Fix bootloaders not starting user application if the HWB is grounded during watchdog...
[pub/USBasp.git] / Bootloaders / CDC / BootloaderCDC.c
1 /*
2 LUFA Library
3 Copyright (C) Dean Camera, 2014.
4
5 dean [at] fourwalledcubicle [dot] com
6 www.lufa-lib.org
7 */
8
9 /*
10 Copyright 2014 Dean Camera (dean [at] fourwalledcubicle [dot] com)
11
12 Permission to use, copy, modify, distribute, and sell this
13 software and its documentation for any purpose is hereby granted
14 without fee, provided that the above copyright notice appear in
15 all copies and that both that the copyright notice and this
16 permission notice and warranty disclaimer appear in supporting
17 documentation, and that the name of the author not be used in
18 advertising or publicity pertaining to distribution of the
19 software without specific, written prior permission.
20
21 The author disclaims all warranties with regard to this
22 software, including all implied warranties of merchantability
23 and fitness. In no event shall the author be liable for any
24 special, indirect or consequential damages or any damages
25 whatsoever resulting from loss of use, data or profits, whether
26 in an action of contract, negligence or other tortious action,
27 arising out of or in connection with the use or performance of
28 this software.
29 */
30
31 /** \file
32 *
33 * Main source file for the CDC class bootloader. This file contains the complete bootloader logic.
34 */
35
36 #define INCLUDE_FROM_BOOTLOADERCDC_C
37 #include "BootloaderCDC.h"
38
39 /** Contains the current baud rate and other settings of the first virtual serial port. This must be retained as some
40 * operating systems will not open the port unless the settings can be set successfully.
41 */
42 static CDC_LineEncoding_t LineEncoding = { .BaudRateBPS = 0,
43 .CharFormat = CDC_LINEENCODING_OneStopBit,
44 .ParityType = CDC_PARITY_None,
45 .DataBits = 8 };
46
47 /** Current address counter. This stores the current address of the FLASH or EEPROM as set by the host,
48 * and is used when reading or writing to the AVRs memory (either FLASH or EEPROM depending on the issued
49 * command.)
50 */
51 static uint32_t CurrAddress;
52
53 /** Flag to indicate if the bootloader should be running, or should exit and allow the application code to run
54 * via a watchdog reset. When cleared the bootloader will exit, starting the watchdog and entering an infinite
55 * loop until the AVR restarts and the application runs.
56 */
57 static bool RunBootloader = true;
58
59 /** Magic lock for forced application start. If the HWBE fuse is programmed and BOOTRST is unprogrammed, the bootloader
60 * will start if the /HWB line of the AVR is held low and the system is reset. However, if the /HWB line is still held
61 * low when the application attempts to start via a watchdog reset, the bootloader will re-start. If set to the value
62 * \ref MAGIC_BOOT_KEY the special init function \ref Application_Jump_Check() will force the application to start.
63 */
64 uint16_t MagicBootKey ATTR_NO_INIT;
65
66
67 /** Special startup routine to check if the bootloader was started via a watchdog reset, and if the magic application
68 * start key has been loaded into \ref MagicBootKey. If the bootloader started via the watchdog and the key is valid,
69 * this will force the user application to start via a software jump.
70 */
71 void Application_Jump_Check(void)
72 {
73 bool JumpToApplication = false;
74
75 #if (BOARD == BOARD_LEONARDO)
76 /* Enable pull-up on the IO13 pin so we can use it to select the mode */
77 PORTC |= (1 << 7);
78 Delay_MS(10);
79
80 /* If IO13 is not jumpered to ground, start the user application instead */
81 JumpToApplication = ((PINC & (1 << 7)) != 0);
82
83 /* Disable pull-up after the check has completed */
84 PORTC &= ~(1 << 7);
85 #elif ((BOARD == BOARD_XPLAIN) || (BOARD == BOARD_XPLAIN_REV1))
86 /* Disable JTAG debugging */
87 JTAG_DISABLE();
88
89 /* Enable pull-up on the JTAG TCK pin so we can use it to select the mode */
90 PORTF |= (1 << 4);
91 Delay_MS(10);
92
93 /* If the TCK pin is not jumpered to ground, start the user application instead */
94 JumpToApplication = ((PINF & (1 << 4)) != 0);
95
96 /* Re-enable JTAG debugging */
97 JTAG_ENABLE();
98 #else
99 /* Check if the device's BOOTRST fuse is set */
100 if (boot_lock_fuse_bits_get(GET_HIGH_FUSE_BITS) & FUSE_BOOTRST)
101 {
102 /* If the reset source was not an external reset or the key is correct, clear it and jump to the application */
103 if (!(MCUSR & (1 << EXTRF)) || (MagicBootKey == MAGIC_BOOT_KEY))
104 JumpToApplication = true;
105
106 /* Clear reset source */
107 MCUSR &= ~(1 << EXTRF);
108 }
109 else
110 {
111 /* If the reset source was the bootloader and the key is correct, clear it and jump to the application;
112 * this can happen in the HWBE fuse is set, and the HBE pin is low during the watchdog reset */
113 if ((MCUSR & (1 << WDRF)) && (MagicBootKey == MAGIC_BOOT_KEY))
114 JumpToApplication = true;
115
116 /* Clear reset source */
117 MCUSR &= ~(1 << WDRF);
118 }
119 #endif
120
121 /* Don't run the user application if the reset vector is blank (no app loaded) */
122 bool ApplicationValid = (pgm_read_word_near(0) != 0xFFFF);
123
124 /* If a request has been made to jump to the user application, honor it */
125 if (JumpToApplication && ApplicationValid)
126 {
127 /* Turn off the watchdog */
128 MCUSR &= ~(1 << WDRF);
129 wdt_disable();
130
131 /* Clear the boot key and jump to the user application */
132 MagicBootKey = 0;
133
134 // cppcheck-suppress constStatement
135 ((void (*)(void))0x0000)();
136 }
137 }
138
139 /** Main program entry point. This routine configures the hardware required by the bootloader, then continuously
140 * runs the bootloader processing routine until instructed to soft-exit, or hard-reset via the watchdog to start
141 * the loaded application code.
142 */
143 int main(void)
144 {
145 /* Setup hardware required for the bootloader */
146 SetupHardware();
147
148 /* Turn on first LED on the board to indicate that the bootloader has started */
149 LEDs_SetAllLEDs(LEDS_LED1);
150
151 /* Enable global interrupts so that the USB stack can function */
152 GlobalInterruptEnable();
153
154 while (RunBootloader)
155 {
156 CDC_Task();
157 USB_USBTask();
158 }
159
160 /* Disconnect from the host - USB interface will be reset later along with the AVR */
161 USB_Detach();
162
163 /* Unlock the forced application start mode of the bootloader if it is restarted */
164 MagicBootKey = MAGIC_BOOT_KEY;
165
166 /* Enable the watchdog and force a timeout to reset the AVR */
167 wdt_enable(WDTO_250MS);
168
169 for (;;);
170 }
171
172 /** Configures all hardware required for the bootloader. */
173 static void SetupHardware(void)
174 {
175 /* Disable watchdog if enabled by bootloader/fuses */
176 MCUSR &= ~(1 << WDRF);
177 wdt_disable();
178
179 /* Disable clock division */
180 clock_prescale_set(clock_div_1);
181
182 /* Relocate the interrupt vector table to the bootloader section */
183 MCUCR = (1 << IVCE);
184 MCUCR = (1 << IVSEL);
185
186 /* Initialize the USB and other board hardware drivers */
187 USB_Init();
188 LEDs_Init();
189
190 /* Bootloader active LED toggle timer initialization */
191 TIMSK1 = (1 << TOIE1);
192 TCCR1B = ((1 << CS11) | (1 << CS10));
193 }
194
195 /** ISR to periodically toggle the LEDs on the board to indicate that the bootloader is active. */
196 ISR(TIMER1_OVF_vect, ISR_BLOCK)
197 {
198 LEDs_ToggleLEDs(LEDS_LED1 | LEDS_LED2);
199 }
200
201 /** Event handler for the USB_ConfigurationChanged event. This configures the device's endpoints ready
202 * to relay data to and from the attached USB host.
203 */
204 void EVENT_USB_Device_ConfigurationChanged(void)
205 {
206 /* Setup CDC Notification, Rx and Tx Endpoints */
207 Endpoint_ConfigureEndpoint(CDC_NOTIFICATION_EPADDR, EP_TYPE_INTERRUPT,
208 CDC_NOTIFICATION_EPSIZE, 1);
209
210 Endpoint_ConfigureEndpoint(CDC_TX_EPADDR, EP_TYPE_BULK, CDC_TXRX_EPSIZE, 1);
211
212 Endpoint_ConfigureEndpoint(CDC_RX_EPADDR, EP_TYPE_BULK, CDC_TXRX_EPSIZE, 1);
213 }
214
215 /** Event handler for the USB_ControlRequest event. This is used to catch and process control requests sent to
216 * the device from the USB host before passing along unhandled control requests to the library for processing
217 * internally.
218 */
219 void EVENT_USB_Device_ControlRequest(void)
220 {
221 /* Ignore any requests that aren't directed to the CDC interface */
222 if ((USB_ControlRequest.bmRequestType & (CONTROL_REQTYPE_TYPE | CONTROL_REQTYPE_RECIPIENT)) !=
223 (REQTYPE_CLASS | REQREC_INTERFACE))
224 {
225 return;
226 }
227
228 /* Activity - toggle indicator LEDs */
229 LEDs_ToggleLEDs(LEDS_LED1 | LEDS_LED2);
230
231 /* Process CDC specific control requests */
232 switch (USB_ControlRequest.bRequest)
233 {
234 case CDC_REQ_GetLineEncoding:
235 if (USB_ControlRequest.bmRequestType == (REQDIR_DEVICETOHOST | REQTYPE_CLASS | REQREC_INTERFACE))
236 {
237 Endpoint_ClearSETUP();
238
239 /* Write the line coding data to the control endpoint */
240 Endpoint_Write_Control_Stream_LE(&LineEncoding, sizeof(CDC_LineEncoding_t));
241 Endpoint_ClearOUT();
242 }
243
244 break;
245 case CDC_REQ_SetLineEncoding:
246 if (USB_ControlRequest.bmRequestType == (REQDIR_HOSTTODEVICE | REQTYPE_CLASS | REQREC_INTERFACE))
247 {
248 Endpoint_ClearSETUP();
249
250 /* Read the line coding data in from the host into the global struct */
251 Endpoint_Read_Control_Stream_LE(&LineEncoding, sizeof(CDC_LineEncoding_t));
252 Endpoint_ClearIN();
253 }
254
255 break;
256 case CDC_REQ_SetControlLineState:
257 if (USB_ControlRequest.bmRequestType == (REQDIR_HOSTTODEVICE | REQTYPE_CLASS | REQREC_INTERFACE))
258 {
259 Endpoint_ClearSETUP();
260 Endpoint_ClearStatusStage();
261 }
262
263 break;
264 }
265 }
266
267 #if !defined(NO_BLOCK_SUPPORT)
268 /** Reads or writes a block of EEPROM or FLASH memory to or from the appropriate CDC data endpoint, depending
269 * on the AVR109 protocol command issued.
270 *
271 * \param[in] Command Single character AVR109 protocol command indicating what memory operation to perform
272 */
273 static void ReadWriteMemoryBlock(const uint8_t Command)
274 {
275 uint16_t BlockSize;
276 char MemoryType;
277
278 uint8_t HighByte = 0;
279 uint8_t LowByte = 0;
280
281 BlockSize = (FetchNextCommandByte() << 8);
282 BlockSize |= FetchNextCommandByte();
283
284 MemoryType = FetchNextCommandByte();
285
286 if ((MemoryType != MEMORY_TYPE_FLASH) && (MemoryType != MEMORY_TYPE_EEPROM))
287 {
288 /* Send error byte back to the host */
289 WriteNextResponseByte('?');
290
291 return;
292 }
293
294 /* Check if command is to read a memory block */
295 if (Command == AVR109_COMMAND_BlockRead)
296 {
297 /* Re-enable RWW section */
298 boot_rww_enable();
299
300 while (BlockSize--)
301 {
302 if (MemoryType == MEMORY_TYPE_FLASH)
303 {
304 /* Read the next FLASH byte from the current FLASH page */
305 #if (FLASHEND > 0xFFFF)
306 WriteNextResponseByte(pgm_read_byte_far(CurrAddress | HighByte));
307 #else
308 WriteNextResponseByte(pgm_read_byte(CurrAddress | HighByte));
309 #endif
310
311 /* If both bytes in current word have been read, increment the address counter */
312 if (HighByte)
313 CurrAddress += 2;
314
315 HighByte = !HighByte;
316 }
317 else
318 {
319 /* Read the next EEPROM byte into the endpoint */
320 WriteNextResponseByte(eeprom_read_byte((uint8_t*)(intptr_t)(CurrAddress >> 1)));
321
322 /* Increment the address counter after use */
323 CurrAddress += 2;
324 }
325 }
326 }
327 else
328 {
329 uint32_t PageStartAddress = CurrAddress;
330
331 if (MemoryType == MEMORY_TYPE_FLASH)
332 {
333 boot_page_erase(PageStartAddress);
334 boot_spm_busy_wait();
335 }
336
337 while (BlockSize--)
338 {
339 if (MemoryType == MEMORY_TYPE_FLASH)
340 {
341 /* If both bytes in current word have been written, increment the address counter */
342 if (HighByte)
343 {
344 /* Write the next FLASH word to the current FLASH page */
345 boot_page_fill(CurrAddress, ((FetchNextCommandByte() << 8) | LowByte));
346
347 /* Increment the address counter after use */
348 CurrAddress += 2;
349 }
350 else
351 {
352 LowByte = FetchNextCommandByte();
353 }
354
355 HighByte = !HighByte;
356 }
357 else
358 {
359 /* Write the next EEPROM byte from the endpoint */
360 eeprom_write_byte((uint8_t*)((intptr_t)(CurrAddress >> 1)), FetchNextCommandByte());
361
362 /* Increment the address counter after use */
363 CurrAddress += 2;
364 }
365 }
366
367 /* If in FLASH programming mode, commit the page after writing */
368 if (MemoryType == MEMORY_TYPE_FLASH)
369 {
370 /* Commit the flash page to memory */
371 boot_page_write(PageStartAddress);
372
373 /* Wait until write operation has completed */
374 boot_spm_busy_wait();
375 }
376
377 /* Send response byte back to the host */
378 WriteNextResponseByte('\r');
379 }
380 }
381 #endif
382
383 /** Retrieves the next byte from the host in the CDC data OUT endpoint, and clears the endpoint bank if needed
384 * to allow reception of the next data packet from the host.
385 *
386 * \return Next received byte from the host in the CDC data OUT endpoint
387 */
388 static uint8_t FetchNextCommandByte(void)
389 {
390 /* Select the OUT endpoint so that the next data byte can be read */
391 Endpoint_SelectEndpoint(CDC_RX_EPADDR);
392
393 /* If OUT endpoint empty, clear it and wait for the next packet from the host */
394 while (!(Endpoint_IsReadWriteAllowed()))
395 {
396 Endpoint_ClearOUT();
397
398 while (!(Endpoint_IsOUTReceived()))
399 {
400 if (USB_DeviceState == DEVICE_STATE_Unattached)
401 return 0;
402 }
403 }
404
405 /* Fetch the next byte from the OUT endpoint */
406 return Endpoint_Read_8();
407 }
408
409 /** Writes the next response byte to the CDC data IN endpoint, and sends the endpoint back if needed to free up the
410 * bank when full ready for the next byte in the packet to the host.
411 *
412 * \param[in] Response Next response byte to send to the host
413 */
414 static void WriteNextResponseByte(const uint8_t Response)
415 {
416 /* Select the IN endpoint so that the next data byte can be written */
417 Endpoint_SelectEndpoint(CDC_TX_EPADDR);
418
419 /* If IN endpoint full, clear it and wait until ready for the next packet to the host */
420 if (!(Endpoint_IsReadWriteAllowed()))
421 {
422 Endpoint_ClearIN();
423
424 while (!(Endpoint_IsINReady()))
425 {
426 if (USB_DeviceState == DEVICE_STATE_Unattached)
427 return;
428 }
429 }
430
431 /* Write the next byte to the IN endpoint */
432 Endpoint_Write_8(Response);
433 }
434
435 /** Task to read in AVR109 commands from the CDC data OUT endpoint, process them, perform the required actions
436 * and send the appropriate response back to the host.
437 */
438 static void CDC_Task(void)
439 {
440 /* Select the OUT endpoint */
441 Endpoint_SelectEndpoint(CDC_RX_EPADDR);
442
443 /* Check if endpoint has a command in it sent from the host */
444 if (!(Endpoint_IsOUTReceived()))
445 return;
446
447 /* Read in the bootloader command (first byte sent from host) */
448 uint8_t Command = FetchNextCommandByte();
449
450 if (Command == AVR109_COMMAND_ExitBootloader)
451 {
452 RunBootloader = false;
453
454 /* Send confirmation byte back to the host */
455 WriteNextResponseByte('\r');
456 }
457 else if ((Command == AVR109_COMMAND_SetLED) || (Command == AVR109_COMMAND_ClearLED) ||
458 (Command == AVR109_COMMAND_SelectDeviceType))
459 {
460 FetchNextCommandByte();
461
462 /* Send confirmation byte back to the host */
463 WriteNextResponseByte('\r');
464 }
465 else if ((Command == AVR109_COMMAND_EnterProgrammingMode) || (Command == AVR109_COMMAND_LeaveProgrammingMode))
466 {
467 /* Send confirmation byte back to the host */
468 WriteNextResponseByte('\r');
469 }
470 else if (Command == AVR109_COMMAND_ReadPartCode)
471 {
472 /* Return ATMEGA128 part code - this is only to allow AVRProg to use the bootloader */
473 WriteNextResponseByte(0x44);
474 WriteNextResponseByte(0x00);
475 }
476 else if (Command == AVR109_COMMAND_ReadAutoAddressIncrement)
477 {
478 /* Indicate auto-address increment is supported */
479 WriteNextResponseByte('Y');
480 }
481 else if (Command == AVR109_COMMAND_SetCurrentAddress)
482 {
483 /* Set the current address to that given by the host (translate 16-bit word address to byte address) */
484 CurrAddress = (FetchNextCommandByte() << 9);
485 CurrAddress |= (FetchNextCommandByte() << 1);
486
487 /* Send confirmation byte back to the host */
488 WriteNextResponseByte('\r');
489 }
490 else if (Command == AVR109_COMMAND_ReadBootloaderInterface)
491 {
492 /* Indicate serial programmer back to the host */
493 WriteNextResponseByte('S');
494 }
495 else if (Command == AVR109_COMMAND_ReadBootloaderIdentifier)
496 {
497 /* Write the 7-byte software identifier to the endpoint */
498 for (uint8_t CurrByte = 0; CurrByte < 7; CurrByte++)
499 WriteNextResponseByte(SOFTWARE_IDENTIFIER[CurrByte]);
500 }
501 else if (Command == AVR109_COMMAND_ReadBootloaderSWVersion)
502 {
503 WriteNextResponseByte('0' + BOOTLOADER_VERSION_MAJOR);
504 WriteNextResponseByte('0' + BOOTLOADER_VERSION_MINOR);
505 }
506 else if (Command == AVR109_COMMAND_ReadSignature)
507 {
508 WriteNextResponseByte(AVR_SIGNATURE_3);
509 WriteNextResponseByte(AVR_SIGNATURE_2);
510 WriteNextResponseByte(AVR_SIGNATURE_1);
511 }
512 else if (Command == AVR109_COMMAND_EraseFLASH)
513 {
514 /* Clear the application section of flash */
515 for (uint32_t CurrFlashAddress = 0; CurrFlashAddress < (uint32_t)BOOT_START_ADDR; CurrFlashAddress += SPM_PAGESIZE)
516 {
517 boot_page_erase(CurrFlashAddress);
518 boot_spm_busy_wait();
519 boot_page_write(CurrFlashAddress);
520 boot_spm_busy_wait();
521 }
522
523 /* Send confirmation byte back to the host */
524 WriteNextResponseByte('\r');
525 }
526 #if !defined(NO_LOCK_BYTE_WRITE_SUPPORT)
527 else if (Command == AVR109_COMMAND_WriteLockbits)
528 {
529 /* Set the lock bits to those given by the host */
530 boot_lock_bits_set(FetchNextCommandByte());
531
532 /* Send confirmation byte back to the host */
533 WriteNextResponseByte('\r');
534 }
535 #endif
536 else if (Command == AVR109_COMMAND_ReadLockbits)
537 {
538 WriteNextResponseByte(boot_lock_fuse_bits_get(GET_LOCK_BITS));
539 }
540 else if (Command == AVR109_COMMAND_ReadLowFuses)
541 {
542 WriteNextResponseByte(boot_lock_fuse_bits_get(GET_LOW_FUSE_BITS));
543 }
544 else if (Command == AVR109_COMMAND_ReadHighFuses)
545 {
546 WriteNextResponseByte(boot_lock_fuse_bits_get(GET_HIGH_FUSE_BITS));
547 }
548 else if (Command == AVR109_COMMAND_ReadExtendedFuses)
549 {
550 WriteNextResponseByte(boot_lock_fuse_bits_get(GET_EXTENDED_FUSE_BITS));
551 }
552 #if !defined(NO_BLOCK_SUPPORT)
553 else if (Command == AVR109_COMMAND_GetBlockWriteSupport)
554 {
555 WriteNextResponseByte('Y');
556
557 /* Send block size to the host */
558 WriteNextResponseByte(SPM_PAGESIZE >> 8);
559 WriteNextResponseByte(SPM_PAGESIZE & 0xFF);
560 }
561 else if ((Command == AVR109_COMMAND_BlockWrite) || (Command == AVR109_COMMAND_BlockRead))
562 {
563 /* Delegate the block write/read to a separate function for clarity */
564 ReadWriteMemoryBlock(Command);
565 }
566 #endif
567 #if !defined(NO_FLASH_BYTE_SUPPORT)
568 else if (Command == AVR109_COMMAND_FillFlashPageWordHigh)
569 {
570 /* Write the high byte to the current flash page */
571 boot_page_fill(CurrAddress, FetchNextCommandByte());
572
573 /* Send confirmation byte back to the host */
574 WriteNextResponseByte('\r');
575 }
576 else if (Command == AVR109_COMMAND_FillFlashPageWordLow)
577 {
578 /* Write the low byte to the current flash page */
579 boot_page_fill(CurrAddress | 0x01, FetchNextCommandByte());
580
581 /* Increment the address */
582 CurrAddress += 2;
583
584 /* Send confirmation byte back to the host */
585 WriteNextResponseByte('\r');
586 }
587 else if (Command == AVR109_COMMAND_WriteFlashPage)
588 {
589 /* Commit the flash page to memory */
590 boot_page_write(CurrAddress);
591
592 /* Wait until write operation has completed */
593 boot_spm_busy_wait();
594
595 /* Send confirmation byte back to the host */
596 WriteNextResponseByte('\r');
597 }
598 else if (Command == AVR109_COMMAND_ReadFLASHWord)
599 {
600 #if (FLASHEND > 0xFFFF)
601 uint16_t ProgramWord = pgm_read_word_far(CurrAddress);
602 #else
603 uint16_t ProgramWord = pgm_read_word(CurrAddress);
604 #endif
605
606 WriteNextResponseByte(ProgramWord >> 8);
607 WriteNextResponseByte(ProgramWord & 0xFF);
608 }
609 #endif
610 #if !defined(NO_EEPROM_BYTE_SUPPORT)
611 else if (Command == AVR109_COMMAND_WriteEEPROM)
612 {
613 /* Read the byte from the endpoint and write it to the EEPROM */
614 eeprom_write_byte((uint8_t*)((intptr_t)(CurrAddress >> 1)), FetchNextCommandByte());
615
616 /* Increment the address after use */
617 CurrAddress += 2;
618
619 /* Send confirmation byte back to the host */
620 WriteNextResponseByte('\r');
621 }
622 else if (Command == AVR109_COMMAND_ReadEEPROM)
623 {
624 /* Read the EEPROM byte and write it to the endpoint */
625 WriteNextResponseByte(eeprom_read_byte((uint8_t*)((intptr_t)(CurrAddress >> 1))));
626
627 /* Increment the address after use */
628 CurrAddress += 2;
629 }
630 #endif
631 else if (Command != AVR109_COMMAND_Sync)
632 {
633 /* Unknown (non-sync) command, return fail code */
634 WriteNextResponseByte('?');
635 }
636
637 /* Select the IN endpoint */
638 Endpoint_SelectEndpoint(CDC_TX_EPADDR);
639
640 /* Remember if the endpoint is completely full before clearing it */
641 bool IsEndpointFull = !(Endpoint_IsReadWriteAllowed());
642
643 /* Send the endpoint data to the host */
644 Endpoint_ClearIN();
645
646 /* If a full endpoint's worth of data was sent, we need to send an empty packet afterwards to signal end of transfer */
647 if (IsEndpointFull)
648 {
649 while (!(Endpoint_IsINReady()))
650 {
651 if (USB_DeviceState == DEVICE_STATE_Unattached)
652 return;
653 }
654
655 Endpoint_ClearIN();
656 }
657
658 /* Wait until the data has been sent to the host */
659 while (!(Endpoint_IsINReady()))
660 {
661 if (USB_DeviceState == DEVICE_STATE_Unattached)
662 return;
663 }
664
665 /* Select the OUT endpoint */
666 Endpoint_SelectEndpoint(CDC_RX_EPADDR);
667
668 /* Acknowledge the command from the host */
669 Endpoint_ClearOUT();
670 }
671