatedly until the next packet is ready, allowing for early aborts of stream transfers.
950 *
951 * The callback routine should be created according to the information in \ref Group_StreamCallbacks.
952 * If the token NO_STREAM_CALLBACKS is passed via the -D option to the compiler, stream callbacks are
953 * disabled and this function has the Callback parameter omitted.
954 *
955 * The pipe token is set automatically, thus this can be used on bi-directional pipes directly without
956 * having to explicitly change the data direction with a call to \ref Pipe_SetPipeToken().
957 *
958 * \ingroup Group_PipeStreamRW
959 *
960 * \param[out] Buffer Pointer to the source data buffer to write to.
961 * \param[in] Length Number of bytes to read for the currently selected pipe to read from.
962 * \param[in] Callback Name of a callback routine to call between successive USB packet transfers, NULL if no callback
963 *
964 * \return A value from the \ref Pipe_Stream_RW_ErrorCodes_t enum.
965 */
966 uint8_t Pipe_Read_Stream_LE(void* Buffer, uint16_t Length __CALLBACK_PARAM) ATTR_NON_NULL_PTR_ARG(1);
967
968 /** EEPROM buffer source version of \ref Pipe_Read_Stream_LE().
969 *
970 * \ingroup Group_PipeStreamRW
971 *
972 * \param[out] Buffer Pointer to the source data buffer to write to.
973 * \param[in] Length Number of bytes to read for the currently selected pipe to read from.
974 * \param[in] Callback Name of a callback routine to call between successive USB packet transfers, NULL if no callback
975 *
976 * \return A value from the \ref Pipe_Stream_RW_ErrorCodes_t enum.
977 */
978 uint8_t Pipe_Read_EStream_LE(void* Buffer, uint16_t Length __CALLBACK_PARAM) ATTR_NON_NULL_PTR_ARG(1);
979
980 /** Reads the given number of bytes from the pipe into the given buffer in big endian,
981 * sending full packets to the device as needed. The last packet filled is not automatically sent;
982 * the user is responsible for manually sending the last written packet to the host via the
983 * \ref Pipe_ClearIN() macro. Between each USB packet, the given stream callback function is
984 * executed repeatedly until the next packet is ready, allowing for early aborts of stream transfers.
985 *
986 * The callback routine should be created according to the information in \ref Group_StreamCallbacks.
987 * If the token NO_STREAM_CALLBACKS is passed via the -D option to the compiler, stream callbacks are
988 * disabled and this function has the Callback parameter omitted.
989 *
990 * The pipe token is set automatically, thus this can be used on bi-directional pipes directly without
991 * having to explicitly change the data direction with a call to \ref Pipe_SetPipeToken().
992 *
993 * \ingroup Group_PipeStreamRW
994 *
995 * \param[out] Buffer Pointer to the source data buffer to write to.
996 * \param[in] Length Number of bytes to read for the currently selected pipe to read from.
997 * \param[in] Callback Name of a callback routine to call between successive USB packet transfers, NULL if no callback
998 *
999 * \return A value from the \ref Pipe_Stream_RW_ErrorCodes_t enum.
1000 */
1001 uint8_t Pipe_Read_Stream_BE(void* Buffer, uint16_t Length __CALLBACK_PARAM) ATTR_NON_NULL_PTR_ARG(1);
1002
1003 /** EEPROM buffer source version of \ref Pipe_Read_Stream_BE().
1004 *
1005 * \ingroup Group_PipeStreamRW
1006 *
1007 * \param[out] Buffer Pointer to the source data buffer to write to.
1008 * \param[in] Length Number of bytes to read for the currently selected pipe to read from.
1009 * \param[in] Callback Name of a callback routine to call between successive USB packet transfers, NULL if no callback
1010 *
1011 * \return A value from the \ref Pipe_Stream_RW_ErrorCodes_t enum.
1012 */
1013 uint8_t Pipe_Read_EStream_BE(void* Buffer, uint16_t Length __CALLBACK_PARAM) ATTR_NON_NULL_PTR_ARG(1);
1014
1015 /* Private Interface - For use in library only: */
1016 #if !defined(__DOXYGEN__)
1017 /* Macros: */
1018 #define PIPE_TOKEN_MASK (0x03 << PTOKEN0)
1019
1020 #if !defined(ENDPOINT_CONTROLEP)
1021 #define ENDPOINT_CONTROLEP 0
1022 #endif
1023
1024 #define Pipe_AllocateMemory() MACROS{ UPCFG1X |= (1 << ALLOC); }MACROE
1025 #define Pipe_DeallocateMemory() MACROS{ UPCFG1X &= ~(1 << ALLOC); }MACROE
1026
1027 /* Function Prototypes: */
1028 void Pipe_ClearPipes(void);
1029
1030 /* Inline Functions: */
1031 static inline uint8_t Pipe_BytesToEPSizeMask(uint16_t Bytes) ATTR_WARN_UNUSED_RESULT ATTR_CONST ATTR_ALWAYS_INLINE;
1032 static inline uint8_t Pipe_BytesToEPSizeMask(uint16_t Bytes)
1033 {
1034 if (Bytes <= 8)
1035 return (0 << EPSIZE0);
1036 else if (Bytes <= 16)
1037 return (1 << EPSIZE0);
1038 else if (Bytes <= 32)
1039 return (2 << EPSIZE0);
1040 else if (Bytes <= 64)
1041 return (3 << EPSIZE0);
1042 else if (Bytes <= 128)
1043 return (4 << EPSIZE0);
1044 else
1045 return (5 << EPSIZE0);
1046 }
1047
1048 #endif
1049
1050 /* Disable C linkage for C++ Compilers: */
1051 #if defined(__cplusplus)
1052 }
1053 #endif
1054
1055 #endif
1056
1057 /** @} */