Make "HighByte" variable in the CDC Bootloader a uint8_t rather than a bool to be...
[pub/USBasp.git] / Bootloaders / CDC / BootloaderCDC.c
1 /*
2 LUFA Library
3 Copyright (C) Dean Camera, 2012.
4
5 dean [at] fourwalledcubicle [dot] com
6 www.lufa-lib.org
7 */
8
9 /*
10 Copyright 2012 Dean Camera (dean [at] fourwalledcubicle [dot] com)
11
12 Permission to use, copy, modify, distribute, and sell this
13 software and its documentation for any purpose is hereby granted
14 without fee, provided that the above copyright notice appear in
15 all copies and that both that the copyright notice and this
16 permission notice and warranty disclaimer appear in supporting
17 documentation, and that the name of the author not be used in
18 advertising or publicity pertaining to distribution of the
19 software without specific, written prior permission.
20
21 The author disclaims all warranties with regard to this
22 software, including all implied warranties of merchantability
23 and fitness. In no event shall the author be liable for any
24 special, indirect or consequential damages or any damages
25 whatsoever resulting from loss of use, data or profits, whether
26 in an action of contract, negligence or other tortious action,
27 arising out of or in connection with the use or performance of
28 this software.
29 */
30
31 /** \file
32 *
33 * Main source file for the CDC class bootloader. This file contains the complete bootloader logic.
34 */
35
36 #define INCLUDE_FROM_BOOTLOADERCDC_C
37 #include "BootloaderCDC.h"
38
39 /** Contains the current baud rate and other settings of the first virtual serial port. This must be retained as some
40 * operating systems will not open the port unless the settings can be set successfully.
41 */
42 static CDC_LineEncoding_t LineEncoding = { .BaudRateBPS = 0,
43 .CharFormat = CDC_LINEENCODING_OneStopBit,
44 .ParityType = CDC_PARITY_None,
45 .DataBits = 8 };
46
47 /** Current address counter. This stores the current address of the FLASH or EEPROM as set by the host,
48 * and is used when reading or writing to the AVRs memory (either FLASH or EEPROM depending on the issued
49 * command.)
50 */
51 static uint32_t CurrAddress;
52
53 /** Flag to indicate if the bootloader should be running, or should exit and allow the application code to run
54 * via a watchdog reset. When cleared the bootloader will exit, starting the watchdog and entering an infinite
55 * loop until the AVR restarts and the application runs.
56 */
57 static bool RunBootloader = true;
58
59 /** Magic lock for forced application start. If the HWBE fuse is programmed and BOOTRST is unprogrammed, the bootloader
60 * will start if the /HWB line of the AVR is held low and the system is reset. However, if the /HWB line is still held
61 * low when the application attempts to start via a watchdog reset, the bootloader will re-start. If set to the value
62 * \ref MAGIC_BOOT_KEY the special init function \ref Application_Jump_Check() will force the application to start.
63 */
64 uint16_t MagicBootKey ATTR_NO_INIT;
65
66
67 /** Special startup routine to check if the bootloader was started via a watchdog reset, and if the magic application
68 * start key has been loaded into \ref MagicBootKey. If the bootloader started via the watchdog and the key is valid,
69 * this will force the user application to start via a software jump.
70 */
71 void Application_Jump_Check(void)
72 {
73 bool JumpToApplication = false;
74
75 #if ((BOARD == BOARD_XPLAIN) || (BOARD == BOARD_XPLAIN_REV1))
76 /* Disable JTAG debugging */
77 JTAG_DISABLE();
78
79 /* Enable pull-up on the JTAG TCK pin so we can use it to select the mode */
80 PORTF |= (1 << 4);
81 Delay_MS(10);
82
83 /* If the TCK pin is not jumpered to ground, start the user application instead */
84 JumpToApplication |= ((PINF & (1 << 4)) != 0);
85
86 /* Re-enable JTAG debugging */
87 JTAG_ENABLE();
88 #endif
89
90 /* If the reset source was the bootloader and the key is correct, clear it and jump to the application */
91 if ((MCUSR & (1 << WDRF)) && (MagicBootKey == MAGIC_BOOT_KEY))
92 JumpToApplication |= true;
93
94 /* If a request has been made to jump to the user application, honor it */
95 if (JumpToApplication)
96 {
97 /* Turn off the watchdog */
98 MCUSR &= ~(1<<WDRF);
99 wdt_disable();
100
101 /* Clear the boot key and jump to the user application */
102 MagicBootKey = 0;
103
104 // cppcheck-suppress constStatement
105 ((void (*)(void))0x0000)();
106 }
107 }
108
109 /** Main program entry point. This routine configures the hardware required by the bootloader, then continuously
110 * runs the bootloader processing routine until instructed to soft-exit, or hard-reset via the watchdog to start
111 * the loaded application code.
112 */
113 int main(void)
114 {
115 /* Setup hardware required for the bootloader */
116 SetupHardware();
117
118 /* Turn on first LED on the board to indicate that the bootloader has started */
119 LEDs_SetAllLEDs(LEDS_LED1);
120
121 /* Enable global interrupts so that the USB stack can function */
122 GlobalInterruptEnable();
123
124 while (RunBootloader)
125 {
126 CDC_Task();
127 USB_USBTask();
128 }
129
130 /* Disconnect from the host - USB interface will be reset later along with the AVR */
131 USB_Detach();
132
133 /* Unlock the forced application start mode of the bootloader if it is restarted */
134 MagicBootKey = MAGIC_BOOT_KEY;
135
136 /* Enable the watchdog and force a timeout to reset the AVR */
137 wdt_enable(WDTO_250MS);
138
139 for (;;);
140 }
141
142 /** Configures all hardware required for the bootloader. */
143 static void SetupHardware(void)
144 {
145 /* Disable watchdog if enabled by bootloader/fuses */
146 MCUSR &= ~(1 << WDRF);
147 wdt_disable();
148
149 /* Disable clock division */
150 clock_prescale_set(clock_div_1);
151
152 /* Relocate the interrupt vector table to the bootloader section */
153 MCUCR = (1 << IVCE);
154 MCUCR = (1 << IVSEL);
155
156 /* Initialize the USB and other board hardware drivers */
157 USB_Init();
158 LEDs_Init();
159
160 /* Bootloader active LED toggle timer initialization */
161 TIMSK1 = (1 << TOIE1);
162 TCCR1B = ((1 << CS11) | (1 << CS10));
163 }
164
165 /** ISR to periodically toggle the LEDs on the board to indicate that the bootloader is active. */
166 ISR(TIMER1_OVF_vect, ISR_BLOCK)
167 {
168 LEDs_ToggleLEDs(LEDS_LED1 | LEDS_LED2);
169 }
170
171 /** Event handler for the USB_ConfigurationChanged event. This configures the device's endpoints ready
172 * to relay data to and from the attached USB host.
173 */
174 void EVENT_USB_Device_ConfigurationChanged(void)
175 {
176 /* Setup CDC Notification, Rx and Tx Endpoints */
177 Endpoint_ConfigureEndpoint(CDC_NOTIFICATION_EPADDR, EP_TYPE_INTERRUPT,
178 CDC_NOTIFICATION_EPSIZE, 1);
179
180 Endpoint_ConfigureEndpoint(CDC_TX_EPADDR, EP_TYPE_BULK, CDC_TXRX_EPSIZE, 1);
181
182 Endpoint_ConfigureEndpoint(CDC_RX_EPADDR, EP_TYPE_BULK, CDC_TXRX_EPSIZE, 1);
183 }
184
185 /** Event handler for the USB_ControlRequest event. This is used to catch and process control requests sent to
186 * the device from the USB host before passing along unhandled control requests to the library for processing
187 * internally.
188 */
189 void EVENT_USB_Device_ControlRequest(void)
190 {
191 /* Ignore any requests that aren't directed to the CDC interface */
192 if ((USB_ControlRequest.bmRequestType & (CONTROL_REQTYPE_TYPE | CONTROL_REQTYPE_RECIPIENT)) !=
193 (REQTYPE_CLASS | REQREC_INTERFACE))
194 {
195 return;
196 }
197
198 /* Activity - toggle indicator LEDs */
199 LEDs_ToggleLEDs(LEDS_LED1 | LEDS_LED2);
200
201 /* Process CDC specific control requests */
202 switch (USB_ControlRequest.bRequest)
203 {
204 case CDC_REQ_GetLineEncoding:
205 if (USB_ControlRequest.bmRequestType == (REQDIR_DEVICETOHOST | REQTYPE_CLASS | REQREC_INTERFACE))
206 {
207 Endpoint_ClearSETUP();
208
209 /* Write the line coding data to the control endpoint */
210 Endpoint_Write_Control_Stream_LE(&LineEncoding, sizeof(CDC_LineEncoding_t));
211 Endpoint_ClearOUT();
212 }
213
214 break;
215 case CDC_REQ_SetLineEncoding:
216 if (USB_ControlRequest.bmRequestType == (REQDIR_HOSTTODEVICE | REQTYPE_CLASS | REQREC_INTERFACE))
217 {
218 Endpoint_ClearSETUP();
219
220 /* Read the line coding data in from the host into the global struct */
221 Endpoint_Read_Control_Stream_LE(&LineEncoding, sizeof(CDC_LineEncoding_t));
222 Endpoint_ClearIN();
223 }
224
225 break;
226 }
227 }
228
229 #if !defined(NO_BLOCK_SUPPORT)
230 /** Reads or writes a block of EEPROM or FLASH memory to or from the appropriate CDC data endpoint, depending
231 * on the AVR910 protocol command issued.
232 *
233 * \param[in] Command Single character AVR910 protocol command indicating what memory operation to perform
234 */
235 static void ReadWriteMemoryBlock(const uint8_t Command)
236 {
237 uint16_t BlockSize;
238 char MemoryType;
239
240 uint8_t HighByte = 0;
241 uint8_t LowByte = 0;
242
243 BlockSize = (FetchNextCommandByte() << 8);
244 BlockSize |= FetchNextCommandByte();
245
246 MemoryType = FetchNextCommandByte();
247
248 if ((MemoryType != MEMORY_TYPE_FLASH) && (MemoryType != MEMORY_TYPE_EEPROM))
249 {
250 /* Send error byte back to the host */
251 WriteNextResponseByte('?');
252
253 return;
254 }
255
256 /* Check if command is to read a memory block */
257 if (Command == AVR109_COMMAND_BlockRead)
258 {
259 /* Re-enable RWW section */
260 boot_rww_enable();
261
262 while (BlockSize--)
263 {
264 if (MemoryType == MEMORY_TYPE_FLASH)
265 {
266 /* Read the next FLASH byte from the current FLASH page */
267 #if (FLASHEND > 0xFFFF)
268 WriteNextResponseByte(pgm_read_byte_far(CurrAddress | HighByte));
269 #else
270 WriteNextResponseByte(pgm_read_byte(CurrAddress | HighByte));
271 #endif
272
273 /* If both bytes in current word have been read, increment the address counter */
274 if (HighByte)
275 CurrAddress += 2;
276
277 HighByte = !HighByte;
278 }
279 else
280 {
281 /* Read the next EEPROM byte into the endpoint */
282 WriteNextResponseByte(eeprom_read_byte((uint8_t*)(intptr_t)(CurrAddress >> 1)));
283
284 /* Increment the address counter after use */
285 CurrAddress += 2;
286 }
287 }
288 }
289 else
290 {
291 uint32_t PageStartAddress = CurrAddress;
292
293 if (MemoryType == MEMORY_TYPE_FLASH)
294 {
295 boot_page_erase(PageStartAddress);
296 boot_spm_busy_wait();
297 }
298
299 while (BlockSize--)
300 {
301 if (MemoryType == MEMORY_TYPE_FLASH)
302 {
303 /* If both bytes in current word have been written, increment the address counter */
304 if (HighByte)
305 {
306 /* Write the next FLASH word to the current FLASH page */
307 boot_page_fill(CurrAddress, ((FetchNextCommandByte() << 8) | LowByte));
308
309 /* Increment the address counter after use */
310 CurrAddress += 2;
311 }
312 else
313 {
314 LowByte = FetchNextCommandByte();
315 }
316
317 HighByte = !HighByte;
318 }
319 else
320 {
321 /* Write the next EEPROM byte from the endpoint */
322 eeprom_write_byte((uint8_t*)((intptr_t)(CurrAddress >> 1)), FetchNextCommandByte());
323
324 /* Increment the address counter after use */
325 CurrAddress += 2;
326 }
327 }
328
329 /* If in FLASH programming mode, commit the page after writing */
330 if (MemoryType == MEMORY_TYPE_FLASH)
331 {
332 /* Commit the flash page to memory */
333 boot_page_write(PageStartAddress);
334
335 /* Wait until write operation has completed */
336 boot_spm_busy_wait();
337 }
338
339 /* Send response byte back to the host */
340 WriteNextResponseByte('\r');
341 }
342 }
343 #endif
344
345 /** Retrieves the next byte from the host in the CDC data OUT endpoint, and clears the endpoint bank if needed
346 * to allow reception of the next data packet from the host.
347 *
348 * \return Next received byte from the host in the CDC data OUT endpoint
349 */
350 static uint8_t FetchNextCommandByte(void)
351 {
352 /* Select the OUT endpoint so that the next data byte can be read */
353 Endpoint_SelectEndpoint(CDC_RX_EPADDR);
354
355 /* If OUT endpoint empty, clear it and wait for the next packet from the host */
356 while (!(Endpoint_IsReadWriteAllowed()))
357 {
358 Endpoint_ClearOUT();
359
360 while (!(Endpoint_IsOUTReceived()))
361 {
362 if (USB_DeviceState == DEVICE_STATE_Unattached)
363 return 0;
364 }
365 }
366
367 /* Fetch the next byte from the OUT endpoint */
368 return Endpoint_Read_8();
369 }
370
371 /** Writes the next response byte to the CDC data IN endpoint, and sends the endpoint back if needed to free up the
372 * bank when full ready for the next byte in the packet to the host.
373 *
374 * \param[in] Response Next response byte to send to the host
375 */
376 static void WriteNextResponseByte(const uint8_t Response)
377 {
378 /* Select the IN endpoint so that the next data byte can be written */
379 Endpoint_SelectEndpoint(CDC_TX_EPADDR);
380
381 /* If IN endpoint full, clear it and wait until ready for the next packet to the host */
382 if (!(Endpoint_IsReadWriteAllowed()))
383 {
384 Endpoint_ClearIN();
385
386 while (!(Endpoint_IsINReady()))
387 {
388 if (USB_DeviceState == DEVICE_STATE_Unattached)
389 return;
390 }
391 }
392
393 /* Write the next byte to the IN endpoint */
394 Endpoint_Write_8(Response);
395 }
396
397 /** Task to read in AVR910 commands from the CDC data OUT endpoint, process them, perform the required actions
398 * and send the appropriate response back to the host.
399 */
400 static void CDC_Task(void)
401 {
402 /* Select the OUT endpoint */
403 Endpoint_SelectEndpoint(CDC_RX_EPADDR);
404
405 /* Check if endpoint has a command in it sent from the host */
406 if (!(Endpoint_IsOUTReceived()))
407 return;
408
409 /* Read in the bootloader command (first byte sent from host) */
410 uint8_t Command = FetchNextCommandByte();
411
412 if (Command == AVR109_COMMAND_ExitBootloader)
413 {
414 RunBootloader = false;
415
416 /* Send confirmation byte back to the host */
417 WriteNextResponseByte('\r');
418 }
419 else if ((Command == AVR109_COMMAND_SetLED) || (Command == AVR109_COMMAND_ClearLED) ||
420 (Command == AVR109_COMMAND_SelectDeviceType))
421 {
422 FetchNextCommandByte();
423
424 /* Send confirmation byte back to the host */
425 WriteNextResponseByte('\r');
426 }
427 else if ((Command == AVR109_COMMAND_EnterProgrammingMode) || (Command == AVR109_COMMAND_LeaveProgrammingMode))
428 {
429 /* Send confirmation byte back to the host */
430 WriteNextResponseByte('\r');
431 }
432 else if (Command == AVR109_COMMAND_ReadPartCode)
433 {
434 /* Return ATMEGA128 part code - this is only to allow AVRProg to use the bootloader */
435 WriteNextResponseByte(0x44);
436 WriteNextResponseByte(0x00);
437 }
438 else if (Command == AVR109_COMMAND_ReadAutoAddressIncrement)
439 {
440 /* Indicate auto-address increment is supported */
441 WriteNextResponseByte('Y');
442 }
443 else if (Command == AVR109_COMMAND_SetCurrentAddress)
444 {
445 /* Set the current address to that given by the host (translate 16-bit word address to byte address) */
446 CurrAddress = (FetchNextCommandByte() << 9);
447 CurrAddress |= (FetchNextCommandByte() << 1);
448
449 /* Send confirmation byte back to the host */
450 WriteNextResponseByte('\r');
451 }
452 else if (Command == AVR109_COMMAND_ReadBootloaderInterface)
453 {
454 /* Indicate serial programmer back to the host */
455 WriteNextResponseByte('S');
456 }
457 else if (Command == AVR109_COMMAND_ReadBootloaderIdentifier)
458 {
459 /* Write the 7-byte software identifier to the endpoint */
460 for (uint8_t CurrByte = 0; CurrByte < 7; CurrByte++)
461 WriteNextResponseByte(SOFTWARE_IDENTIFIER[CurrByte]);
462 }
463 else if (Command == AVR109_COMMAND_ReadBootloaderSWVersion)
464 {
465 WriteNextResponseByte('0' + BOOTLOADER_VERSION_MAJOR);
466 WriteNextResponseByte('0' + BOOTLOADER_VERSION_MINOR);
467 }
468 else if (Command == AVR109_COMMAND_ReadSignature)
469 {
470 WriteNextResponseByte(AVR_SIGNATURE_3);
471 WriteNextResponseByte(AVR_SIGNATURE_2);
472 WriteNextResponseByte(AVR_SIGNATURE_1);
473 }
474 else if (Command == AVR109_COMMAND_EraseFLASH)
475 {
476 /* Clear the application section of flash */
477 for (uint32_t CurrFlashAddress = 0; CurrFlashAddress < (uint32_t)BOOT_START_ADDR; CurrFlashAddress += SPM_PAGESIZE)
478 {
479 boot_page_erase(CurrFlashAddress);
480 boot_spm_busy_wait();
481 boot_page_write(CurrFlashAddress);
482 boot_spm_busy_wait();
483 }
484
485 /* Send confirmation byte back to the host */
486 WriteNextResponseByte('\r');
487 }
488 #if !defined(NO_LOCK_BYTE_WRITE_SUPPORT)
489 else if (Command == AVR109_COMMAND_WriteLockbits)
490 {
491 /* Set the lock bits to those given by the host */
492 boot_lock_bits_set(FetchNextCommandByte());
493
494 /* Send confirmation byte back to the host */
495 WriteNextResponseByte('\r');
496 }
497 #endif
498 else if (Command == AVR109_COMMAND_ReadLockbits)
499 {
500 WriteNextResponseByte(boot_lock_fuse_bits_get(GET_LOCK_BITS));
501 }
502 else if (Command == AVR109_COMMAND_ReadLowFuses)
503 {
504 WriteNextResponseByte(boot_lock_fuse_bits_get(GET_LOW_FUSE_BITS));
505 }
506 else if (Command == AVR109_COMMAND_ReadHighFuses)
507 {
508 WriteNextResponseByte(boot_lock_fuse_bits_get(GET_HIGH_FUSE_BITS));
509 }
510 else if (Command == AVR109_COMMAND_ReadExtendedFuses)
511 {
512 WriteNextResponseByte(boot_lock_fuse_bits_get(GET_EXTENDED_FUSE_BITS));
513 }
514 #if !defined(NO_BLOCK_SUPPORT)
515 else if (Command == AVR109_COMMAND_GetBlockWriteSupport)
516 {
517 WriteNextResponseByte('Y');
518
519 /* Send block size to the host */
520 WriteNextResponseByte(SPM_PAGESIZE >> 8);
521 WriteNextResponseByte(SPM_PAGESIZE & 0xFF);
522 }
523 else if ((Command == AVR109_COMMAND_BlockWrite) || (Command == AVR109_COMMAND_BlockRead))
524 {
525 /* Delegate the block write/read to a separate function for clarity */
526 ReadWriteMemoryBlock(Command);
527 }
528 #endif
529 #if !defined(NO_FLASH_BYTE_SUPPORT)
530 else if (Command == AVR109_COMMAND_FillFlashPageWordHigh)
531 {
532 /* Write the high byte to the current flash page */
533 boot_page_fill(CurrAddress, FetchNextCommandByte());
534
535 /* Send confirmation byte back to the host */
536 WriteNextResponseByte('\r');
537 }
538 else if (Command == AVR109_COMMAND_FillFlashPageWordLow)
539 {
540 /* Write the low byte to the current flash page */
541 boot_page_fill(CurrAddress | 0x01, FetchNextCommandByte());
542
543 /* Increment the address */
544 CurrAddress += 2;
545
546 /* Send confirmation byte back to the host */
547 WriteNextResponseByte('\r');
548 }
549 else if (Command == AVR109_COMMAND_WriteFlashPage)
550 {
551 /* Commit the flash page to memory */
552 boot_page_write(CurrAddress);
553
554 /* Wait until write operation has completed */
555 boot_spm_busy_wait();
556
557 /* Send confirmation byte back to the host */
558 WriteNextResponseByte('\r');
559 }
560 else if (Command == AVR109_COMMAND_ReadFLASHWord)
561 {
562 #if (FLASHEND > 0xFFFF)
563 uint16_t ProgramWord = pgm_read_word_far(CurrAddress);
564 #else
565 uint16_t ProgramWord = pgm_read_word(CurrAddress);
566 #endif
567
568 WriteNextResponseByte(ProgramWord >> 8);
569 WriteNextResponseByte(ProgramWord & 0xFF);
570 }
571 #endif
572 #if !defined(NO_EEPROM_BYTE_SUPPORT)
573 else if (Command == AVR109_COMMAND_WriteEEPROM)
574 {
575 /* Read the byte from the endpoint and write it to the EEPROM */
576 eeprom_write_byte((uint8_t*)((intptr_t)(CurrAddress >> 1)), FetchNextCommandByte());
577
578 /* Increment the address after use */
579 CurrAddress += 2;
580
581 /* Send confirmation byte back to the host */
582 WriteNextResponseByte('\r');
583 }
584 else if (Command == AVR109_COMMAND_ReadEEPROM)
585 {
586 /* Read the EEPROM byte and write it to the endpoint */
587 WriteNextResponseByte(eeprom_read_byte((uint8_t*)((intptr_t)(CurrAddress >> 1))));
588
589 /* Increment the address after use */
590 CurrAddress += 2;
591 }
592 #endif
593 else if (Command != AVR109_COMMAND_Sync)
594 {
595 /* Unknown (non-sync) command, return fail code */
596 WriteNextResponseByte('?');
597 }
598
599 /* Select the IN endpoint */
600 Endpoint_SelectEndpoint(CDC_TX_EPADDR);
601
602 /* Remember if the endpoint is completely full before clearing it */
603 bool IsEndpointFull = !(Endpoint_IsReadWriteAllowed());
604
605 /* Send the endpoint data to the host */
606 Endpoint_ClearIN();
607
608 /* If a full endpoint's worth of data was sent, we need to send an empty packet afterwards to signal end of transfer */
609 if (IsEndpointFull)
610 {
611 while (!(Endpoint_IsINReady()))
612 {
613 if (USB_DeviceState == DEVICE_STATE_Unattached)
614 return;
615 }
616
617 Endpoint_ClearIN();
618 }
619
620 /* Wait until the data has been sent to the host */
621 while (!(Endpoint_IsINReady()))
622 {
623 if (USB_DeviceState == DEVICE_STATE_Unattached)
624 return;
625 }
626
627 /* Select the OUT endpoint */
628 Endpoint_SelectEndpoint(CDC_RX_EPADDR);
629
630 /* Acknowledge the command from the host */
631 Endpoint_ClearOUT();
632 }
633