Don't fail Doxygen on versions built without various features.
[pub/USBasp.git] / Bootloaders / CDC / BootloaderCDC.c
1 /*
2 LUFA Library
3 Copyright (C) Dean Camera, 2014.
4
5 dean [at] fourwalledcubicle [dot] com
6 www.lufa-lib.org
7 */
8
9 /*
10 Copyright 2014 Dean Camera (dean [at] fourwalledcubicle [dot] com)
11
12 Permission to use, copy, modify, distribute, and sell this
13 software and its documentation for any purpose is hereby granted
14 without fee, provided that the above copyright notice appear in
15 all copies and that both that the copyright notice and this
16 permission notice and warranty disclaimer appear in supporting
17 documentation, and that the name of the author not be used in
18 advertising or publicity pertaining to distribution of the
19 software without specific, written prior permission.
20
21 The author disclaims all warranties with regard to this
22 software, including all implied warranties of merchantability
23 and fitness. In no event shall the author be liable for any
24 special, indirect or consequential damages or any damages
25 whatsoever resulting from loss of use, data or profits, whether
26 in an action of contract, negligence or other tortious action,
27 arising out of or in connection with the use or performance of
28 this software.
29 */
30
31 /** \file
32 *
33 * Main source file for the CDC class bootloader. This file contains the complete bootloader logic.
34 */
35
36 #define INCLUDE_FROM_BOOTLOADERCDC_C
37 #include "BootloaderCDC.h"
38
39 /** Contains the current baud rate and other settings of the first virtual serial port. This must be retained as some
40 * operating systems will not open the port unless the settings can be set successfully.
41 */
42 static CDC_LineEncoding_t LineEncoding = { .BaudRateBPS = 0,
43 .CharFormat = CDC_LINEENCODING_OneStopBit,
44 .ParityType = CDC_PARITY_None,
45 .DataBits = 8 };
46
47 /** Current address counter. This stores the current address of the FLASH or EEPROM as set by the host,
48 * and is used when reading or writing to the AVRs memory (either FLASH or EEPROM depending on the issued
49 * command.)
50 */
51 static uint32_t CurrAddress;
52
53 /** Flag to indicate if the bootloader should be running, or should exit and allow the application code to run
54 * via a watchdog reset. When cleared the bootloader will exit, starting the watchdog and entering an infinite
55 * loop until the AVR restarts and the application runs.
56 */
57 static bool RunBootloader = true;
58
59 /** Magic lock for forced application start. If the HWBE fuse is programmed and BOOTRST is unprogrammed, the bootloader
60 * will start if the /HWB line of the AVR is held low and the system is reset. However, if the /HWB line is still held
61 * low when the application attempts to start via a watchdog reset, the bootloader will re-start. If set to the value
62 * \ref MAGIC_BOOT_KEY the special init function \ref Application_Jump_Check() will force the application to start.
63 */
64 uint16_t MagicBootKey ATTR_NO_INIT;
65
66
67 /** Special startup routine to check if the bootloader was started via a watchdog reset, and if the magic application
68 * start key has been loaded into \ref MagicBootKey. If the bootloader started via the watchdog and the key is valid,
69 * this will force the user application to start via a software jump.
70 */
71 void Application_Jump_Check(void)
72 {
73 bool JumpToApplication = false;
74
75 #if (BOARD == BOARD_LEONARDO)
76 /* Enable pull-up on the IO13 pin so we can use it to select the mode */
77 PORTC |= (1 << 7);
78 Delay_MS(10);
79
80 /* If IO13 is not jumpered to ground, start the user application instead */
81 JumpToApplication = ((PINC & (1 << 7)) != 0);
82
83 /* Disable pull-up after the check has completed */
84 PORTC &= ~(1 << 7);
85 #elif ((BOARD == BOARD_XPLAIN) || (BOARD == BOARD_XPLAIN_REV1))
86 /* Disable JTAG debugging */
87 JTAG_DISABLE();
88
89 /* Enable pull-up on the JTAG TCK pin so we can use it to select the mode */
90 PORTF |= (1 << 4);
91 Delay_MS(10);
92
93 /* If the TCK pin is not jumpered to ground, start the user application instead */
94 JumpToApplication = ((PINF & (1 << 4)) != 0);
95
96 /* Re-enable JTAG debugging */
97 JTAG_ENABLE();
98 #else
99 /* Check if the device's BOOTRST fuse is set */
100 if (boot_lock_fuse_bits_get(GET_HIGH_FUSE_BITS) & FUSE_BOOTRST)
101 {
102 /* If the reset source was not an external reset or the key is correct, clear it and jump to the application */
103 if (!(MCUSR & (1 << EXTRF)) || (MagicBootKey == MAGIC_BOOT_KEY))
104 JumpToApplication = true;
105
106 /* Clear reset source */
107 MCUSR &= ~(1 << EXTRF);
108 }
109 else
110 {
111 /* If the reset source was the bootloader and the key is correct, clear it and jump to the application;
112 * this can happen in the HWBE fuse is set, and the HBE pin is low during the watchdog reset */
113 if ((MCUSR & (1 << WDRF)) && (MagicBootKey == MAGIC_BOOT_KEY))
114 JumpToApplication = true;
115
116 /* Clear reset source */
117 MCUSR &= ~(1 << WDRF);
118 }
119 #endif
120
121 /* Don't run the user application if the reset vector is blank (no app loaded) */
122 bool ApplicationValid = (pgm_read_word_near(0) != 0xFFFF);
123
124 /* If a request has been made to jump to the user application, honor it */
125 if (JumpToApplication && ApplicationValid)
126 {
127 /* Turn off the watchdog */
128 MCUSR &= ~(1 << WDRF);
129 wdt_disable();
130
131 /* Clear the boot key and jump to the user application */
132 MagicBootKey = 0;
133
134 // cppcheck-suppress constStatement
135 ((void (*)(void))0x0000)();
136 }
137 }
138
139 /** Main program entry point. This routine configures the hardware required by the bootloader, then continuously
140 * runs the bootloader processing routine until instructed to soft-exit, or hard-reset via the watchdog to start
141 * the loaded application code.
142 */
143 int main(void)
144 {
145 /* Setup hardware required for the bootloader */
146 SetupHardware();
147
148 /* Turn on first LED on the board to indicate that the bootloader has started */
149 LEDs_SetAllLEDs(LEDS_LED1);
150
151 /* Enable global interrupts so that the USB stack can function */
152 GlobalInterruptEnable();
153
154 while (RunBootloader)
155 {
156 CDC_Task();
157 USB_USBTask();
158 }
159
160 /* Wait a short time to end all USB transactions and then disconnect */
161 _delay_us(1000);
162
163 /* Disconnect from the host - USB interface will be reset later along with the AVR */
164 USB_Detach();
165
166 /* Unlock the forced application start mode of the bootloader if it is restarted */
167 MagicBootKey = MAGIC_BOOT_KEY;
168
169 /* Enable the watchdog and force a timeout to reset the AVR */
170 wdt_enable(WDTO_250MS);
171
172 for (;;);
173 }
174
175 /** Configures all hardware required for the bootloader. */
176 static void SetupHardware(void)
177 {
178 /* Disable watchdog if enabled by bootloader/fuses */
179 MCUSR &= ~(1 << WDRF);
180 wdt_disable();
181
182 /* Disable clock division */
183 clock_prescale_set(clock_div_1);
184
185 /* Relocate the interrupt vector table to the bootloader section */
186 MCUCR = (1 << IVCE);
187 MCUCR = (1 << IVSEL);
188
189 /* Initialize the USB and other board hardware drivers */
190 USB_Init();
191 LEDs_Init();
192
193 /* Bootloader active LED toggle timer initialization */
194 TIMSK1 = (1 << TOIE1);
195 TCCR1B = ((1 << CS11) | (1 << CS10));
196 }
197
198 /** ISR to periodically toggle the LEDs on the board to indicate that the bootloader is active. */
199 ISR(TIMER1_OVF_vect, ISR_BLOCK)
200 {
201 LEDs_ToggleLEDs(LEDS_LED1 | LEDS_LED2);
202 }
203
204 /** Event handler for the USB_ConfigurationChanged event. This configures the device's endpoints ready
205 * to relay data to and from the attached USB host.
206 */
207 void EVENT_USB_Device_ConfigurationChanged(void)
208 {
209 /* Setup CDC Notification, Rx and Tx Endpoints */
210 Endpoint_ConfigureEndpoint(CDC_NOTIFICATION_EPADDR, EP_TYPE_INTERRUPT,
211 CDC_NOTIFICATION_EPSIZE, 1);
212
213 Endpoint_ConfigureEndpoint(CDC_TX_EPADDR, EP_TYPE_BULK, CDC_TXRX_EPSIZE, 1);
214
215 Endpoint_ConfigureEndpoint(CDC_RX_EPADDR, EP_TYPE_BULK, CDC_TXRX_EPSIZE, 1);
216 }
217
218 /** Event handler for the USB_ControlRequest event. This is used to catch and process control requests sent to
219 * the device from the USB host before passing along unhandled control requests to the library for processing
220 * internally.
221 */
222 void EVENT_USB_Device_ControlRequest(void)
223 {
224 /* Ignore any requests that aren't directed to the CDC interface */
225 if ((USB_ControlRequest.bmRequestType & (CONTROL_REQTYPE_TYPE | CONTROL_REQTYPE_RECIPIENT)) !=
226 (REQTYPE_CLASS | REQREC_INTERFACE))
227 {
228 return;
229 }
230
231 /* Activity - toggle indicator LEDs */
232 LEDs_ToggleLEDs(LEDS_LED1 | LEDS_LED2);
233
234 /* Process CDC specific control requests */
235 switch (USB_ControlRequest.bRequest)
236 {
237 case CDC_REQ_GetLineEncoding:
238 if (USB_ControlRequest.bmRequestType == (REQDIR_DEVICETOHOST | REQTYPE_CLASS | REQREC_INTERFACE))
239 {
240 Endpoint_ClearSETUP();
241
242 /* Write the line coding data to the control endpoint */
243 Endpoint_Write_Control_Stream_LE(&LineEncoding, sizeof(CDC_LineEncoding_t));
244 Endpoint_ClearOUT();
245 }
246
247 break;
248 case CDC_REQ_SetLineEncoding:
249 if (USB_ControlRequest.bmRequestType == (REQDIR_HOSTTODEVICE | REQTYPE_CLASS | REQREC_INTERFACE))
250 {
251 Endpoint_ClearSETUP();
252
253 /* Read the line coding data in from the host into the global struct */
254 Endpoint_Read_Control_Stream_LE(&LineEncoding, sizeof(CDC_LineEncoding_t));
255 Endpoint_ClearIN();
256 }
257
258 break;
259 case CDC_REQ_SetControlLineState:
260 if (USB_ControlRequest.bmRequestType == (REQDIR_HOSTTODEVICE | REQTYPE_CLASS | REQREC_INTERFACE))
261 {
262 Endpoint_ClearSETUP();
263 Endpoint_ClearStatusStage();
264 }
265
266 break;
267 }
268 }
269
270 #if !defined(NO_BLOCK_SUPPORT)
271 /** Reads or writes a block of EEPROM or FLASH memory to or from the appropriate CDC data endpoint, depending
272 * on the AVR109 protocol command issued.
273 *
274 * \param[in] Command Single character AVR109 protocol command indicating what memory operation to perform
275 */
276 static void ReadWriteMemoryBlock(const uint8_t Command)
277 {
278 uint16_t BlockSize;
279 char MemoryType;
280
281 uint8_t HighByte = 0;
282 uint8_t LowByte = 0;
283
284 BlockSize = (FetchNextCommandByte() << 8);
285 BlockSize |= FetchNextCommandByte();
286
287 MemoryType = FetchNextCommandByte();
288
289 if ((MemoryType != MEMORY_TYPE_FLASH) && (MemoryType != MEMORY_TYPE_EEPROM))
290 {
291 /* Send error byte back to the host */
292 WriteNextResponseByte('?');
293
294 return;
295 }
296
297 /* Check if command is to read a memory block */
298 if (Command == AVR109_COMMAND_BlockRead)
299 {
300 /* Re-enable RWW section */
301 boot_rww_enable();
302
303 while (BlockSize--)
304 {
305 if (MemoryType == MEMORY_TYPE_FLASH)
306 {
307 /* Read the next FLASH byte from the current FLASH page */
308 #if (FLASHEND > 0xFFFF)
309 WriteNextResponseByte(pgm_read_byte_far(CurrAddress | HighByte));
310 #else
311 WriteNextResponseByte(pgm_read_byte(CurrAddress | HighByte));
312 #endif
313
314 /* If both bytes in current word have been read, increment the address counter */
315 if (HighByte)
316 CurrAddress += 2;
317
318 HighByte = !HighByte;
319 }
320 else
321 {
322 /* Read the next EEPROM byte into the endpoint */
323 WriteNextResponseByte(eeprom_read_byte((uint8_t*)(intptr_t)(CurrAddress >> 1)));
324
325 /* Increment the address counter after use */
326 CurrAddress += 2;
327 }
328 }
329 }
330 else
331 {
332 uint32_t PageStartAddress = CurrAddress;
333
334 if (MemoryType == MEMORY_TYPE_FLASH)
335 {
336 boot_page_erase(PageStartAddress);
337 boot_spm_busy_wait();
338 }
339
340 while (BlockSize--)
341 {
342 if (MemoryType == MEMORY_TYPE_FLASH)
343 {
344 /* If both bytes in current word have been written, increment the address counter */
345 if (HighByte)
346 {
347 /* Write the next FLASH word to the current FLASH page */
348 boot_page_fill(CurrAddress, ((FetchNextCommandByte() << 8) | LowByte));
349
350 /* Increment the address counter after use */
351 CurrAddress += 2;
352 }
353 else
354 {
355 LowByte = FetchNextCommandByte();
356 }
357
358 HighByte = !HighByte;
359 }
360 else
361 {
362 /* Write the next EEPROM byte from the endpoint */
363 eeprom_write_byte((uint8_t*)((intptr_t)(CurrAddress >> 1)), FetchNextCommandByte());
364
365 /* Increment the address counter after use */
366 CurrAddress += 2;
367 }
368 }
369
370 /* If in FLASH programming mode, commit the page after writing */
371 if (MemoryType == MEMORY_TYPE_FLASH)
372 {
373 /* Commit the flash page to memory */
374 boot_page_write(PageStartAddress);
375
376 /* Wait until write operation has completed */
377 boot_spm_busy_wait();
378 }
379
380 /* Send response byte back to the host */
381 WriteNextResponseByte('\r');
382 }
383 }
384 #endif
385
386 /** Retrieves the next byte from the host in the CDC data OUT endpoint, and clears the endpoint bank if needed
387 * to allow reception of the next data packet from the host.
388 *
389 * \return Next received byte from the host in the CDC data OUT endpoint
390 */
391 static uint8_t FetchNextCommandByte(void)
392 {
393 /* Select the OUT endpoint so that the next data byte can be read */
394 Endpoint_SelectEndpoint(CDC_RX_EPADDR);
395
396 /* If OUT endpoint empty, clear it and wait for the next packet from the host */
397 while (!(Endpoint_IsReadWriteAllowed()))
398 {
399 Endpoint_ClearOUT();
400
401 while (!(Endpoint_IsOUTReceived()))
402 {
403 if (USB_DeviceState == DEVICE_STATE_Unattached)
404 return 0;
405 }
406 }
407
408 /* Fetch the next byte from the OUT endpoint */
409 return Endpoint_Read_8();
410 }
411
412 /** Writes the next response byte to the CDC data IN endpoint, and sends the endpoint back if needed to free up the
413 * bank when full ready for the next byte in the packet to the host.
414 *
415 * \param[in] Response Next response byte to send to the host
416 */
417 static void WriteNextResponseByte(const uint8_t Response)
418 {
419 /* Select the IN endpoint so that the next data byte can be written */
420 Endpoint_SelectEndpoint(CDC_TX_EPADDR);
421
422 /* If IN endpoint full, clear it and wait until ready for the next packet to the host */
423 if (!(Endpoint_IsReadWriteAllowed()))
424 {
425 Endpoint_ClearIN();
426
427 while (!(Endpoint_IsINReady()))
428 {
429 if (USB_DeviceState == DEVICE_STATE_Unattached)
430 return;
431 }
432 }
433
434 /* Write the next byte to the IN endpoint */
435 Endpoint_Write_8(Response);
436 }
437
438 /** Task to read in AVR109 commands from the CDC data OUT endpoint, process them, perform the required actions
439 * and send the appropriate response back to the host.
440 */
441 static void CDC_Task(void)
442 {
443 /* Select the OUT endpoint */
444 Endpoint_SelectEndpoint(CDC_RX_EPADDR);
445
446 /* Check if endpoint has a command in it sent from the host */
447 if (!(Endpoint_IsOUTReceived()))
448 return;
449
450 /* Read in the bootloader command (first byte sent from host) */
451 uint8_t Command = FetchNextCommandByte();
452
453 if (Command == AVR109_COMMAND_ExitBootloader)
454 {
455 RunBootloader = false;
456
457 /* Send confirmation byte back to the host */
458 WriteNextResponseByte('\r');
459 }
460 else if ((Command == AVR109_COMMAND_SetLED) || (Command == AVR109_COMMAND_ClearLED) ||
461 (Command == AVR109_COMMAND_SelectDeviceType))
462 {
463 FetchNextCommandByte();
464
465 /* Send confirmation byte back to the host */
466 WriteNextResponseByte('\r');
467 }
468 else if ((Command == AVR109_COMMAND_EnterProgrammingMode) || (Command == AVR109_COMMAND_LeaveProgrammingMode))
469 {
470 /* Send confirmation byte back to the host */
471 WriteNextResponseByte('\r');
472 }
473 else if (Command == AVR109_COMMAND_ReadPartCode)
474 {
475 /* Return ATMEGA128 part code - this is only to allow AVRProg to use the bootloader */
476 WriteNextResponseByte(0x44);
477 WriteNextResponseByte(0x00);
478 }
479 else if (Command == AVR109_COMMAND_ReadAutoAddressIncrement)
480 {
481 /* Indicate auto-address increment is supported */
482 WriteNextResponseByte('Y');
483 }
484 else if (Command == AVR109_COMMAND_SetCurrentAddress)
485 {
486 /* Set the current address to that given by the host (translate 16-bit word address to byte address) */
487 CurrAddress = (FetchNextCommandByte() << 9);
488 CurrAddress |= (FetchNextCommandByte() << 1);
489
490 /* Send confirmation byte back to the host */
491 WriteNextResponseByte('\r');
492 }
493 else if (Command == AVR109_COMMAND_ReadBootloaderInterface)
494 {
495 /* Indicate serial programmer back to the host */
496 WriteNextResponseByte('S');
497 }
498 else if (Command == AVR109_COMMAND_ReadBootloaderIdentifier)
499 {
500 /* Write the 7-byte software identifier to the endpoint */
501 for (uint8_t CurrByte = 0; CurrByte < 7; CurrByte++)
502 WriteNextResponseByte(SOFTWARE_IDENTIFIER[CurrByte]);
503 }
504 else if (Command == AVR109_COMMAND_ReadBootloaderSWVersion)
505 {
506 WriteNextResponseByte('0' + BOOTLOADER_VERSION_MAJOR);
507 WriteNextResponseByte('0' + BOOTLOADER_VERSION_MINOR);
508 }
509 else if (Command == AVR109_COMMAND_ReadSignature)
510 {
511 WriteNextResponseByte(AVR_SIGNATURE_3);
512 WriteNextResponseByte(AVR_SIGNATURE_2);
513 WriteNextResponseByte(AVR_SIGNATURE_1);
514 }
515 else if (Command == AVR109_COMMAND_EraseFLASH)
516 {
517 /* Clear the application section of flash */
518 for (uint32_t CurrFlashAddress = 0; CurrFlashAddress < (uint32_t)BOOT_START_ADDR; CurrFlashAddress += SPM_PAGESIZE)
519 {
520 boot_page_erase(CurrFlashAddress);
521 boot_spm_busy_wait();
522 boot_page_write(CurrFlashAddress);
523 boot_spm_busy_wait();
524 }
525
526 /* Send confirmation byte back to the host */
527 WriteNextResponseByte('\r');
528 }
529 #if !defined(NO_LOCK_BYTE_WRITE_SUPPORT)
530 else if (Command == AVR109_COMMAND_WriteLockbits)
531 {
532 /* Set the lock bits to those given by the host */
533 boot_lock_bits_set(FetchNextCommandByte());
534
535 /* Send confirmation byte back to the host */
536 WriteNextResponseByte('\r');
537 }
538 #endif
539 else if (Command == AVR109_COMMAND_ReadLockbits)
540 {
541 WriteNextResponseByte(boot_lock_fuse_bits_get(GET_LOCK_BITS));
542 }
543 else if (Command == AVR109_COMMAND_ReadLowFuses)
544 {
545 WriteNextResponseByte(boot_lock_fuse_bits_get(GET_LOW_FUSE_BITS));
546 }
547 else if (Command == AVR109_COMMAND_ReadHighFuses)
548 {
549 WriteNextResponseByte(boot_lock_fuse_bits_get(GET_HIGH_FUSE_BITS));
550 }
551 else if (Command == AVR109_COMMAND_ReadExtendedFuses)
552 {
553 WriteNextResponseByte(boot_lock_fuse_bits_get(GET_EXTENDED_FUSE_BITS));
554 }
555 #if !defined(NO_BLOCK_SUPPORT)
556 else if (Command == AVR109_COMMAND_GetBlockWriteSupport)
557 {
558 WriteNextResponseByte('Y');
559
560 /* Send block size to the host */
561 WriteNextResponseByte(SPM_PAGESIZE >> 8);
562 WriteNextResponseByte(SPM_PAGESIZE & 0xFF);
563 }
564 else if ((Command == AVR109_COMMAND_BlockWrite) || (Command == AVR109_COMMAND_BlockRead))
565 {
566 /* Delegate the block write/read to a separate function for clarity */
567 ReadWriteMemoryBlock(Command);
568 }
569 #endif
570 #if !defined(NO_FLASH_BYTE_SUPPORT)
571 else if (Command == AVR109_COMMAND_FillFlashPageWordHigh)
572 {
573 /* Write the high byte to the current flash page */
574 boot_page_fill(CurrAddress, FetchNextCommandByte());
575
576 /* Send confirmation byte back to the host */
577 WriteNextResponseByte('\r');
578 }
579 else if (Command == AVR109_COMMAND_FillFlashPageWordLow)
580 {
581 /* Write the low byte to the current flash page */
582 boot_page_fill(CurrAddress | 0x01, FetchNextCommandByte());
583
584 /* Increment the address */
585 CurrAddress += 2;
586
587 /* Send confirmation byte back to the host */
588 WriteNextResponseByte('\r');
589 }
590 else if (Command == AVR109_COMMAND_WriteFlashPage)
591 {
592 /* Commit the flash page to memory */
593 boot_page_write(CurrAddress);
594
595 /* Wait until write operation has completed */
596 boot_spm_busy_wait();
597
598 /* Send confirmation byte back to the host */
599 WriteNextResponseByte('\r');
600 }
601 else if (Command == AVR109_COMMAND_ReadFLASHWord)
602 {
603 #if (FLASHEND > 0xFFFF)
604 uint16_t ProgramWord = pgm_read_word_far(CurrAddress);
605 #else
606 uint16_t ProgramWord = pgm_read_word(CurrAddress);
607 #endif
608
609 WriteNextResponseByte(ProgramWord >> 8);
610 WriteNextResponseByte(ProgramWord & 0xFF);
611 }
612 #endif
613 #if !defined(NO_EEPROM_BYTE_SUPPORT)
614 else if (Command == AVR109_COMMAND_WriteEEPROM)
615 {
616 /* Read the byte from the endpoint and write it to the EEPROM */
617 eeprom_write_byte((uint8_t*)((intptr_t)(CurrAddress >> 1)), FetchNextCommandByte());
618
619 /* Increment the address after use */
620 CurrAddress += 2;
621
622 /* Send confirmation byte back to the host */
623 WriteNextResponseByte('\r');
624 }
625 else if (Command == AVR109_COMMAND_ReadEEPROM)
626 {
627 /* Read the EEPROM byte and write it to the endpoint */
628 WriteNextResponseByte(eeprom_read_byte((uint8_t*)((intptr_t)(CurrAddress >> 1))));
629
630 /* Increment the address after use */
631 CurrAddress += 2;
632 }
633 #endif
634 else if (Command != AVR109_COMMAND_Sync)
635 {
636 /* Unknown (non-sync) command, return fail code */
637 WriteNextResponseByte('?');
638 }
639
640 /* Select the IN endpoint */
641 Endpoint_SelectEndpoint(CDC_TX_EPADDR);
642
643 /* Remember if the endpoint is completely full before clearing it */
644 bool IsEndpointFull = !(Endpoint_IsReadWriteAllowed());
645
646 /* Send the endpoint data to the host */
647 Endpoint_ClearIN();
648
649 /* If a full endpoint's worth of data was sent, we need to send an empty packet afterwards to signal end of transfer */
650 if (IsEndpointFull)
651 {
652 while (!(Endpoint_IsINReady()))
653 {
654 if (USB_DeviceState == DEVICE_STATE_Unattached)
655 return;
656 }
657
658 Endpoint_ClearIN();
659 }
660
661 /* Wait until the data has been sent to the host */
662 while (!(Endpoint_IsINReady()))
663 {
664 if (USB_DeviceState == DEVICE_STATE_Unattached)
665 return;
666 }
667
668 /* Select the OUT endpoint */
669 Endpoint_SelectEndpoint(CDC_RX_EPADDR);
670
671 /* Acknowledge the command from the host */
672 Endpoint_ClearOUT();
673 }
674