Endpoint configuration is now refined to give better output when all configurations...
[pub/USBasp.git] / Bootloaders / DFU / BootloaderDFU.c
1 /*
2 LUFA Library
3 Copyright (C) Dean Camera, 2009.
4
5 dean [at] fourwalledcubicle [dot] com
6 www.fourwalledcubicle.com
7 */
8
9 /*
10 Copyright 2009 Dean Camera (dean [at] fourwalledcubicle [dot] com)
11
12 Permission to use, copy, modify, and distribute this software
13 and its documentation for any purpose and without fee is hereby
14 granted, provided that the above copyright notice appear in all
15 copies and that both that the copyright notice and this
16 permission notice and warranty disclaimer appear in supporting
17 documentation, and that the name of the author not be used in
18 advertising or publicity pertaining to distribution of the
19 software without specific, written prior permission.
20
21 The author disclaim all warranties with regard to this
22 software, including all implied warranties of merchantability
23 and fitness. In no event shall the author be liable for any
24 special, indirect or consequential damages or any damages
25 whatsoever resulting from loss of use, data or profits, whether
26 in an action of contract, negligence or other tortious action,
27 arising out of or in connection with the use or performance of
28 this software.
29 */
30
31 /** \file
32 *
33 * Main source file for the DFU class bootloader. This file contains the complete bootloader logic.
34 */
35
36 #define INCLUDE_FROM_BOOTLOADER_C
37 #include "BootloaderDFU.h"
38
39 /** Flag to indicate if the bootloader is currently running in secure mode, disallowing memory operations
40 * other than erase. This is initially set to the value set by SECURE_MODE, and cleared by the bootloader
41 * once a memory erase has completed.
42 */
43 bool IsSecure = SECURE_MODE;
44
45 /** Flag to indicate if the bootloader should be running, or should exit and allow the application code to run
46 * via a soft reset. When cleared, the bootloader will abort, the USB interface will shut down and the application
47 * jumped to via an indirect jump to location 0x0000 (or other location specified by the host).
48 */
49 bool RunBootloader = true;
50
51 /** Flag to indicate if the bootloader is waiting to exit. When the host requests the bootloader to exit and
52 * jump to the application address it specifies, it sends two sequential commands which must be properly
53 * acknowledged. Upon reception of the first the RunBootloader flag is cleared and the WaitForExit flag is set,
54 * causing the bootloader to wait for the final exit command before shutting down.
55 */
56 bool WaitForExit = false;
57
58 /** Current DFU state machine state, one of the values in the DFU_State_t enum. */
59 uint8_t DFU_State = dfuIDLE;
60
61 /** Status code of the last executed DFU command. This is set to one of the values in the DFU_Status_t enum after
62 * each operation, and returned to the host when a Get Status DFU request is issued.
63 */
64 uint8_t DFU_Status = OK;
65
66 /** Data containing the DFU command sent from the host. */
67 DFU_Command_t SentCommand;
68
69 /** Response to the last issued Read Data DFU command. Unlike other DFU commands, the read command
70 * requires a single byte response from the bootloader containing the read data when the next DFU_UPLOAD command
71 * is issued by the host.
72 */
73 uint8_t ResponseByte;
74
75 /** Pointer to the start of the user application. By default this is 0x0000 (the reset vector), however the host
76 * may specify an alternate address when issuing the application soft-start command.
77 */
78 AppPtr_t AppStartPtr = (AppPtr_t)0x0000;
79
80 /** 64-bit flash page number. This is concatenated with the current 16-bit address on USB AVRs containing more than
81 * 64KB of flash memory.
82 */
83 uint8_t Flash64KBPage = 0;
84
85 /** Memory start address, indicating the current address in the memory being addressed (either FLASH or EEPROM
86 * depending on the issued command from the host).
87 */
88 uint16_t StartAddr = 0x0000;
89
90 /** Memory end address, indicating the end address to read to/write from in the memory being addressed (either FLASH
91 * of EEPROM depending on the issued command from the host).
92 */
93 uint16_t EndAddr = 0x0000;
94
95 /** Main program entry point. This routine configures the hardware required by the bootloader, then continuously
96 * runs the bootloader processing routine until instructed to soft-exit, or hard-reset via the watchdog to start
97 * the loaded application code.
98 */
99 int main (void)
100 {
101 /* Disable watchdog if enabled by bootloader/fuses */
102 MCUSR &= ~(1 << WDRF);
103 wdt_disable();
104
105 /* Disable clock division */
106 clock_prescale_set(clock_div_1);
107
108 /* Relocate the interrupt vector table to the bootloader section */
109 MCUCR = (1 << IVCE);
110 MCUCR = (1 << IVSEL);
111
112 /* Initialize the USB subsystem */
113 USB_Init();
114
115 /* Run the USB management task while the bootloader is supposed to be running */
116 while (RunBootloader || WaitForExit)
117 USB_USBTask();
118
119 /* Shut down the USB subsystem */
120 USB_ShutDown();
121
122 /* Relocate the interrupt vector table back to the application section */
123 MCUCR = (1 << IVCE);
124 MCUCR = 0;
125
126 /* Reset any used hardware ports back to their defaults */
127 PORTD = 0;
128 DDRD = 0;
129
130 #if defined(PORTE)
131 PORTE = 0;
132 DDRE = 0;
133 #endif
134
135 /* Start the user application */
136 AppStartPtr();
137 }
138
139 /** Event handler for the USB_Disconnect event. This indicates that the bootloader should exit and the user
140 * application started.
141 */
142 EVENT_HANDLER(USB_Disconnect)
143 {
144 /* Upon disconnection, run user application */
145 RunBootloader = false;
146 }
147
148 /** Event handler for the USB_UnhandledControlPacket event. This is used to catch standard and class specific
149 * control requests that are not handled internally by the USB library (including the DFU commands, which are
150 * all issued via the control endpoint), so that they can be handled appropriately for the application.
151 */
152 EVENT_HANDLER(USB_UnhandledControlPacket)
153 {
154 /* Get the size of the command and data from the wLength value */
155 SentCommand.DataSize = USB_ControlRequest.wLength;
156
157 switch (USB_ControlRequest.bRequest)
158 {
159 case DFU_DNLOAD:
160 Endpoint_ClearSETUP();
161
162 /* Check if bootloader is waiting to terminate */
163 if (WaitForExit)
164 {
165 /* Bootloader is terminating - process last received command */
166 ProcessBootloaderCommand();
167
168 /* Indicate that the last command has now been processed - free to exit bootloader */
169 WaitForExit = false;
170 }
171
172 /* If the request has a data stage, load it into the command struct */
173 if (SentCommand.DataSize)
174 {
175 while (!(Endpoint_IsOUTReceived()));
176
177 /* First byte of the data stage is the DNLOAD request's command */
178 SentCommand.Command = Endpoint_Read_Byte();
179
180 /* One byte of the data stage is the command, so subtract it from the total data bytes */
181 SentCommand.DataSize--;
182
183 /* Load in the rest of the data stage as command parameters */
184 for (uint8_t DataByte = 0; (DataByte < sizeof(SentCommand.Data)) &&
185 Endpoint_BytesInEndpoint(); DataByte++)
186 {
187 SentCommand.Data[DataByte] = Endpoint_Read_Byte();
188 SentCommand.DataSize--;
189 }
190
191 /* Process the command */
192 ProcessBootloaderCommand();
193 }
194
195 /* Check if currently downloading firmware */
196 if (DFU_State == dfuDNLOAD_IDLE)
197 {
198 if (!(SentCommand.DataSize))
199 {
200 DFU_State = dfuIDLE;
201 }
202 else
203 {
204 /* Throw away the filler bytes before the start of the firmware */
205 DiscardFillerBytes(DFU_FILLER_BYTES_SIZE);
206
207 /* Throw away the page alignment filler bytes before the start of the firmware */
208 DiscardFillerBytes(StartAddr % SPM_PAGESIZE);
209
210 /* Calculate the number of bytes remaining to be written */
211 uint16_t BytesRemaining = ((EndAddr - StartAddr) + 1);
212
213 if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x00)) // Write flash
214 {
215 /* Calculate the number of words to be written from the number of bytes to be written */
216 uint16_t WordsRemaining = (BytesRemaining >> 1);
217
218 union
219 {
220 uint16_t Words[2];
221 uint32_t Long;
222 } CurrFlashAddress = {.Words = {StartAddr, Flash64KBPage}};
223
224 uint32_t CurrFlashPageStartAddress = CurrFlashAddress.Long;
225 uint8_t WordsInFlashPage = 0;
226
227 while (WordsRemaining--)
228 {
229 /* Check if endpoint is empty - if so clear it and wait until ready for next packet */
230 if (!(Endpoint_BytesInEndpoint()))
231 {
232 Endpoint_ClearOUT();
233 while (!(Endpoint_IsOUTReceived()));
234 }
235
236 /* Write the next word into the current flash page */
237 boot_page_fill(CurrFlashAddress.Long, Endpoint_Read_Word_LE());
238
239 /* Adjust counters */
240 WordsInFlashPage += 1;
241 CurrFlashAddress.Long += 2;
242
243 /* See if an entire page has been written to the flash page buffer */
244 if ((WordsInFlashPage == (SPM_PAGESIZE >> 1)) || !(WordsRemaining))
245 {
246 /* Commit the flash page to memory */
247 boot_page_write(CurrFlashPageStartAddress);
248 boot_spm_busy_wait();
249
250 /* Check if programming incomplete */
251 if (WordsRemaining)
252 {
253 CurrFlashPageStartAddress = CurrFlashAddress.Long;
254 WordsInFlashPage = 0;
255
256 /* Erase next page's temp buffer */
257 boot_page_erase(CurrFlashAddress.Long);
258 boot_spm_busy_wait();
259 }
260 }
261 }
262
263 /* Once programming complete, start address equals the end address */
264 StartAddr = EndAddr;
265
266 /* Re-enable the RWW section of flash */
267 boot_rww_enable();
268 }
269 else // Write EEPROM
270 {
271 while (BytesRemaining--)
272 {
273 /* Check if endpoint is empty - if so clear it and wait until ready for next packet */
274 if (!(Endpoint_BytesInEndpoint()))
275 {
276 Endpoint_ClearOUT();
277 while (!(Endpoint_IsOUTReceived()));
278 }
279
280 /* Read the byte from the USB interface and write to to the EEPROM */
281 eeprom_write_byte((uint8_t*)StartAddr, Endpoint_Read_Byte());
282
283 /* Adjust counters */
284 StartAddr++;
285 }
286 }
287
288 /* Throw away the currently unused DFU file suffix */
289 DiscardFillerBytes(DFU_FILE_SUFFIX_SIZE);
290 }
291 }
292
293 Endpoint_ClearOUT();
294
295 /* Acknowledge status stage */
296 while (!(Endpoint_IsINReady()));
297 Endpoint_ClearIN();
298
299 break;
300 case DFU_UPLOAD:
301 Endpoint_ClearSETUP();
302
303 while (!(Endpoint_IsINReady()));
304
305 if (DFU_State != dfuUPLOAD_IDLE)
306 {
307 if ((DFU_State == dfuERROR) && IS_ONEBYTE_COMMAND(SentCommand.Data, 0x01)) // Blank Check
308 {
309 /* Blank checking is performed in the DFU_DNLOAD request - if we get here we've told the host
310 that the memory isn't blank, and the host is requesting the first non-blank address */
311 Endpoint_Write_Word_LE(StartAddr);
312 }
313 else
314 {
315 /* Idle state upload - send response to last issued command */
316 Endpoint_Write_Byte(ResponseByte);
317 }
318 }
319 else
320 {
321 /* Determine the number of bytes remaining in the current block */
322 uint16_t BytesRemaining = ((EndAddr - StartAddr) + 1);
323
324 if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x00)) // Read FLASH
325 {
326 /* Calculate the number of words to be written from the number of bytes to be written */
327 uint16_t WordsRemaining = (BytesRemaining >> 1);
328
329 union
330 {
331 uint16_t Words[2];
332 uint32_t Long;
333 } CurrFlashAddress = {.Words = {StartAddr, Flash64KBPage}};
334
335 while (WordsRemaining--)
336 {
337 /* Check if endpoint is full - if so clear it and wait until ready for next packet */
338 if (Endpoint_BytesInEndpoint() == FIXED_CONTROL_ENDPOINT_SIZE)
339 {
340 Endpoint_ClearIN();
341 while (!(Endpoint_IsINReady()));
342 }
343
344 /* Read the flash word and send it via USB to the host */
345 #if defined(RAMPZ)
346 Endpoint_Write_Word_LE(pgm_read_word_far(CurrFlashAddress.Long));
347 #else
348 Endpoint_Write_Word_LE(pgm_read_word(CurrFlashAddress.Long));
349 #endif
350
351 /* Adjust counters */
352 CurrFlashAddress.Long += 2;
353 }
354
355 /* Once reading is complete, start address equals the end address */
356 StartAddr = EndAddr;
357 }
358 else if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x02)) // Read EEPROM
359 {
360 while (BytesRemaining--)
361 {
362 /* Check if endpoint is full - if so clear it and wait until ready for next packet */
363 if (Endpoint_BytesInEndpoint() == FIXED_CONTROL_ENDPOINT_SIZE)
364 {
365 Endpoint_ClearIN();
366 while (!(Endpoint_IsINReady()));
367 }
368
369 /* Read the EEPROM byte and send it via USB to the host */
370 Endpoint_Write_Byte(eeprom_read_byte((uint8_t*)StartAddr));
371
372 /* Adjust counters */
373 StartAddr++;
374 }
375 }
376
377 /* Return to idle state */
378 DFU_State = dfuIDLE;
379 }
380
381 Endpoint_ClearIN();
382
383 /* Acknowledge status stage */
384 while (!(Endpoint_IsOUTReceived()));
385 Endpoint_ClearOUT();
386
387 break;
388 case DFU_GETSTATUS:
389 Endpoint_ClearSETUP();
390
391 /* Write 8-bit status value */
392 Endpoint_Write_Byte(DFU_Status);
393
394 /* Write 24-bit poll timeout value */
395 Endpoint_Write_Byte(0);
396 Endpoint_Write_Word_LE(0);
397
398 /* Write 8-bit state value */
399 Endpoint_Write_Byte(DFU_State);
400
401 /* Write 8-bit state string ID number */
402 Endpoint_Write_Byte(0);
403
404 Endpoint_ClearIN();
405
406 /* Acknowledge status stage */
407 while (!(Endpoint_IsOUTReceived()));
408 Endpoint_ClearOUT();
409
410 break;
411 case DFU_CLRSTATUS:
412 Endpoint_ClearSETUP();
413
414 /* Reset the status value variable to the default OK status */
415 DFU_Status = OK;
416
417 /* Acknowledge status stage */
418 while (!(Endpoint_IsINReady()));
419 Endpoint_ClearIN();
420
421 break;
422 case DFU_GETSTATE:
423 Endpoint_ClearSETUP();
424
425 /* Write the current device state to the endpoint */
426 Endpoint_Write_Byte(DFU_State);
427
428 Endpoint_ClearIN();
429
430 /* Acknowledge status stage */
431 while (!(Endpoint_IsOUTReceived()));
432 Endpoint_ClearOUT();
433
434 break;
435 case DFU_ABORT:
436 Endpoint_ClearSETUP();
437
438 /* Reset the current state variable to the default idle state */
439 DFU_State = dfuIDLE;
440
441 /* Acknowledge status stage */
442 while (!(Endpoint_IsINReady()));
443 Endpoint_ClearIN();
444
445 break;
446 }
447 }
448
449 /** Routine to discard the specified number of bytes from the control endpoint stream. This is used to
450 * discard unused bytes in the stream from the host, including the memory program block suffix.
451 *
452 * \param NumberOfBytes Number of bytes to discard from the host from the control endpoint
453 */
454 static void DiscardFillerBytes(uint8_t NumberOfBytes)
455 {
456 while (NumberOfBytes--)
457 {
458 if (!(Endpoint_BytesInEndpoint()))
459 {
460 Endpoint_ClearOUT();
461
462 /* Wait until next data packet received */
463 while (!(Endpoint_IsOUTReceived()));
464 }
465
466 Endpoint_Discard_Byte();
467 }
468 }
469
470 /** Routine to process an issued command from the host, via a DFU_DNLOAD request wrapper. This routine ensures
471 * that the command is allowed based on the current secure mode flag value, and passes the command off to the
472 * appropriate handler function.
473 */
474 static void ProcessBootloaderCommand(void)
475 {
476 /* Check if device is in secure mode */
477 if (IsSecure)
478 {
479 /* Don't process command unless it is a READ or chip erase command */
480 if (!(((SentCommand.Command == COMMAND_WRITE) &&
481 IS_TWOBYTE_COMMAND(SentCommand.Data, 0x00, 0xFF)) ||
482 (SentCommand.Command == COMMAND_READ)))
483 {
484 /* Set the state and status variables to indicate the error */
485 DFU_State = dfuERROR;
486 DFU_Status = errWRITE;
487
488 /* Stall command */
489 Endpoint_StallTransaction();
490
491 /* Don't process the command */
492 return;
493 }
494 }
495
496 /* Dispatch the required command processing routine based on the command type */
497 switch (SentCommand.Command)
498 {
499 case COMMAND_PROG_START:
500 ProcessMemProgCommand();
501 break;
502 case COMMAND_DISP_DATA:
503 ProcessMemReadCommand();
504 break;
505 case COMMAND_WRITE:
506 ProcessWriteCommand();
507 break;
508 case COMMAND_READ:
509 ProcessReadCommand();
510 break;
511 case COMMAND_CHANGE_BASE_ADDR:
512 if (IS_TWOBYTE_COMMAND(SentCommand.Data, 0x03, 0x00)) // Set 64KB flash page command
513 Flash64KBPage = SentCommand.Data[2];
514
515 break;
516 }
517 }
518
519 /** Routine to concatenate the given pair of 16-bit memory start and end addresses from the host, and store them
520 * in the StartAddr and EndAddr global variables.
521 */
522 static void LoadStartEndAddresses(void)
523 {
524 union
525 {
526 uint8_t Bytes[2];
527 uint16_t Word;
528 } Address[2] = {{.Bytes = {SentCommand.Data[2], SentCommand.Data[1]}},
529 {.Bytes = {SentCommand.Data[4], SentCommand.Data[3]}}};
530
531 /* Load in the start and ending read addresses from the sent data packet */
532 StartAddr = Address[0].Word;
533 EndAddr = Address[1].Word;
534 }
535
536 /** Handler for a Memory Program command issued by the host. This routine handles the preparations needed
537 * to write subsequent data from the host into the specified memory.
538 */
539 static void ProcessMemProgCommand(void)
540 {
541 if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x00) || // Write FLASH command
542 IS_ONEBYTE_COMMAND(SentCommand.Data, 0x01)) // Write EEPROM command
543 {
544 /* Load in the start and ending read addresses */
545 LoadStartEndAddresses();
546
547 /* If FLASH is being written to, we need to pre-erase the first page to write to */
548 if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x00))
549 {
550 union
551 {
552 uint16_t Words[2];
553 uint32_t Long;
554 } CurrFlashAddress = {.Words = {StartAddr, Flash64KBPage}};
555
556 /* Erase the current page's temp buffer */
557 boot_page_erase(CurrFlashAddress.Long);
558 boot_spm_busy_wait();
559 }
560
561 /* Set the state so that the next DNLOAD requests reads in the firmware */
562 DFU_State = dfuDNLOAD_IDLE;
563 }
564 }
565
566 /** Handler for a Memory Read command issued by the host. This routine handles the preparations needed
567 * to read subsequent data from the specified memory out to the host, as well as implementing the memory
568 * blank check command.
569 */
570 static void ProcessMemReadCommand(void)
571 {
572 if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x00) || // Read FLASH command
573 IS_ONEBYTE_COMMAND(SentCommand.Data, 0x02)) // Read EEPROM command
574 {
575 /* Load in the start and ending read addresses */
576 LoadStartEndAddresses();
577
578 /* Set the state so that the next UPLOAD requests read out the firmware */
579 DFU_State = dfuUPLOAD_IDLE;
580 }
581 else if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x01)) // Blank check FLASH command
582 {
583 uint32_t CurrFlashAddress = 0;
584
585 while (CurrFlashAddress < BOOT_START_ADDR)
586 {
587 /* Check if the current byte is not blank */
588 #if defined(RAMPZ)
589 if (pgm_read_byte_far(CurrFlashAddress) != 0xFF)
590 #else
591 if (pgm_read_byte(CurrFlashAddress) != 0xFF)
592 #endif
593 {
594 /* Save the location of the first non-blank byte for response back to the host */
595 Flash64KBPage = (CurrFlashAddress >> 16);
596 StartAddr = CurrFlashAddress;
597
598 /* Set state and status variables to the appropriate error values */
599 DFU_State = dfuERROR;
600 DFU_Status = errCHECK_ERASED;
601
602 break;
603 }
604
605 CurrFlashAddress++;
606 }
607 }
608 }
609
610 /** Handler for a Data Write command issued by the host. This routine handles non-programming commands such as
611 * bootloader exit (both via software jumps and hardware watchdog resets) and flash memory erasure.
612 */
613 static void ProcessWriteCommand(void)
614 {
615 if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x03)) // Start application
616 {
617 /* Indicate that the bootloader is terminating */
618 WaitForExit = true;
619
620 /* Check if empty request data array - an empty request after a filled request retains the
621 previous valid request data, but initializes the reset */
622 if (!(SentCommand.DataSize))
623 {
624 if (SentCommand.Data[1] == 0x00) // Start via watchdog
625 {
626 /* Start the watchdog to reset the AVR once the communications are finalized */
627 wdt_enable(WDTO_250MS);
628 }
629 else // Start via jump
630 {
631 /* Load in the jump address into the application start address pointer */
632 union
633 {
634 uint8_t Bytes[2];
635 AppPtr_t FuncPtr;
636 } Address = {.Bytes = {SentCommand.Data[4], SentCommand.Data[3]}};
637
638 AppStartPtr = Address.FuncPtr;
639
640 /* Set the flag to terminate the bootloader at next opportunity */
641 RunBootloader = false;
642 }
643 }
644 }
645 else if (IS_TWOBYTE_COMMAND(SentCommand.Data, 0x00, 0xFF)) // Erase flash
646 {
647 uint32_t CurrFlashAddress = 0;
648
649 /* Clear the application section of flash */
650 while (CurrFlashAddress < BOOT_START_ADDR)
651 {
652 boot_page_erase(CurrFlashAddress);
653 boot_spm_busy_wait();
654 boot_page_write(CurrFlashAddress);
655 boot_spm_busy_wait();
656
657 CurrFlashAddress += SPM_PAGESIZE;
658 }
659
660 /* Re-enable the RWW section of flash as writing to the flash locks it out */
661 boot_rww_enable();
662
663 /* Memory has been erased, reset the security bit so that programming/reading is allowed */
664 IsSecure = false;
665 }
666 }
667
668 /** Handler for a Data Read command issued by the host. This routine handles bootloader information retrieval
669 * commands such as device signature and bootloader version retrieval.
670 */
671 static void ProcessReadCommand(void)
672 {
673 const uint8_t BootloaderInfo[3] = {BOOTLOADER_VERSION, BOOTLOADER_ID_BYTE1, BOOTLOADER_ID_BYTE2};
674 const uint8_t SignatureInfo[3] = {SIGNATURE_0, SIGNATURE_1, SIGNATURE_2};
675
676 uint8_t DataIndexToRead = SentCommand.Data[1];
677
678 if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x00)) // Read bootloader info
679 {
680 ResponseByte = BootloaderInfo[DataIndexToRead];
681 }
682 else if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x01)) // Read signature byte
683 {
684 ResponseByte = SignatureInfo[DataIndexToRead - 0x30];
685 }
686 }