Finished CDC device class driver documentation.
[pub/USBasp.git] / Bootloaders / DFU / BootloaderDFU.c
1 /*
2 LUFA Library
3 Copyright (C) Dean Camera, 2009.
4
5 dean [at] fourwalledcubicle [dot] com
6 www.fourwalledcubicle.com
7 */
8
9 /*
10 Copyright 2009 Dean Camera (dean [at] fourwalledcubicle [dot] com)
11
12 Permission to use, copy, modify, and distribute this software
13 and its documentation for any purpose and without fee is hereby
14 granted, provided that the above copyright notice appear in all
15 copies and that both that the copyright notice and this
16 permission notice and warranty disclaimer appear in supporting
17 documentation, and that the name of the author not be used in
18 advertising or publicity pertaining to distribution of the
19 software without specific, written prior permission.
20
21 The author disclaim all warranties with regard to this
22 software, including all implied warranties of merchantability
23 and fitness. In no event shall the author be liable for any
24 special, indirect or consequential damages or any damages
25 whatsoever resulting from loss of use, data or profits, whether
26 in an action of contract, negligence or other tortious action,
27 arising out of or in connection with the use or performance of
28 this software.
29 */
30
31 /** \file
32 *
33 * Main source file for the DFU class bootloader. This file contains the complete bootloader logic.
34 */
35
36 #define INCLUDE_FROM_BOOTLOADER_C
37 #include "BootloaderDFU.h"
38
39 /** Flag to indicate if the bootloader is currently running in secure mode, disallowing memory operations
40 * other than erase. This is initially set to the value set by SECURE_MODE, and cleared by the bootloader
41 * once a memory erase has completed.
42 */
43 bool IsSecure = SECURE_MODE;
44
45 /** Flag to indicate if the bootloader should be running, or should exit and allow the application code to run
46 * via a soft reset. When cleared, the bootloader will abort, the USB interface will shut down and the application
47 * jumped to via an indirect jump to location 0x0000 (or other location specified by the host).
48 */
49 bool RunBootloader = true;
50
51 /** Flag to indicate if the bootloader is waiting to exit. When the host requests the bootloader to exit and
52 * jump to the application address it specifies, it sends two sequential commands which must be properly
53 * acknowledged. Upon reception of the first the RunBootloader flag is cleared and the WaitForExit flag is set,
54 * causing the bootloader to wait for the final exit command before shutting down.
55 */
56 bool WaitForExit = false;
57
58 /** Current DFU state machine state, one of the values in the DFU_State_t enum. */
59 uint8_t DFU_State = dfuIDLE;
60
61 /** Status code of the last executed DFU command. This is set to one of the values in the DFU_Status_t enum after
62 * each operation, and returned to the host when a Get Status DFU request is issued.
63 */
64 uint8_t DFU_Status = OK;
65
66 /** Data containing the DFU command sent from the host. */
67 DFU_Command_t SentCommand;
68
69 /** Response to the last issued Read Data DFU command. Unlike other DFU commands, the read command
70 * requires a single byte response from the bootloader containing the read data when the next DFU_UPLOAD command
71 * is issued by the host.
72 */
73 uint8_t ResponseByte;
74
75 /** Pointer to the start of the user application. By default this is 0x0000 (the reset vector), however the host
76 * may specify an alternate address when issuing the application soft-start command.
77 */
78 AppPtr_t AppStartPtr = (AppPtr_t)0x0000;
79
80 /** 64-bit flash page number. This is concatenated with the current 16-bit address on USB AVRs containing more than
81 * 64KB of flash memory.
82 */
83 uint8_t Flash64KBPage = 0;
84
85 /** Memory start address, indicating the current address in the memory being addressed (either FLASH or EEPROM
86 * depending on the issued command from the host).
87 */
88 uint16_t StartAddr = 0x0000;
89
90 /** Memory end address, indicating the end address to read to/write from in the memory being addressed (either FLASH
91 * of EEPROM depending on the issued command from the host).
92 */
93 uint16_t EndAddr = 0x0000;
94
95 /** Main program entry point. This routine configures the hardware required by the bootloader, then continuously
96 * runs the bootloader processing routine until instructed to soft-exit, or hard-reset via the watchdog to start
97 * the loaded application code.
98 */
99 int main (void)
100 {
101 /* Disable watchdog if enabled by bootloader/fuses */
102 MCUSR &= ~(1 << WDRF);
103 wdt_disable();
104
105 /* Disable clock division */
106 clock_prescale_set(clock_div_1);
107
108 /* Relocate the interrupt vector table to the bootloader section */
109 MCUCR = (1 << IVCE);
110 MCUCR = (1 << IVSEL);
111
112 /* Initialize the USB subsystem */
113 USB_Init();
114
115 /* Run the USB management task while the bootloader is supposed to be running */
116 while (RunBootloader || WaitForExit)
117 USB_USBTask();
118
119 /* Shut down the USB subsystem */
120 USB_ShutDown();
121
122 /* Relocate the interrupt vector table back to the application section */
123 MCUCR = (1 << IVCE);
124 MCUCR = 0;
125
126 /* Reset any used hardware ports back to their defaults */
127 PORTD = 0;
128 DDRD = 0;
129
130 #if defined(PORTE)
131 PORTE = 0;
132 DDRE = 0;
133 #endif
134
135 /* Start the user application */
136 AppStartPtr();
137 }
138
139 /** Event handler for the USB_Disconnect event. This indicates that the bootloader should exit and the user
140 * application started.
141 */
142 void EVENT_USB_Disconnect(void)
143 {
144 /* Upon disconnection, run user application */
145 RunBootloader = false;
146 }
147
148 /** Event handler for the USB_UnhandledControlPacket event. This is used to catch standard and class specific
149 * control requests that are not handled internally by the USB library (including the DFU commands, which are
150 * all issued via the control endpoint), so that they can be handled appropriately for the application.
151 */
152 void EVENT_USB_UnhandledControlPacket(void)
153 {
154 /* Get the size of the command and data from the wLength value */
155 SentCommand.DataSize = USB_ControlRequest.wLength;
156
157 switch (USB_ControlRequest.bRequest)
158 {
159 case DFU_DNLOAD:
160 Endpoint_ClearSETUP();
161
162 /* Check if bootloader is waiting to terminate */
163 if (WaitForExit)
164 {
165 /* Bootloader is terminating - process last received command */
166 ProcessBootloaderCommand();
167
168 /* Indicate that the last command has now been processed - free to exit bootloader */
169 WaitForExit = false;
170 }
171
172 /* If the request has a data stage, load it into the command struct */
173 if (SentCommand.DataSize)
174 {
175 while (!(Endpoint_IsOUTReceived()));
176
177 /* First byte of the data stage is the DNLOAD request's command */
178 SentCommand.Command = Endpoint_Read_Byte();
179
180 /* One byte of the data stage is the command, so subtract it from the total data bytes */
181 SentCommand.DataSize--;
182
183 /* Load in the rest of the data stage as command parameters */
184 for (uint8_t DataByte = 0; (DataByte < sizeof(SentCommand.Data)) &&
185 Endpoint_BytesInEndpoint(); DataByte++)
186 {
187 SentCommand.Data[DataByte] = Endpoint_Read_Byte();
188 SentCommand.DataSize--;
189 }
190
191 /* Process the command */
192 ProcessBootloaderCommand();
193 }
194
195 /* Check if currently downloading firmware */
196 if (DFU_State == dfuDNLOAD_IDLE)
197 {
198 if (!(SentCommand.DataSize))
199 {
200 DFU_State = dfuIDLE;
201 }
202 else
203 {
204 /* Throw away the filler bytes before the start of the firmware */
205 DiscardFillerBytes(DFU_FILLER_BYTES_SIZE);
206
207 /* Throw away the page alignment filler bytes before the start of the firmware */
208 DiscardFillerBytes(StartAddr % SPM_PAGESIZE);
209
210 /* Calculate the number of bytes remaining to be written */
211 uint16_t BytesRemaining = ((EndAddr - StartAddr) + 1);
212
213 if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x00)) // Write flash
214 {
215 /* Calculate the number of words to be written from the number of bytes to be written */
216 uint16_t WordsRemaining = (BytesRemaining >> 1);
217
218 union
219 {
220 uint16_t Words[2];
221 uint32_t Long;
222 } CurrFlashAddress = {.Words = {StartAddr, Flash64KBPage}};
223
224 uint32_t CurrFlashPageStartAddress = CurrFlashAddress.Long;
225 uint8_t WordsInFlashPage = 0;
226
227 while (WordsRemaining--)
228 {
229 /* Check if endpoint is empty - if so clear it and wait until ready for next packet */
230 if (!(Endpoint_BytesInEndpoint()))
231 {
232 Endpoint_ClearOUT();
233 while (!(Endpoint_IsOUTReceived()));
234 }
235
236 /* Write the next word into the current flash page */
237 boot_page_fill(CurrFlashAddress.Long, Endpoint_Read_Word_LE());
238
239 /* Adjust counters */
240 WordsInFlashPage += 1;
241 CurrFlashAddress.Long += 2;
242
243 /* See if an entire page has been written to the flash page buffer */
244 if ((WordsInFlashPage == (SPM_PAGESIZE >> 1)) || !(WordsRemaining))
245 {
246 /* Commit the flash page to memory */
247 boot_page_write(CurrFlashPageStartAddress);
248 boot_spm_busy_wait();
249
250 /* Check if programming incomplete */
251 if (WordsRemaining)
252 {
253 CurrFlashPageStartAddress = CurrFlashAddress.Long;
254 WordsInFlashPage = 0;
255
256 /* Erase next page's temp buffer */
257 boot_page_erase(CurrFlashAddress.Long);
258 boot_spm_busy_wait();
259 }
260 }
261 }
262
263 /* Once programming complete, start address equals the end address */
264 StartAddr = EndAddr;
265
266 /* Re-enable the RWW section of flash */
267 boot_rww_enable();
268 }
269 else // Write EEPROM
270 {
271 while (BytesRemaining--)
272 {
273 /* Check if endpoint is empty - if so clear it and wait until ready for next packet */
274 if (!(Endpoint_BytesInEndpoint()))
275 {
276 Endpoint_ClearOUT();
277 while (!(Endpoint_IsOUTReceived()));
278 }
279
280 /* Read the byte from the USB interface and write to to the EEPROM */
281 eeprom_write_byte((uint8_t*)StartAddr, Endpoint_Read_Byte());
282
283 /* Adjust counters */
284 StartAddr++;
285 }
286 }
287
288 /* Throw away the currently unused DFU file suffix */
289 DiscardFillerBytes(DFU_FILE_SUFFIX_SIZE);
290 }
291 }
292
293 Endpoint_ClearOUT();
294
295 /* Acknowledge status stage */
296 while (!(Endpoint_IsINReady()));
297 Endpoint_ClearIN();
298
299 break;
300 case DFU_UPLOAD:
301 Endpoint_ClearSETUP();
302
303 while (!(Endpoint_IsINReady()));
304
305 if (DFU_State != dfuUPLOAD_IDLE)
306 {
307 if ((DFU_State == dfuERROR) && IS_ONEBYTE_COMMAND(SentCommand.Data, 0x01)) // Blank Check
308 {
309 /* Blank checking is performed in the DFU_DNLOAD request - if we get here we've told the host
310 that the memory isn't blank, and the host is requesting the first non-blank address */
311 Endpoint_Write_Word_LE(StartAddr);
312 }
313 else
314 {
315 /* Idle state upload - send response to last issued command */
316 Endpoint_Write_Byte(ResponseByte);
317 }
318 }
319 else
320 {
321 /* Determine the number of bytes remaining in the current block */
322 uint16_t BytesRemaining = ((EndAddr - StartAddr) + 1);
323
324 if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x00)) // Read FLASH
325 {
326 /* Calculate the number of words to be written from the number of bytes to be written */
327 uint16_t WordsRemaining = (BytesRemaining >> 1);
328
329 union
330 {
331 uint16_t Words[2];
332 uint32_t Long;
333 } CurrFlashAddress = {.Words = {StartAddr, Flash64KBPage}};
334
335 while (WordsRemaining--)
336 {
337 /* Check if endpoint is full - if so clear it and wait until ready for next packet */
338 if (Endpoint_BytesInEndpoint() == FIXED_CONTROL_ENDPOINT_SIZE)
339 {
340 Endpoint_ClearIN();
341 while (!(Endpoint_IsINReady()));
342 }
343
344 /* Read the flash word and send it via USB to the host */
345 #if (FLASHEND > 0xFFFF)
346 Endpoint_Write_Word_LE(pgm_read_word_far(CurrFlashAddress.Long));
347 #else
348 Endpoint_Write_Word_LE(pgm_read_word(CurrFlashAddress.Long));
349 #endif
350
351 /* Adjust counters */
352 CurrFlashAddress.Long += 2;
353 }
354
355 /* Once reading is complete, start address equals the end address */
356 StartAddr = EndAddr;
357 }
358 else if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x02)) // Read EEPROM
359 {
360 while (BytesRemaining--)
361 {
362 /* Check if endpoint is full - if so clear it and wait until ready for next packet */
363 if (Endpoint_BytesInEndpoint() == FIXED_CONTROL_ENDPOINT_SIZE)
364 {
365 Endpoint_ClearIN();
366 while (!(Endpoint_IsINReady()));
367 }
368
369 /* Read the EEPROM byte and send it via USB to the host */
370 Endpoint_Write_Byte(eeprom_read_byte((uint8_t*)StartAddr));
371
372 /* Adjust counters */
373 StartAddr++;
374 }
375 }
376
377 /* Return to idle state */
378 DFU_State = dfuIDLE;
379 }
380
381 Endpoint_ClearIN();
382
383 /* Acknowledge status stage */
384 while (!(Endpoint_IsOUTReceived()));
385 Endpoint_ClearOUT();
386
387 break;
388 case DFU_GETSTATUS:
389 Endpoint_ClearSETUP();
390
391 /* Write 8-bit status value */
392 Endpoint_Write_Byte(DFU_Status);
393
394 /* Write 24-bit poll timeout value */
395 Endpoint_Write_Byte(0);
396 Endpoint_Write_Word_LE(0);
397
398 /* Write 8-bit state value */
399 Endpoint_Write_Byte(DFU_State);
400
401 /* Write 8-bit state string ID number */
402 Endpoint_Write_Byte(0);
403
404 Endpoint_ClearIN();
405
406 /* Acknowledge status stage */
407 while (!(Endpoint_IsOUTReceived()));
408 Endpoint_ClearOUT();
409
410 break;
411 case DFU_CLRSTATUS:
412 Endpoint_ClearSETUP();
413
414 /* Reset the status value variable to the default OK status */
415 DFU_Status = OK;
416
417 /* Acknowledge status stage */
418 while (!(Endpoint_IsINReady()));
419 Endpoint_ClearIN();
420
421 break;
422 case DFU_GETSTATE:
423 Endpoint_ClearSETUP();
424
425 /* Write the current device state to the endpoint */
426 Endpoint_Write_Byte(DFU_State);
427
428 Endpoint_ClearIN();
429
430 /* Acknowledge status stage */
431 while (!(Endpoint_IsOUTReceived()));
432 Endpoint_ClearOUT();
433
434 break;
435 case DFU_ABORT:
436 Endpoint_ClearSETUP();
437
438 /* Reset the current state variable to the default idle state */
439 DFU_State = dfuIDLE;
440
441 /* Acknowledge status stage */
442 while (!(Endpoint_IsINReady()));
443 Endpoint_ClearIN();
444
445 break;
446 }
447 }
448
449 /** Routine to discard the specified number of bytes from the control endpoint stream. This is used to
450 * discard unused bytes in the stream from the host, including the memory program block suffix.
451 *
452 * \param NumberOfBytes Number of bytes to discard from the host from the control endpoint
453 */
454 static void DiscardFillerBytes(uint8_t NumberOfBytes)
455 {
456 while (NumberOfBytes--)
457 {
458 if (!(Endpoint_BytesInEndpoint()))
459 {
460 Endpoint_ClearOUT();
461
462 /* Wait until next data packet received */
463 while (!(Endpoint_IsOUTReceived()));
464 }
465 else
466 {
467 Endpoint_Discard_Byte();
468 }
469 }
470 }
471
472 /** Routine to process an issued command from the host, via a DFU_DNLOAD request wrapper. This routine ensures
473 * that the command is allowed based on the current secure mode flag value, and passes the command off to the
474 * appropriate handler function.
475 */
476 static void ProcessBootloaderCommand(void)
477 {
478 /* Check if device is in secure mode */
479 if (IsSecure)
480 {
481 /* Don't process command unless it is a READ or chip erase command */
482 if (!(((SentCommand.Command == COMMAND_WRITE) &&
483 IS_TWOBYTE_COMMAND(SentCommand.Data, 0x00, 0xFF)) ||
484 (SentCommand.Command == COMMAND_READ)))
485 {
486 /* Set the state and status variables to indicate the error */
487 DFU_State = dfuERROR;
488 DFU_Status = errWRITE;
489
490 /* Stall command */
491 Endpoint_StallTransaction();
492
493 /* Don't process the command */
494 return;
495 }
496 }
497
498 /* Dispatch the required command processing routine based on the command type */
499 switch (SentCommand.Command)
500 {
501 case COMMAND_PROG_START:
502 ProcessMemProgCommand();
503 break;
504 case COMMAND_DISP_DATA:
505 ProcessMemReadCommand();
506 break;
507 case COMMAND_WRITE:
508 ProcessWriteCommand();
509 break;
510 case COMMAND_READ:
511 ProcessReadCommand();
512 break;
513 case COMMAND_CHANGE_BASE_ADDR:
514 if (IS_TWOBYTE_COMMAND(SentCommand.Data, 0x03, 0x00)) // Set 64KB flash page command
515 Flash64KBPage = SentCommand.Data[2];
516
517 break;
518 }
519 }
520
521 /** Routine to concatenate the given pair of 16-bit memory start and end addresses from the host, and store them
522 * in the StartAddr and EndAddr global variables.
523 */
524 static void LoadStartEndAddresses(void)
525 {
526 union
527 {
528 uint8_t Bytes[2];
529 uint16_t Word;
530 } Address[2] = {{.Bytes = {SentCommand.Data[2], SentCommand.Data[1]}},
531 {.Bytes = {SentCommand.Data[4], SentCommand.Data[3]}}};
532
533 /* Load in the start and ending read addresses from the sent data packet */
534 StartAddr = Address[0].Word;
535 EndAddr = Address[1].Word;
536 }
537
538 /** Handler for a Memory Program command issued by the host. This routine handles the preparations needed
539 * to write subsequent data from the host into the specified memory.
540 */
541 static void ProcessMemProgCommand(void)
542 {
543 if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x00) || // Write FLASH command
544 IS_ONEBYTE_COMMAND(SentCommand.Data, 0x01)) // Write EEPROM command
545 {
546 /* Load in the start and ending read addresses */
547 LoadStartEndAddresses();
548
549 /* If FLASH is being written to, we need to pre-erase the first page to write to */
550 if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x00))
551 {
552 union
553 {
554 uint16_t Words[2];
555 uint32_t Long;
556 } CurrFlashAddress = {.Words = {StartAddr, Flash64KBPage}};
557
558 /* Erase the current page's temp buffer */
559 boot_page_erase(CurrFlashAddress.Long);
560 boot_spm_busy_wait();
561 }
562
563 /* Set the state so that the next DNLOAD requests reads in the firmware */
564 DFU_State = dfuDNLOAD_IDLE;
565 }
566 }
567
568 /** Handler for a Memory Read command issued by the host. This routine handles the preparations needed
569 * to read subsequent data from the specified memory out to the host, as well as implementing the memory
570 * blank check command.
571 */
572 static void ProcessMemReadCommand(void)
573 {
574 if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x00) || // Read FLASH command
575 IS_ONEBYTE_COMMAND(SentCommand.Data, 0x02)) // Read EEPROM command
576 {
577 /* Load in the start and ending read addresses */
578 LoadStartEndAddresses();
579
580 /* Set the state so that the next UPLOAD requests read out the firmware */
581 DFU_State = dfuUPLOAD_IDLE;
582 }
583 else if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x01)) // Blank check FLASH command
584 {
585 uint32_t CurrFlashAddress = 0;
586
587 while (CurrFlashAddress < BOOT_START_ADDR)
588 {
589 /* Check if the current byte is not blank */
590 #if (FLASHEND > 0xFFFF)
591 if (pgm_read_byte_far(CurrFlashAddress) != 0xFF)
592 #else
593 if (pgm_read_byte(CurrFlashAddress) != 0xFF)
594 #endif
595 {
596 /* Save the location of the first non-blank byte for response back to the host */
597 Flash64KBPage = (CurrFlashAddress >> 16);
598 StartAddr = CurrFlashAddress;
599
600 /* Set state and status variables to the appropriate error values */
601 DFU_State = dfuERROR;
602 DFU_Status = errCHECK_ERASED;
603
604 break;
605 }
606
607 CurrFlashAddress++;
608 }
609 }
610 }
611
612 /** Handler for a Data Write command issued by the host. This routine handles non-programming commands such as
613 * bootloader exit (both via software jumps and hardware watchdog resets) and flash memory erasure.
614 */
615 static void ProcessWriteCommand(void)
616 {
617 if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x03)) // Start application
618 {
619 /* Indicate that the bootloader is terminating */
620 WaitForExit = true;
621
622 /* Check if empty request data array - an empty request after a filled request retains the
623 previous valid request data, but initializes the reset */
624 if (!(SentCommand.DataSize))
625 {
626 if (SentCommand.Data[1] == 0x00) // Start via watchdog
627 {
628 /* Start the watchdog to reset the AVR once the communications are finalized */
629 wdt_enable(WDTO_250MS);
630 }
631 else // Start via jump
632 {
633 /* Load in the jump address into the application start address pointer */
634 union
635 {
636 uint8_t Bytes[2];
637 AppPtr_t FuncPtr;
638 } Address = {.Bytes = {SentCommand.Data[4], SentCommand.Data[3]}};
639
640 AppStartPtr = Address.FuncPtr;
641
642 /* Set the flag to terminate the bootloader at next opportunity */
643 RunBootloader = false;
644 }
645 }
646 }
647 else if (IS_TWOBYTE_COMMAND(SentCommand.Data, 0x00, 0xFF)) // Erase flash
648 {
649 uint32_t CurrFlashAddress = 0;
650
651 /* Clear the application section of flash */
652 while (CurrFlashAddress < BOOT_START_ADDR)
653 {
654 boot_page_erase(CurrFlashAddress);
655 boot_spm_busy_wait();
656 boot_page_write(CurrFlashAddress);
657 boot_spm_busy_wait();
658
659 CurrFlashAddress += SPM_PAGESIZE;
660 }
661
662 /* Re-enable the RWW section of flash as writing to the flash locks it out */
663 boot_rww_enable();
664
665 /* Memory has been erased, reset the security bit so that programming/reading is allowed */
666 IsSecure = false;
667 }
668 }
669
670 /** Handler for a Data Read command issued by the host. This routine handles bootloader information retrieval
671 * commands such as device signature and bootloader version retrieval.
672 */
673 static void ProcessReadCommand(void)
674 {
675 const uint8_t BootloaderInfo[3] = {BOOTLOADER_VERSION, BOOTLOADER_ID_BYTE1, BOOTLOADER_ID_BYTE2};
676 const uint8_t SignatureInfo[3] = {SIGNATURE_0, SIGNATURE_1, SIGNATURE_2};
677
678 uint8_t DataIndexToRead = SentCommand.Data[1];
679
680 if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x00)) // Read bootloader info
681 {
682 ResponseByte = BootloaderInfo[DataIndexToRead];
683 }
684 else if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x01)) // Read signature byte
685 {
686 ResponseByte = SignatureInfo[DataIndexToRead - 0x30];
687 }
688 }