Porting updates for the UC3B architecture - get UC3B partially enumerating using...
[pub/USBasp.git] / LUFA / Common / Common.h
1 /*
2 LUFA Library
3 Copyright (C) Dean Camera, 2011.
4
5 dean [at] fourwalledcubicle [dot] com
6 www.lufa-lib.org
7 */
8
9 /*
10 Copyright 2011 Dean Camera (dean [at] fourwalledcubicle [dot] com)
11
12 Permission to use, copy, modify, distribute, and sell this
13 software and its documentation for any purpose is hereby granted
14 without fee, provided that the above copyright notice appear in
15 all copies and that both that the copyright notice and this
16 permission notice and warranty disclaimer appear in supporting
17 documentation, and that the name of the author not be used in
18 advertising or publicity pertaining to distribution of the
19 software without specific, written prior permission.
20
21 The author disclaim all warranties with regard to this
22 software, including all implied warranties of merchantability
23 and fitness. In no event shall the author be liable for any
24 special, indirect or consequential damages or any damages
25 whatsoever resulting from loss of use, data or profits, whether
26 in an action of contract, negligence or other tortious action,
27 arising out of or in connection with the use or performance of
28 this software.
29 */
30
31 /** \file
32 * \brief Common library convenience headers, macros and functions.
33 *
34 * \copydetails Group_Common
35 */
36
37 /** \defgroup Group_Common Common Utility Headers - LUFA/Drivers/Common/Common.h
38 * \brief Common library convenience headers, macros and functions.
39 *
40 * Common utility headers containing macros, functions, enums and types which are common to all
41 * aspects of the library.
42 *
43 * @{
44 */
45
46 /** \defgroup Group_Debugging Debugging Macros
47 * \brief Convenience macros to aid in debugging applications.
48 *
49 * Macros to aid debugging of a user application.
50 */
51
52 /** \defgroup Group_BitManip Endian and Bit Macros
53 * \brief Convenience macros to aid in bit manipulations and endianness transforms.
54 *
55 * Functions for swapping endianness and reversing bit orders of data.
56 */
57
58 #ifndef __LUFA_COMMON_H__
59 #define __LUFA_COMMON_H__
60
61 /* Macros: */
62 #if !defined(__DOXYGEN__)
63 #define __INCLUDE_FROM_COMMON_H
64 #endif
65
66 /* Includes: */
67 #include <stdint.h>
68 #include <stdbool.h>
69 #include <string.h>
70 #include <stddef.h>
71
72 #include "Architectures.h"
73 #include "Attributes.h"
74 #include "BoardTypes.h"
75
76 /* Architecture specific utility includes: */
77 #if defined(__DOXYGEN__)
78 /** Type define for an unsigned integer the same width as the selected architecture's machine register. */
79 typedef MACHINE_REG_t uint_reg_t;
80 #elif (ARCH == ARCH_AVR8)
81 #include <avr/io.h>
82 #include <avr/interrupt.h>
83 #include <avr/pgmspace.h>
84 #include <avr/eeprom.h>
85 #include <avr/boot.h>
86 #include <util/atomic.h>
87 #include <util/delay.h>
88
89 typedef uint8_t uint_reg_t;
90
91 #define le16_to_cpu(x) x
92 #define le32_to_cpu(x) x
93 #define be16_to_cpu(x) SwapEndian_16(x)
94 #define be32_to_cpu(x) SwapEndian_32(x)
95 #define cpu_to_le16(x) x
96 #define cpu_to_le32(x) x
97 #define cpu_to_be16(x) SwapEndian_16(x)
98 #define cpu_to_be32(x) SwapEndian_32(x)
99 #define LE16_TO_CPU(x) x
100 #define LE32_TO_CPU(x) x
101 #define BE16_TO_CPU(x) SWAPENDIAN_16(x)
102 #define BE32_TO_CPU(x) SWAPENDIAN_32(x)
103 #define CPU_TO_LE16(x) x
104 #define CPU_TO_LE32(x) x
105 #define CPU_TO_BE16(x) SWAPENDIAN_16(x)
106 #define CPU_TO_BE32(x) SWAPENDIAN_32(x)
107
108 #elif (ARCH == ARCH_UC3B)
109 #include <avr32/io.h>
110
111 typedef uint32_t uint_reg_t;
112
113 // TODO
114 #define le16_to_cpu(x) SwapEndian_16(x)
115 #define le32_to_cpu(x) SwapEndian_32(x)
116 #define be16_to_cpu(x) x
117 #define be32_to_cpu(x) x
118 #define cpu_to_le16(x) SwapEndian_16(x)
119 #define cpu_to_le32(x) SwapEndian_32(x)
120 #define cpu_to_be16(x) x
121 #define cpu_to_be32(x) x
122 #define LE16_TO_CPU(x) SWAPENDIAN_16(x)
123 #define LE32_TO_CPU(x) SWAPENDIAN_32(x)
124 #define BE16_TO_CPU(x) x
125 #define BE32_TO_CPU(x) x
126 #define CPU_TO_LE16(x) SWAPENDIAN_16(x)
127 #define CPU_TO_LE32(x) SWAPENDIAN_32(x)
128 #define CPU_TO_BE16(x) x
129 #define CPU_TO_BE32(x) x
130
131 #define ISR(Name) void Name (void) __attribute__((__interrupt__)); void Name (void)
132 #define EEMEM
133 #define PROGMEM const
134 #define ATOMIC_BLOCK(x) if (1)
135 #define ATOMIC_RESTORESTATE
136 #define pgm_read_byte(x) *x
137 #define eeprom_read_byte(x) *x
138 #define eeprom_update_byte(x, y) *x = y
139 #define eeprom_write_byte(x, y) *x = y
140 #define _delay_ms(x)
141 #define memcmp_P(...) memcmp(__VA_ARGS__)
142 #define memcpy_P(...) memcpy(__VA_ARGS__)
143 #endif
144
145 /* Public Interface - May be used in end-application: */
146 /* Macros: */
147 /** Macro for encasing other multi-statement macros. This should be used along with an opening brace
148 * before the start of any multi-statement macro, so that the macros contents as a whole are treated
149 * as a discrete block and not as a list of separate statements which may cause problems when used as
150 * a block (such as inline \c if statements).
151 */
152 #define MACROS do
153
154 /** Macro for encasing other multi-statement macros. This should be used along with a preceding closing
155 * brace at the end of any multi-statement macro, so that the macros contents as a whole are treated
156 * as a discrete block and not as a list of separate statements which may cause problems when used as
157 * a block (such as inline \c if statements).
158 */
159 #define MACROE while (0)
160
161 /** Convenience macro to determine the larger of two values.
162 *
163 * \note This macro should only be used with operands that do not have side effects from being evaluated
164 * multiple times.
165 *
166 * \param[in] x First value to compare
167 * \param[in] y First value to compare
168 *
169 * \return The larger of the two input parameters
170 */
171 #if !defined(MAX) || defined(__DOXYGEN__)
172 #define MAX(x, y) ((x > y) ? x : y)
173 #endif
174
175 /** Convenience macro to determine the smaller of two values.
176 *
177 * \note This macro should only be used with operands that do not have side effects from being evaluated
178 * multiple times.
179 *
180 * \param[in] x First value to compare
181 * \param[in] y First value to compare
182 *
183 * \return The smaller of the two input parameters
184 */
185 #if !defined(MIN) || defined(__DOXYGEN__)
186 #define MIN(x, y) ((x < y) ? x : y)
187 #endif
188
189 #if (ARCH == ARCH_AVR8) || defined(__DOXYGEN__)
190 /** Defines a volatile \c NOP statement which cannot be optimized out by the compiler, and thus can always
191 * be set as a breakpoint in the resulting code. Useful for debugging purposes, where the optimiser
192 * removes/reorders code to the point where break points cannot reliably be set.
193 *
194 * \ingroup Group_Debugging
195 */
196 #define JTAG_DEBUG_POINT() __asm__ __volatile__ ("NOP" ::)
197
198 /** Defines an explicit JTAG break point in the resulting binary via the assembly \c BREAK statement. When
199 * a JTAG is used, this causes the program execution to halt when reached until manually resumed.
200 *
201 * \ingroup Group_Debugging
202 */
203 #define JTAG_DEBUG_BREAK() __asm__ __volatile__ ("BREAK" ::)
204
205 #if !defined(pgm_read_ptr) || defined(__DOXYGEN__)
206 /** Reads a pointer out of PROGMEM space on the AVR8 architecture. This is currently a wrapper for the
207 * avr-libc \c pgm_read_ptr() macro with a \c void* cast, so that its value can be assigned directly
208 * to a pointer variable or used in pointer arithmetic without further casting in C. In a future
209 * avr-libc distribution this will be part of the standard API and will be implemented in a more formal
210 * manner.
211 *
212 * \param[in] Addr Address of the pointer to read.
213 *
214 * \return Pointer retrieved from PROGMEM space.
215 */
216 #define pgm_read_ptr(Addr) (void*)pgm_read_word(Addr)
217 #endif
218
219 /** Macro for testing condition "x" and breaking via \ref JTAG_DEBUG_BREAK() if the condition is false.
220 *
221 * \param[in] Condition Condition that will be evaluated,
222 *
223 * \ingroup Group_Debugging
224 */
225 #define JTAG_DEBUG_ASSERT(Condition) MACROS{ if (!(Condition)) { JTAG_DEBUG_BREAK(); } }MACROE
226
227 /** Macro for testing condition "x" and writing debug data to the stdout stream if \c false. The stdout stream
228 * must be pre-initialized before this macro is run and linked to an output device, such as the microcontroller's
229 * USART peripheral.
230 *
231 * The output takes the form "{FILENAME}: Function {FUNCTION NAME}, Line {LINE NUMBER}: Assertion {Condition} failed."
232 *
233 * \param[in] Condition Condition that will be evaluated,
234 *
235 * \ingroup Group_Debugging
236 */
237 #define STDOUT_ASSERT(Condition) MACROS{ if (!(x)) { printf_P(PSTR("%s: Function \"%s\", Line %d: " \
238 "Assertion \"%s\" failed.\r\n"), \
239 __FILE__, __func__, __LINE__, #Condition); } }MACROE
240 #endif
241
242 /** Forces GCC to use pointer indirection (via the device's pointer register pairs) when accessing the given
243 * struct pointer. In some cases GCC will emit non-optimal assembly code when accessing a structure through
244 * a pointer, resulting in a larger binary. When this macro is used on a (non \c const) structure pointer before
245 * use, it will force GCC to use pointer indirection on the elements rather than direct store and load
246 * instructions.
247 *
248 * \param[in, out] StructPtr Pointer to a structure which is to be forced into indirect access mode.
249 */
250 #define GCC_FORCE_POINTER_ACCESS(StructPtr) __asm__ __volatile__("" : "=b" (StructPtr) : "0" (StructPtr))
251
252 /** Swaps the byte ordering of a 16-bit value at compile time. Do not use this macro for swapping byte orderings
253 * of dynamic values computed at runtime, use \ref SwapEndian_16() instead. The result of this macro can be used
254 * inside struct or other variable initializers outside of a function, something that is not possible with the
255 * inline function variant.
256 *
257 * \param[in] x 16-bit value whose byte ordering is to be swapped.
258 *
259 * \return Input value with the byte ordering reversed.
260 */
261 #define SWAPENDIAN_16(x) ((((x) & 0xFF00) >> 8) | (((x) & 0x00FF) << 8))
262
263 /** Swaps the byte ordering of a 32-bit value at compile time. Do not use this macro for swapping byte orderings
264 * of dynamic values computed at runtime- use \ref SwapEndian_32() instead. The result of this macro can be used
265 * inside struct or other variable initializers outside of a function, something that is not possible with the
266 * inline function variant.
267 *
268 * \param[in] x 32-bit value whose byte ordering is to be swapped.
269 *
270 * \return Input value with the byte ordering reversed.
271 */
272 #define SWAPENDIAN_32(x) ((((x) & 0xFF000000UL) >> 24UL) | (((x) & 0x00FF0000UL) >> 8UL) | \
273 (((x) & 0x0000FF00UL) << 8UL) | (((x) & 0x000000FFUL) << 24UL))
274
275 /* Inline Functions: */
276 /** Function to reverse the individual bits in a byte - i.e. bit 7 is moved to bit 0, bit 6 to bit 1,
277 * etc.
278 *
279 * \ingroup Group_BitManip
280 *
281 * \param[in] Byte Byte of data whose bits are to be reversed.
282 */
283 static inline uint8_t BitReverse(uint8_t Byte) ATTR_WARN_UNUSED_RESULT ATTR_CONST;
284 static inline uint8_t BitReverse(uint8_t Byte)
285 {
286 Byte = (((Byte & 0xF0) >> 4) | ((Byte & 0x0F) << 4));
287 Byte = (((Byte & 0xCC) >> 2) | ((Byte & 0x33) << 2));
288 Byte = (((Byte & 0xAA) >> 1) | ((Byte & 0x55) << 1));
289
290 return Byte;
291 }
292
293 /** Function to reverse the byte ordering of the individual bytes in a 16 bit number.
294 *
295 * \ingroup Group_BitManip
296 *
297 * \param[in] Word Word of data whose bytes are to be swapped.
298 */
299 static inline uint16_t SwapEndian_16(const uint16_t Word) ATTR_WARN_UNUSED_RESULT ATTR_CONST;
300 static inline uint16_t SwapEndian_16(const uint16_t Word)
301 {
302 uint8_t Temp;
303
304 union
305 {
306 uint16_t Word;
307 uint8_t Bytes[2];
308 } Data;
309
310 Data.Word = Word;
311
312 Temp = Data.Bytes[0];
313 Data.Bytes[0] = Data.Bytes[1];
314 Data.Bytes[1] = Temp;
315
316 return Data.Word;
317 }
318
319 /** Function to reverse the byte ordering of the individual bytes in a 32 bit number.
320 *
321 * \ingroup Group_BitManip
322 *
323 * \param[in] DWord Double word of data whose bytes are to be swapped.
324 */
325 static inline uint32_t SwapEndian_32(const uint32_t DWord) ATTR_WARN_UNUSED_RESULT ATTR_CONST;
326 static inline uint32_t SwapEndian_32(const uint32_t DWord)
327 {
328 uint8_t Temp;
329
330 union
331 {
332 uint32_t DWord;
333 uint8_t Bytes[4];
334 } Data;
335
336 Data.DWord = DWord;
337
338 Temp = Data.Bytes[0];
339 Data.Bytes[0] = Data.Bytes[3];
340 Data.Bytes[3] = Temp;
341
342 Temp = Data.Bytes[1];
343 Data.Bytes[1] = Data.Bytes[2];
344 Data.Bytes[2] = Temp;
345
346 return Data.DWord;
347 }
348
349 /** Function to reverse the byte ordering of the individual bytes in a n byte number.
350 *
351 * \ingroup Group_BitManip
352 *
353 * \param[in,out] Data Pointer to a number containing an even number of bytes to be reversed.
354 * \param[in] Bytes Length of the data in bytes.
355 */
356 static inline void SwapEndian_n(void* Data,
357 uint8_t Bytes) ATTR_NON_NULL_PTR_ARG(1);
358 static inline void SwapEndian_n(void* Data,
359 uint8_t Bytes)
360 {
361 uint8_t* CurrDataPos = (uint8_t*)Data;
362
363 while (Bytes > 1)
364 {
365 uint8_t Temp = *CurrDataPos;
366 *CurrDataPos = *(CurrDataPos + Bytes - 1);
367 *(CurrDataPos + Bytes - 1) = Temp;
368
369 CurrDataPos++;
370 Bytes -= 2;
371 }
372 }
373
374 #endif
375
376 /** @} */
377