3 Copyright (C) Dean Camera, 2011.
5 dean [at] fourwalledcubicle [dot] com
10 Copyright 2011 Dean Camera (dean [at] fourwalledcubicle [dot] com)
12 Permission to use, copy, modify, distribute, and sell this
13 software and its documentation for any purpose is hereby granted
14 without fee, provided that the above copyright notice appear in
15 all copies and that both that the copyright notice and this
16 permission notice and warranty disclaimer appear in supporting
17 documentation, and that the name of the author not be used in
18 advertising or publicity pertaining to distribution of the
19 software without specific, written prior permission.
21 The author disclaim all warranties with regard to this
22 software, including all implied warranties of merchantability
23 and fitness. In no event shall the author be liable for any
24 special, indirect or consequential damages or any damages
25 whatsoever resulting from loss of use, data or profits, whether
26 in an action of contract, negligence or other tortious action,
27 arising out of or in connection with the use or performance of
32 * \brief Common library convenience headers, macros and functions.
34 * \copydetails Group_Common
37 /** \defgroup Group_Common Common Utility Headers - LUFA/Drivers/Common/Common.h
38 * \brief Common library convenience headers, macros and functions.
40 * Common utility headers containing macros, functions, enums and types which are common to all
41 * aspects of the library.
46 /** \defgroup Group_Debugging Debugging Macros
47 * \brief Convenience macros to aid in debugging applications.
49 * Macros to aid debugging of a user application.
52 /** \defgroup Group_GlobalInt Global Interrupt Macros
53 * \brief Convenience macros for the management of interrupts globally within the device.
55 * Macros and functions to create and control global interrupts within the device.
58 #ifndef __LUFA_COMMON_H__
59 #define __LUFA_COMMON_H__
62 #define __INCLUDE_FROM_COMMON_H
70 #include "Architectures.h"
71 #include "Attributes.h"
72 #include "BoardTypes.h"
74 /* Architecture specific utility includes: */
75 #if defined(__DOXYGEN__)
76 /** Type define for an unsigned integer the same width as the selected architecture's machine register.
77 * This is distinct from the non-specific standard int data type, whose width is machine dependant but
78 * which may not reflect the actual machine register width on some targets (e.g. AVR8).
80 typedef MACHINE_REG_t uint_reg_t
;
81 #elif (ARCH == ARCH_AVR8)
83 #include <avr/interrupt.h>
84 #include <avr/pgmspace.h>
85 #include <avr/eeprom.h>
87 #include <util/delay.h>
89 typedef uint8_t uint_reg_t
;
91 #define ARCH_HAS_EEPROM_ADDRESS_SPACE
92 #define ARCH_HAS_FLASH_ADDRESS_SPACE
93 #define ARCH_HAS_MULTI_ADDRESS_SPACE
94 #define ARCH_LITTLE_ENDIAN
96 #include "Endianness.h"
97 #elif (ARCH == ARCH_UC3)
100 // === TODO: Find abstracted way to handle these ===
101 #define PROGMEM const
102 #define pgm_read_byte(x) *x
103 #define memcmp_P(...) memcmp(__VA_ARGS__)
104 #define memcpy_P(...) memcpy(__VA_ARGS__)
105 // =================================================
107 typedef uint32_t uint_reg_t
;
109 #define ARCH_BIG_ENDIAN
111 #include "Endianness.h"
113 #error Unknown device architecture specified.
116 /* Public Interface - May be used in end-application: */
118 /** Macro for encasing other multi-statement macros. This should be used along with an opening brace
119 * before the start of any multi-statement macro, so that the macros contents as a whole are treated
120 * as a discrete block and not as a list of separate statements which may cause problems when used as
121 * a block (such as inline \c if statements).
125 /** Macro for encasing other multi-statement macros. This should be used along with a preceding closing
126 * brace at the end of any multi-statement macro, so that the macros contents as a whole are treated
127 * as a discrete block and not as a list of separate statements which may cause problems when used as
128 * a block (such as inline \c if statements).
130 #define MACROE while (0)
132 /** Convenience macro to determine the larger of two values.
134 * \note This macro should only be used with operands that do not have side effects from being evaluated
137 * \param[in] x First value to compare
138 * \param[in] y First value to compare
140 * \return The larger of the two input parameters
142 #if !defined(MAX) || defined(__DOXYGEN__)
143 #define MAX(x, y) ((x > y) ? x : y)
146 /** Convenience macro to determine the smaller of two values.
148 * \note This macro should only be used with operands that do not have side effects from being evaluated
151 * \param[in] x First value to compare
152 * \param[in] y First value to compare
154 * \return The smaller of the two input parameters
156 #if !defined(MIN) || defined(__DOXYGEN__)
157 #define MIN(x, y) ((x < y) ? x : y)
160 #if (ARCH == ARCH_AVR8) || defined(__DOXYGEN__)
161 /** Defines a volatile \c NOP statement which cannot be optimized out by the compiler, and thus can always
162 * be set as a breakpoint in the resulting code. Useful for debugging purposes, where the optimiser
163 * removes/reorders code to the point where break points cannot reliably be set.
165 * \note This macro is not available for all architectures.
167 * \ingroup Group_Debugging
169 #define JTAG_DEBUG_POINT() __asm__ __volatile__ ("NOP" ::)
171 /** Defines an explicit JTAG break point in the resulting binary via the assembly \c BREAK statement. When
172 * a JTAG is used, this causes the program execution to halt when reached until manually resumed.
174 * \note This macro is not available for all architectures.
176 * \ingroup Group_Debugging
178 #define JTAG_DEBUG_BREAK() __asm__ __volatile__ ("BREAK" ::)
180 /** Macro for testing condition "x" and breaking via \ref JTAG_DEBUG_BREAK() if the condition is false.
182 * \note This macro is not available for all architectures.
184 * \param[in] Condition Condition that will be evaluated.
186 * \ingroup Group_Debugging
188 #define JTAG_DEBUG_ASSERT(Condition) MACROS{ if (!(Condition)) { JTAG_DEBUG_BREAK(); } }MACROE
190 /** Macro for testing condition "x" and writing debug data to the stdout stream if \c false. The stdout stream
191 * must be pre-initialized before this macro is run and linked to an output device, such as the microcontroller's
194 * The output takes the form "{FILENAME}: Function {FUNCTION NAME}, Line {LINE NUMBER}: Assertion {Condition} failed."
196 * \note This macro is not available for all architectures.
198 * \param[in] Condition Condition that will be evaluated,
200 * \ingroup Group_Debugging
202 #define STDOUT_ASSERT(Condition) MACROS{ if (!(x)) { printf_P(PSTR("%s: Function \"%s\", Line %d: " \
203 "Assertion \"%s\" failed.\r\n"), \
204 __FILE__, __func__, __LINE__, #Condition); } }MACROE
206 #if !defined(pgm_read_ptr) || defined(__DOXYGEN__)
207 /** Reads a pointer out of PROGMEM space on the AVR8 architecture. This is currently a wrapper for the
208 * avr-libc \c pgm_read_ptr() macro with a \c void* cast, so that its value can be assigned directly
209 * to a pointer variable or used in pointer arithmetic without further casting in C. In a future
210 * avr-libc distribution this will be part of the standard API and will be implemented in a more formal
213 * \note This macro is not available for all architectures.
215 * \param[in] Address Address of the pointer to read.
217 * \return Pointer retrieved from PROGMEM space.
219 #define pgm_read_ptr(Address) (void*)pgm_read_word(Address)
223 /** Forces GCC to use pointer indirection (via the device's pointer register pairs) when accessing the given
224 * struct pointer. In some cases GCC will emit non-optimal assembly code when accessing a structure through
225 * a pointer, resulting in a larger binary. When this macro is used on a (non \c const) structure pointer before
226 * use, it will force GCC to use pointer indirection on the elements rather than direct store and load
229 * \param[in, out] StructPtr Pointer to a structure which is to be forced into indirect access mode.
231 #define GCC_FORCE_POINTER_ACCESS(StructPtr) __asm__ __volatile__("" : "=b" (StructPtr) : "0" (StructPtr))
233 /** Forces GCC to create a memory barrier, ensuring that memory accesses are not reordered past the barrier point.
234 * This can be used before ordering-critical operations, to ensure that the compiler does not re-order the resulting
235 * assembly output in an unexpected manner on sections of code that are ordering-specific.
237 #define GCC_MEMORY_BARRIER() __asm__ __volatile__("" ::: "memory");
239 /** Evaluates to boolean true if the specified value can be determined at compile time to be a constant value
240 * when compiling under GCC.
242 * \param[in] x Value to check compile time constantness of.
244 * \return Boolean true if the given value is known to be a compile time constant.
246 #define GCC_IS_COMPILE_CONST(x) __builtin_constant_p(x)
248 #if !defined(ISR) || defined(__DOXYGEN__)
249 /** Macro for the definition of interrupt service routines, so that the compiler can insert the required
250 * prologue and epilogue code to properly manage the interrupt routine without affecting the main thread's
251 * state with unintentional side-effects.
253 * Interrupt handlers written using this macro may still need to be registered with the microcontroller's
254 * Interrupt Controller (if present) before they will properly handle incoming interrupt events.
256 * \note This macro is only supplied on some architectures, where the standard library does not include a valid
257 * definition. If an existing definition exists, the alternative definition here will be ignored.
259 * \ingroup Group_GlobalInt
261 * \param Name Unique name of the interrupt service routine.
263 #define ISR(Name, ...) void Name (void) __attribute__((__interrupt__)) __VA_ARGS__; void Name (void)
266 /* Inline Functions: */
267 /** Function to reverse the individual bits in a byte - i.e. bit 7 is moved to bit 0, bit 6 to bit 1,
270 * \param[in] Byte Byte of data whose bits are to be reversed.
272 static inline uint8_t BitReverse(uint8_t Byte
) ATTR_WARN_UNUSED_RESULT ATTR_CONST
;
273 static inline uint8_t BitReverse(uint8_t Byte
)
275 Byte
= (((Byte
& 0xF0) >> 4) | ((Byte
& 0x0F) << 4));
276 Byte
= (((Byte
& 0xCC) >> 2) | ((Byte
& 0x33) << 2));
277 Byte
= (((Byte
& 0xAA) >> 1) | ((Byte
& 0x55) << 1));
282 /** Function to perform a blocking delay for a specified number of milliseconds. The actual delay will be
283 * at a minimum the specified number of milliseconds, however due to loop overhead and internal calculations
284 * may be slightly higher.
286 * \param[in] Milliseconds Number of milliseconds to delay
288 static inline void Delay_MS(uint8_t Milliseconds
) ATTR_ALWAYS_INLINE
;
289 static inline void Delay_MS(uint8_t Milliseconds
)
291 #if (ARCH == ARCH_AVR8)
292 if (GCC_IS_COMPILE_CONST(Milliseconds
))
294 _delay_ms(Milliseconds
);
298 while (Milliseconds
--)
301 #elif (ARCH == ARCH_UC3)
302 while (Milliseconds
--)
304 __builtin_mtsr(AVR32_COUNT
, 0);
305 while (__builtin_mfsr(AVR32_COUNT
) < (F_CPU
/ 1000));
310 /** Retrieves a mask which contains the current state of the global interrupts for the device. This
311 * value can be stored before altering the global interrupt enable state, before restoring the
312 * flag(s) back to their previous values after a critical section using \ref SetGlobalInterruptMask().
314 * \ingroup Group_GlobalInt
316 * \return Mask containing the current Global Interrupt Enable Mask bit(s).
318 static inline uint_reg_t
GetGlobalInterruptMask(void) ATTR_ALWAYS_INLINE ATTR_WARN_UNUSED_RESULT
;
319 static inline uint_reg_t
GetGlobalInterruptMask(void)
321 GCC_MEMORY_BARRIER();
323 #if (ARCH == ARCH_AVR8)
325 #elif (ARCH == ARCH_UC3)
326 return __builtin_mfsr(AVR32_SR
);
329 GCC_MEMORY_BARRIER();
332 /** Sets the global interrupt enable state of the microcontroller to the mask passed into the function.
333 * This can be combined with \ref GetGlobalInterruptMask() to save and restore the Global Interrupt Enable
334 * Mask bit(s) of the device after a critical section has completed.
336 * \ingroup Group_GlobalInt
338 * \param[in] GlobalIntState Global Interrupt Enable Mask value to use
340 static inline void SetGlobalInterruptMask(const uint_reg_t GlobalIntState
) ATTR_ALWAYS_INLINE
;
341 static inline void SetGlobalInterruptMask(const uint_reg_t GlobalIntState
)
343 GCC_MEMORY_BARRIER();
345 #if (ARCH == ARCH_AVR8)
346 SREG
= GlobalIntState
;
347 #elif (ARCH == ARCH_UC3)
348 if (GlobalIntState
& AVR32_SR_GM
)
349 __builtin_ssrf(AVR32_SR_GM_OFFSET
);
351 __builtin_csrf(AVR32_SR_GM_OFFSET
);
354 GCC_MEMORY_BARRIER();
357 /** Enables global interrupt handling for the device, allowing interrupts to be handled.
359 * \ingroup Group_GlobalInt
361 static inline void GlobalInterruptEnable(void) ATTR_ALWAYS_INLINE
;
362 static inline void GlobalInterruptEnable(void)
364 GCC_MEMORY_BARRIER();
366 #if (ARCH == ARCH_AVR8)
368 #elif (ARCH == ARCH_UC3)
369 __builtin_csrf(AVR32_SR_GM_OFFSET
);
372 GCC_MEMORY_BARRIER();
375 /** Disabled global interrupt handling for the device, preventing interrupts from being handled.
377 * \ingroup Group_GlobalInt
379 static inline void GlobalInterruptDisable(void) ATTR_ALWAYS_INLINE
;
380 static inline void GlobalInterruptDisable(void)
382 GCC_MEMORY_BARRIER();
384 #if (ARCH == ARCH_AVR8)
386 #elif (ARCH == ARCH_UC3)
387 __builtin_ssrf(AVR32_SR_GM_OFFSET
);
390 GCC_MEMORY_BARRIER();