Applied STATIC_ENDPOINT_CONFIGURATION and FIXED_CONTROL_SIZE tokens to all Device...
[pub/USBasp.git] / LUFA / Drivers / USB / LowLevel / Pipe.h
1 /*
2 LUFA Library
3 Copyright (C) Dean Camera, 2009.
4
5 dean [at] fourwalledcubicle [dot] com
6 www.fourwalledcubicle.com
7 */
8
9 /*
10 Copyright 2009 Dean Camera (dean [at] fourwalledcubicle [dot] com)
11
12 Permission to use, copy, modify, and distribute this software
13 and its documentation for any purpose and without fee is hereby
14 granted, provided that the above copyright notice appear in all
15 copies and that both that the copyright notice and this
16 permission notice and warranty disclaimer appear in supporting
17 documentation, and that the name of the author not be used in
18 advertising or publicity pertaining to distribution of the
19 software without specific, written prior permission.
20
21 The author disclaim all warranties with regard to this
22 software, including all implied warranties of merchantability
23 and fitness. In no event shall the author be liable for any
24 special, indirect or consequential damages or any damages
25 whatsoever resulting from loss of use, data or profits, whether
26 in an action of contract, negligence or other tortious action,
27 arising out of or in connection with the use or performance of
28 this software.
29 */
30
31 /** \ingroup Group_USB
32 * @defgroup Group_PipeManagement Pipe Management
33 *
34 * This module contains functions, macros and enums related to pipe management when in USB Host mode. This
35 * module contains the pipe management macros, as well as pipe interrupt and data send/recieve functions
36 * for various data types.
37 *
38 * @{
39 */
40
41 /** @defgroup Group_PipeRW Pipe Data Reading and Writing
42 *
43 * Functions, macros, variables, enums and types related to data reading and writing from and to pipes.
44 */
45
46 /** @defgroup Group_PipePacketManagement Pipe Packet Management
47 *
48 * Functions, macros, variables, enums and types related to packet management of pipes.
49 */
50
51 /** @defgroup Group_PipeControlReq Pipe Control Request Management
52 *
53 * Module for host mode request processing. This module allows for the transmission of standard, class and
54 * vendor control requests to the default control endpoint of an attached device while in host mode.
55 *
56 * \see Chapter 9 of the USB 2.0 specification.
57 */
58
59 #ifndef __PIPE_H__
60 #define __PIPE_H__
61
62 /* Includes: */
63 #include <avr/io.h>
64 #include <stdbool.h>
65
66 #include "../../../Common/Common.h"
67 #include "../HighLevel/USBTask.h"
68
69 #if !defined(NO_STREAM_CALLBACKS) || defined(__DOXYGEN__)
70 #include "../HighLevel/StreamCallbacks.h"
71 #endif
72
73 /* Enable C linkage for C++ Compilers: */
74 #if defined(__cplusplus)
75 extern "C" {
76 #endif
77
78 /* Public Interface - May be used in end-application: */
79 /* Macros: */
80 /** Mask for Pipe_GetErrorFlags(), indicating that a CRC error occurred in the pipe on the received data. */
81 #define PIPE_ERRORFLAG_CRC16 (1 << 4)
82
83 /** Mask for Pipe_GetErrorFlags(), indicating that a hardware timeout error occurred in the pipe. */
84 #define PIPE_ERRORFLAG_TIMEOUT (1 << 3)
85
86 /** Mask for Pipe_GetErrorFlags(), indicating that a hardware PID error occurred in the pipe. */
87 #define PIPE_ERRORFLAG_PID (1 << 2)
88
89 /** Mask for Pipe_GetErrorFlags(), indicating that a hardware data PID error occurred in the pipe. */
90 #define PIPE_ERRORFLAG_DATAPID (1 << 1)
91
92 /** Mask for Pipe_GetErrorFlags(), indicating that a hardware data toggle error occurred in the pipe. */
93 #define PIPE_ERRORFLAG_DATATGL (1 << 0)
94
95 /** Token mask for Pipe_ConfigurePipe(). This sets the pipe as a SETUP token (for CONTROL type pipes),
96 * which will trigger a control request on the attached device when data is written to the pipe.
97 */
98 #define PIPE_TOKEN_SETUP (0 << PTOKEN0)
99
100 /** Token mask for Pipe_ConfigurePipe(). This sets the pipe as a IN token (for non-CONTROL type pipes),
101 * indicating that the pipe data will flow from device to host.
102 */
103 #define PIPE_TOKEN_IN (1 << PTOKEN0)
104
105 /** Token mask for Pipe_ConfigurePipe(). This sets the pipe as a IN token (for non-CONTROL type pipes),
106 * indicating that the pipe data will flow from host to device.
107 */
108 #define PIPE_TOKEN_OUT (2 << PTOKEN0)
109
110 /** Mask for the bank mode selection for the Pipe_ConfigurePipe() macro. This indicates that the pipe
111 * should have one single bank, which requires less USB FIFO memory but results in slower transfers as
112 * only one USB device (the AVR or the attached device) can access the pipe's bank at the one time.
113 */
114 #define PIPE_BANK_SINGLE (0 << EPBK0)
115
116 /** Mask for the bank mode selection for the Pipe_ConfigurePipe() macro. This indicates that the pipe
117 * should have two banks, which requires more USB FIFO memory but results in faster transfers as one
118 * USB device (the AVR or the attached device) can access one bank while the other accesses the second
119 * bank.
120 */
121 #define PIPE_BANK_DOUBLE (1 << EPBK0)
122
123 /** Pipe address for the default control pipe, which always resides in address 0. This is
124 * defined for convenience to give more readable code when used with the pipe macros.
125 */
126 #define PIPE_CONTROLPIPE 0
127
128 /** Default size of the default control pipe's bank, until altered by the Endpoint0Size value
129 * in the device descriptor of the attached device.
130 */
131 #define PIPE_CONTROLPIPE_DEFAULT_SIZE 8
132
133 /** Pipe number mask, for masking against pipe addresses to retrieve the pipe's numerical address
134 * in the device.
135 */
136 #define PIPE_PIPENUM_MASK 0x07
137
138 /** Total number of pipes (including the default control pipe at address 0) which may be used in
139 * the device. Different USB AVR models support different amounts of pipes, this value reflects
140 * the maximum number of pipes for the currently selected AVR model.
141 */
142 #define PIPE_TOTAL_PIPES 7
143
144 /** Size in bytes of the largest pipe bank size possible in the device. Not all banks on each AVR
145 * model supports the largest bank size possible on the device; different pipe numbers support
146 * different maximum bank sizes. This value reflects the largest possible bank of any pipe on the
147 * currently selected USB AVR model.
148 */
149 #define PIPE_MAX_SIZE 256
150
151 /** Endpoint number mask, for masking against endpoint addresses to retrieve the endpoint's
152 * numerical address in the attached device.
153 */
154 #define PIPE_EPNUM_MASK 0x07
155
156 /** Endpoint bank size mask, for masking against endpoint addresses to retrieve the endpoint's
157 * bank size in the attached device.
158 */
159 #define PIPE_EPSIZE_MASK 0x7FF
160
161 /** Interrupt definition for the pipe IN interrupt (for INTERRUPT type pipes). Should be used with
162 * the USB_INT_* macros located in USBInterrupt.h.
163 *
164 * This interrupt will fire if enabled on an INTERRUPT type pipe if the pipe interrupt period has
165 * elapsed and the pipe is ready for the next packet from the attached device to be read out from its
166 * FIFO buffer (if received).
167 *
168 * \note This interrupt must be enabled and cleared on *each* pipe which requires it (after the pipe
169 * is selected), and will fire the common pipe interrupt vector.
170 *
171 * \see ENDPOINT_PIPE_vect for more information on the common pipe and endpoint interrupt vector.
172 */
173 #define PIPE_INT_IN UPIENX, (1 << RXINE) , UPINTX, (1 << RXINI)
174
175 /** Interrupt definition for the pipe OUT interrupt (for INTERRUPT type pipes). Should be used with
176 * the USB_INT_* macros located in USBInterrupt.h.
177 *
178 * This interrupt will fire if enabled on an INTERRUPT type endpoint if a the pipe interrupt period
179 * has elapsed and the pipe is ready for a packet to be written to the pipe's FIFO buffer and sent
180 * to the attached device (if required).
181 *
182 * \note This interrupt must be enabled and cleared on *each* pipe which requires it (after the pipe
183 * is selected), and will fire the common pipe interrupt vector.
184 *
185 * \see ENDPOINT_PIPE_vect for more information on the common pipe and endpoint interrupt vector.
186 */
187 #define PIPE_INT_OUT UPIENX, (1 << TXOUTE), UPINTX, (1 << TXOUTI)
188
189 /** Interrupt definition for the pipe SETUP bank ready interrupt (for CONTROL type pipes). Should be
190 * used with the USB_INT_* macros located in USBInterrupt.h.
191 *
192 * This interrupt will fire if enabled on an CONTROL type pipe when the pipe is ready for a new
193 * control request.
194 *
195 * \note This interrupt must be enabled and cleared on *each* pipe which requires it (after the pipe
196 * is selected), and will fire the common pipe interrupt vector.
197 *
198 * \see ENDPOINT_PIPE_vect for more information on the common pipe and endpoint interrupt vector.
199 */
200 #define PIPE_INT_SETUP UPIENX, (1 << TXSTPE) , UPINTX, (1 << TXSTPI)
201
202 /** Interrupt definition for the pipe error interrupt. Should be used with the USB_INT_* macros
203 * located in USBInterrupt.h.
204 *
205 * This interrupt will fire if enabled on a particular pipe if an error occurs on that pipe, such
206 * as a CRC mismatch error.
207 *
208 * \note This interrupt must be enabled and cleared on *each* pipe which requires it (after the pipe
209 * is selected), and will fire the common pipe interrupt vector.
210 *
211 * \see ENDPOINT_PIPE_vect for more information on the common pipe and endpoint interrupt vector.
212 *
213 * \see Pipe_GetErrorFlags() for more information on the pipe errors.
214 */
215 #define PIPE_INT_ERROR UPIENX, (1 << PERRE), UPINTX, (1 << PERRI)
216
217 /** Interrupt definition for the pipe NAK received interrupt. Should be used with the USB_INT_* macros
218 * located in USBInterrupt.h.
219 *
220 * This interrupt will fire if enabled on a particular pipe if an attached device returns a NAK in
221 * response to a sent packet.
222 *
223 * \note This interrupt must be enabled and cleared on *each* pipe which requires it (after the pipe
224 * is selected), and will fire the common pipe interrupt vector.
225 *
226 * \see ENDPOINT_PIPE_vect for more information on the common pipe and endpoint interrupt vector.
227 *
228 * \see Pipe_IsNAKReceived() for more information on pipe NAKs.
229 */
230 #define PIPE_INT_NAK UPIENX, (1 << NAKEDE), UPINTX, (1 << NAKEDI)
231
232 /** Interrupt definition for the pipe STALL received interrupt. Should be used with the USB_INT_* macros
233 * located in USBInterrupt.h.
234 *
235 * This interrupt will fire if enabled on a particular pipe if an attached device returns a STALL on the
236 * currently selected pipe. This will also fire if the pipe is an isochronous pipe and a CRC error occurs.
237 *
238 * \note This interrupt must be enabled and cleared on *each* pipe which requires it (after the pipe
239 * is selected), and will fire the common pipe interrupt vector.
240 *
241 * \see ENDPOINT_PIPE_vect for more information on the common pipe and endpoint interrupt vector.
242 */
243 #define PIPE_INT_STALL UPIENX, (1 << RXSTALLE), UPINTX, (1 << RXSTALLI)
244
245 /* Pseudo-Function Macros: */
246 #if defined(__DOXYGEN__)
247 /** Indicates the number of bytes currently stored in the current pipes's selected bank.
248 *
249 * \note The return width of this function may differ, depending on the maximum pipe bank size
250 * of the selected AVR model.
251 *
252 * \ingroup Group_PipeRW
253 *
254 * \return Total number of bytes in the currently selected Pipe's FIFO buffer
255 */
256 static inline uint16_t Pipe_BytesInPipe(void);
257
258 /** Returns the pipe address of the currently selected pipe. This is typically used to save the
259 * currently selected pipe number so that it can be restored after another pipe has been manipulated.
260 *
261 * \return Index of the currently selected pipe
262 */
263 static inline uint8_t Pipe_GetCurrentPipe(void);
264
265 /** Selects the given pipe number. Any pipe operations which do not require the pipe number to be
266 * indicated will operate on the currently selected pipe.
267 *
268 * \param PipeNumber Index of the pipe to select
269 */
270 static inline void Pipe_SelectPipe(uint8_t PipeNumber);
271
272 /** Resets the desired pipe, including the pipe banks and flags.
273 *
274 * \param PipeNumber Index of the pipe to reset
275 */
276 static inline void Pipe_ResetPipe(uint8_t PipeNumber);
277
278 /** Enables the currently selected pipe so that data can be sent and received through it to and from
279 * an attached device.
280 *
281 * \note Pipes must first be configured properly rather than just being enabled via the
282 * Pipe_ConfigurePipe() macro, which calls Pipe_EnablePipe() automatically.
283 */
284 static inline void Pipe_EnablePipe(void);
285
286 /** Disables the currently selected pipe so that data cannot be sent and received through it to and
287 * from an attached device.
288 */
289 static inline void Pipe_DisablePipe(void);
290
291 /** Determines if the currently selected pipe is enabled, but not necessarily configured.
292 *
293 * \return Boolean True if the currently selected pipe is enabled, false otherwise
294 */
295 static inline bool Pipe_IsEnabled(void);
296
297 /** Gets the current pipe token, indicating the pipe's data direction and type.
298 *
299 * \return The current pipe token, as a PIPE_TOKEN_* mask
300 */
301 static inline uint8_t Pipe_GetCurrentToken(void);
302
303 /** Sets the token for the currently selected pipe to one of the tokens specified by the PIPE_TOKEN_*
304 * masks. This can be used on CONTROL type pipes, to allow for bidirectional transfer of data during
305 * control requests, or on regular pipes to allow for half-duplex bidirectional data transfer to devices
306 * which have two endpoints of opposite direction sharing the same endpoint address within the device.
307 *
308 * \param Token New pipe token to set the selected pipe to, as a PIPE_TOKEN_* mask
309 */
310 static inline void Pipe_SetPipeToken(uint8_t Token);
311
312 /** Configures the currently selected pipe to allow for an unlimited number of IN requests. */
313 static inline void Pipe_SetInfiniteINRequests(void);
314
315 /** Configures the currently selected pipe to only allow the specified number of IN requests to be
316 * accepted by the pipe before it is automatically frozen.
317 *
318 * \param TotalINRequests Total number of IN requests that the pipe may receive before freezing
319 */
320 static inline void Pipe_SetFiniteINRequests(uint8_t TotalINRequests);
321
322 /** Determines if the currently selected pipe is configured.
323 *
324 * \return Boolean true if the selected pipe is configured, false otherwise
325 */
326 static inline bool Pipe_IsConfigured(void);
327
328 /** Sets the period between interrupts for an INTERRUPT type pipe to a specified number of milliseconds.
329 *
330 * \param Milliseconds Number of milliseconds between each pipe poll
331 */
332 static inline void Pipe_SetInterruptPeriod(uint8_t Milliseconds);
333
334 /** Returns a mask indicating which pipe's interrupt periods have elapsed, indicating that the pipe should
335 * be serviced.
336 *
337 * \return Mask whose bits indicate which pipes have interrupted
338 */
339 static inline uint8_t Pipe_GetPipeInterrupts(void);
340
341 /** Clears the interrupt flag for the specified pipe number.
342 *
343 * \param PipeNumber Index of the pipe whose interrupt flag is to be cleared
344 */
345 static inline void Pipe_ClearPipeInterrupt(uint8_t PipeNumber);
346
347 /** Determines if the specified pipe number has interrupted (valid only for INTERRUPT type
348 * pipes).
349 *
350 * \param PipeNumber Index of the pipe whose interrupt flag should be tested
351 *
352 * \return Boolean true if the specified pipe has interrupted, false otherwise
353 */
354 static inline bool Pipe_HasPipeInterrupted(uint8_t PipeNumber);
355
356 /** Unfreezes the selected pipe, allowing it to communicate with an attached device. */
357 static inline void Pipe_Unfreeze(void);
358
359 /** Freezes the selected pipe, preventing it from communicating with an attached device. */
360 static inline void Pipe_Freeze(void);
361
362 /** Clears the master pipe error flag. */
363 static inline void Pipe_ClearError(void);
364
365 /** Determines if the master pipe error flag is set for the currently selected pipe, indicating that
366 * some sort of hardware error has occurred on the pipe.
367 *
368 * \see Pipe_GetErrorFlags() macro for information on retrieving the exact error flag.
369 *
370 * \return Boolean true if an error has occurred on the selected pipe, false otherwise
371 */
372 static inline bool Pipe_IsError(void);
373
374 /** Clears all the currently selected pipe's hardware error flags, but does not clear the master error
375 * flag for the pipe.
376 */
377 static inline void Pipe_ClearErrorFlags(void);
378
379 /** Gets a mask of the hardware error flags which have occurred on the currently selected pipe. This
380 * value can then be masked against the PIPE_ERRORFLAG_* masks to determine what error has occurred.
381 *
382 * \return Mask comprising of PIPE_ERRORFLAG_* bits indicating what error has occurred on the selected pipe
383 */
384 static inline uint8_t Pipe_GetErrorFlags(void);
385
386 /** Determines if the currently selected pipe may be read from (if data is waiting in the pipe
387 * bank and the pipe is an IN direction, or if the bank is not yet full if the pipe is an OUT
388 * direction). This function will return false if an error has occurred in the pipe, or if the pipe
389 * is an IN direction and no packet (or an empty packet) has been received, or if the pipe is an OUT
390 * direction and the pipe bank is full.
391 *
392 * \note This function is not valid on CONTROL type pipes.
393 *
394 * \ingroup Group_PipePacketManagement
395 *
396 * \return Boolean true if the currently selected pipe may be read from or written to, depending on its direction
397 */
398 static inline bool Pipe_IsReadWriteAllowed(void);
399
400 /** Determines if an IN request has been received on the currently selected pipe.
401 *
402 * \ingroup Group_PipePacketManagement
403 *
404 * \return Boolean true if the current pipe has received an IN packet, false otherwise.
405 */
406 static inline bool Pipe_IsINReceived(void);
407
408 /** Determines if the currently selected pipe is ready to send an OUT request.
409 *
410 * \ingroup Group_PipePacketManagement
411 *
412 * \return Boolean true if the current pipe is ready for an OUT packet, false otherwise.
413 */
414 static inline bool Pipe_IsOUTReady(void);
415
416 /** Determines if no SETUP request is currently being sent to the attached device on the selected
417 * CONTROL type pipe.
418 *
419 * \ingroup Group_PipePacketManagement
420 *
421 * \return Boolean true if the current pipe is ready for a SETUP packet, false otherwise.
422 */
423 static inline bool Pipe_IsSETUPSent(void);
424
425 /** Sends the currently selected CONTROL type pipe's contents to the device as a SETUP packet.
426 *
427 * \ingroup Group_PipePacketManagement
428 */
429 static inline void Pipe_ClearSETUP(void);
430
431 /** Acknowledges the reception of a setup IN request from the attached device on the currently selected
432 * pipe, freeing the bank ready for the next packet.
433 *
434 * \ingroup Group_PipePacketManagement
435 */
436 static inline void Pipe_ClearIN(void);
437
438 /** Sends the currently selected pipe's contents to the device as an OUT packet on the selected pipe, freeing
439 * the bank ready for the next packet.
440 *
441 * \ingroup Group_PipePacketManagement
442 */
443 static inline void Pipe_ClearOUT(void);
444
445 /** Determines if the device sent a NAK (Negative Acknowledge) in response to the last sent packet on
446 * the currently selected pipe. This occurs when the host sends a packet to the device, but the device
447 * is not currently ready to handle the packet (i.e. its endpoint banks are full). Once a NAK has been
448 * received, it must be cleared using Pipe_ClearNAKReceived() before the previous (or any other) packet
449 * can be re-sent.
450 *
451 * \ingroup Group_PipePacketManagement
452 *
453 * \return Boolean true if an NAK has been received on the current pipe, false otherwise
454 */
455 static inline bool Pipe_IsNAKReceived(void);
456
457 /** Clears the NAK condition on the currently selected pipe.
458 *
459 * \ingroup Group_PipePacketManagement
460 *
461 * \see Pipe_IsNAKReceived() for more details.
462 */
463 static inline void Pipe_ClearNAKReceived(void);
464
465 /** Determines if the currently selected pipe has had the STALL condition set by the attached device.
466 *
467 * \ingroup Group_PipePacketManagement
468 *
469 * \return Boolean true if the current pipe has been stalled by the attached device, false otherwise
470 */
471 static inline bool Pipe_IsStalled(void);
472
473 /** Clears the STALL condition detection flag on the currently selected pipe, but does not clear the
474 * STALL condition itself (this must be done via a ClearFeature control request to the device).
475 *
476 * \ingroup Group_PipePacketManagement
477 */
478 static inline void Pipe_ClearStall(void);
479 #else
480 #define Pipe_BytesInPipe() UPBCX
481
482 #define Pipe_GetCurrentPipe() (UPNUM & PIPE_PIPENUM_MASK)
483
484 #define Pipe_SelectPipe(pipenum) MACROS{ UPNUM = pipenum; }MACROE
485
486 #define Pipe_ResetPipe(pipenum) MACROS{ UPRST = (1 << pipenum); UPRST = 0; }MACROE
487
488 #define Pipe_EnablePipe() MACROS{ UPCONX |= (1 << PEN); }MACROE
489
490 #define Pipe_DisablePipe() MACROS{ UPCONX &= ~(1 << PEN); }MACROE
491
492 #define Pipe_IsEnabled() ((UPCONX & (1 << PEN)) ? true : false)
493
494 #define Pipe_GetPipeToken() (UPCFG0X & PIPE_TOKEN_MASK)
495
496 #define Pipe_SetToken(token) MACROS{ UPCFG0X = ((UPCFG0X & ~PIPE_TOKEN_MASK) | token); }MACROE
497
498 #define Pipe_SetInfiniteINRequests() MACROS{ UPCONX |= (1 << INMODE); }MACROE
499
500 #define Pipe_SetFiniteINRequests(n) MACROS{ UPCONX &= ~(1 << INMODE); UPINRQX = n; }MACROE
501
502 #define Pipe_IsConfigured() ((UPSTAX & (1 << CFGOK)) ? true : false)
503
504 #define Pipe_SetInterruptPeriod(ms) MACROS{ UPCFG2X = ms; }MACROE
505
506 #define Pipe_GetPipeInterrupts() UPINT
507
508 #define Pipe_ClearPipeInterrupt(n) MACROS{ UPINT &= ~(1 << n); }MACROE
509
510 #define Pipe_HasPipeInterrupted(n) ((UPINT & (1 << n)) ? true : false)
511
512 #define Pipe_Unfreeze() MACROS{ UPCONX &= ~(1 << PFREEZE); }MACROE
513
514 #define Pipe_Freeze() MACROS{ UPCONX |= (1 << PFREEZE); }MACROE
515
516 #define Pipe_ClearError() MACROS{ UPINTX &= ~(1 << PERRI); }MACROE
517
518 #define Pipe_IsError() ((UPINTX & (1 << PERRI)) ? true : false)
519
520 #define Pipe_ClearErrorFlags() MACROS{ UPERRX = 0; }MACROE
521
522 #define Pipe_GetErrorFlags() UPERRX
523
524 #define Pipe_IsReadWriteAllowed() ((UPINTX & (1 << RWAL)) ? true : false)
525
526 #define Pipe_IsINReceived() ((UPINTX & (1 << RXINI)) ? true : false)
527
528 #define Pipe_IsOUTReady() ((UPINTX & (1 << TXOUTI)) ? true : false)
529
530 #define Pipe_IsSETUPSent() ((UPINTX & (1 << TXSTPI)) ? true : false)
531
532 #define Pipe_ClearIN() MACROS{ uint8_t Temp = UPINTX; UPINTX = (Temp & ~(1 << RXINI)); \
533 UPINTX = (Temp & ~(1 << FIFOCON)); }MACROE
534
535 #define Pipe_ClearOUT() MACROS{ uint8_t Temp = UPINTX; UPINTX = (Temp & ~(1 << TXOUTI)); \
536 UPINTX = (Temp & ~(1 << FIFOCON)); }MACROE
537
538 #define Pipe_ClearSETUP() MACROS{ uint8_t Temp = UPINTX; UPINTX = (Temp & ~(1 << TXSTPI)); \
539 UPINTX = (Temp & ~(1 << FIFOCON)); }MACROE
540
541 #define Pipe_IsNAKReceived() ((UPINTX & (1 << NAKEDI)) ? true : false)
542
543 #define Pipe_ClearNAKReceived() MACROS{ UPINTX &= ~(1 << NAKEDI); }MACROE
544
545 #define Pipe_IsStalled() ((UPINTX & (1 << RXSTALLI)) ? true : false)
546
547 #define Pipe_ClearStall() MACROS{ UPINTX &= ~(1 << RXSTALLI); }MACROE
548 #endif
549
550 /* Enums: */
551 /** Enum for the possible error return codes of the Pipe_WaitUntilReady function
552 *
553 * \ingroup Group_PipeRW
554 */
555 enum Pipe_WaitUntilReady_ErrorCodes_t
556 {
557 PIPE_READYWAIT_NoError = 0, /**< Pipe ready for next packet, no error */
558 PIPE_READYWAIT_PipeStalled = 1, /**< The device stalled the pipe while waiting. */
559 PIPE_READYWAIT_DeviceDisconnected = 2, /**< Device was disconnected from the host while waiting. */
560 PIPE_READYWAIT_Timeout = 3, /**< The device failed to accept or send the next packet
561 * within the software timeout period set by the
562 * USB_STREAM_TIMEOUT_MS macro.
563 */
564 };
565
566 /** Enum for the possible error return codes of the Pipe_*_Stream_* functions.
567 *
568 * \ingroup Group_PipeRW
569 */
570 enum Pipe_Stream_RW_ErrorCodes_t
571 {
572 PIPE_RWSTREAM_ERROR_NoError = 0, /**< Command completed successfully, no error. */
573 PIPE_RWSTREAM_ERROR_PipeStalled = 1, /**< The device stalled the pipe during the transfer. */
574 PIPE_RWSTREAM_ERROR_DeviceDisconnected = 2, /**< Device was disconnected from the host during
575 * the transfer.
576 */
577 PIPE_RWSTREAM_ERROR_Timeout = 3, /**< The device failed to accept or send the next packet
578 * within the software timeout period set by the
579 * USB_STREAM_TIMEOUT_MS macro.
580 */
581 PIPE_RWSTREAM_ERROR_CallbackAborted = 4, /**< Indicates that the stream's callback function aborted
582 * the transfer early.
583 */
584 };
585
586 /* Inline Functions: */
587 /** Reads one byte from the currently selected pipe's bank, for OUT direction pipes.
588 *
589 * \ingroup Group_PipeRW
590 *
591 * \return Next byte in the currently selected pipe's FIFO buffer
592 */
593 static inline uint8_t Pipe_Read_Byte(void) ATTR_WARN_UNUSED_RESULT ATTR_ALWAYS_INLINE;
594 static inline uint8_t Pipe_Read_Byte(void)
595 {
596 return UPDATX;
597 }
598
599 /** Writes one byte from the currently selected pipe's bank, for IN direction pipes.
600 *
601 * \ingroup Group_PipeRW
602 *
603 * \param Byte Next byte to write into the the currently selected pipe's FIFO buffer
604 */
605 static inline void Pipe_Write_Byte(const uint8_t Byte) ATTR_ALWAYS_INLINE;
606 static inline void Pipe_Write_Byte(const uint8_t Byte)
607 {
608 UPDATX = Byte;
609 }
610
611 /** Discards one byte from the currently selected pipe's bank, for OUT direction pipes.
612 *
613 * \ingroup Group_PipeRW
614 */
615 static inline void Pipe_Discard_Byte(void) ATTR_ALWAYS_INLINE;
616 static inline void Pipe_Discard_Byte(void)
617 {
618 uint8_t Dummy;
619
620 Dummy = UPDATX;
621 }
622
623 /** Reads two bytes from the currently selected pipe's bank in little endian format, for OUT
624 * direction pipes.
625 *
626 * \ingroup Group_PipeRW
627 *
628 * \return Next word in the currently selected pipe's FIFO buffer
629 */
630 static inline uint16_t Pipe_Read_Word_LE(void) ATTR_WARN_UNUSED_RESULT ATTR_ALWAYS_INLINE;
631 static inline uint16_t Pipe_Read_Word_LE(void)
632 {
633 uint16_t Data;
634
635 Data = UPDATX;
636 Data |= (((uint16_t)UPDATX) << 8);
637
638 return Data;
639 }
640
641 /** Reads two bytes from the currently selected pipe's bank in big endian format, for OUT
642 * direction pipes.
643 *
644 * \ingroup Group_PipeRW
645 *
646 * \return Next word in the currently selected pipe's FIFO buffer
647 */
648 static inline uint16_t Pipe_Read_Word_BE(void) ATTR_WARN_UNUSED_RESULT ATTR_ALWAYS_INLINE;
649 static inline uint16_t Pipe_Read_Word_BE(void)
650 {
651 uint16_t Data;
652
653 Data = (((uint16_t)UPDATX) << 8);
654 Data |= UPDATX;
655
656 return Data;
657 }
658
659 /** Writes two bytes to the currently selected pipe's bank in little endian format, for IN
660 * direction pipes.
661 *
662 * \ingroup Group_PipeRW
663 *
664 * \param Word Next word to write to the currently selected pipe's FIFO buffer
665 */
666 static inline void Pipe_Write_Word_LE(const uint16_t Word) ATTR_ALWAYS_INLINE;
667 static inline void Pipe_Write_Word_LE(const uint16_t Word)
668 {
669 UPDATX = (Word & 0xFF);
670 UPDATX = (Word >> 8);
671 }
672
673 /** Writes two bytes to the currently selected pipe's bank in big endian format, for IN
674 * direction pipes.
675 *
676 * \ingroup Group_PipeRW
677 *
678 * \param Word Next word to write to the currently selected pipe's FIFO buffer
679 */
680 static inline void Pipe_Write_Word_BE(const uint16_t Word) ATTR_ALWAYS_INLINE;
681 static inline void Pipe_Write_Word_BE(const uint16_t Word)
682 {
683 UPDATX = (Word >> 8);
684 UPDATX = (Word & 0xFF);
685 }
686
687 /** Discards two bytes from the currently selected pipe's bank, for OUT direction pipes.
688 *
689 * \ingroup Group_PipeRW
690 */
691 static inline void Pipe_Discard_Word(void) ATTR_ALWAYS_INLINE;
692 static inline void Pipe_Discard_Word(void)
693 {
694 uint8_t Dummy;
695
696 Dummy = UPDATX;
697 Dummy = UPDATX;
698 }
699
700 /** Reads four bytes from the currently selected pipe's bank in little endian format, for OUT
701 * direction pipes.
702 *
703 * \ingroup Group_PipeRW
704 *
705 * \return Next double word in the currently selected pipe's FIFO buffer
706 */
707 static inline uint32_t Pipe_Read_DWord_LE(void) ATTR_WARN_UNUSED_RESULT ATTR_ALWAYS_INLINE;
708 static inline uint32_t Pipe_Read_DWord_LE(void)
709 {
710 union
711 {
712 uint32_t DWord;
713 uint8_t Bytes[4];
714 } Data;
715
716 Data.Bytes[0] = UPDATX;
717 Data.Bytes[1] = UPDATX;
718 Data.Bytes[2] = UPDATX;
719 Data.Bytes[3] = UPDATX;
720
721 return Data.DWord;
722 }
723
724 /** Reads four bytes from the currently selected pipe's bank in big endian format, for OUT
725 * direction pipes.
726 *
727 * \ingroup Group_PipeRW
728 *
729 * \return Next double word in the currently selected pipe's FIFO buffer
730 */
731 static inline uint32_t Pipe_Read_DWord_BE(void) ATTR_WARN_UNUSED_RESULT ATTR_ALWAYS_INLINE;
732 static inline uint32_t Pipe_Read_DWord_BE(void)
733 {
734 union
735 {
736 uint32_t DWord;
737 uint8_t Bytes[4];
738 } Data;
739
740 Data.Bytes[3] = UPDATX;
741 Data.Bytes[2] = UPDATX;
742 Data.Bytes[1] = UPDATX;
743 Data.Bytes[0] = UPDATX;
744
745 return Data.DWord;
746 }
747
748 /** Writes four bytes to the currently selected pipe's bank in little endian format, for IN
749 * direction pipes.
750 *
751 * \ingroup Group_PipeRW
752 *
753 * \param DWord Next double word to write to the currently selected pipe's FIFO buffer
754 */
755 static inline void Pipe_Write_DWord_LE(const uint32_t DWord) ATTR_ALWAYS_INLINE;
756 static inline void Pipe_Write_DWord_LE(const uint32_t DWord)
757 {
758 Pipe_Write_Word_LE(DWord);
759 Pipe_Write_Word_LE(DWord >> 16);
760 }
761
762 /** Writes four bytes to the currently selected pipe's bank in big endian format, for IN
763 * direction pipes.
764 *
765 * \ingroup Group_PipeRW
766 *
767 * \param DWord Next double word to write to the currently selected pipe's FIFO buffer
768 */
769 static inline void Pipe_Write_DWord_BE(const uint32_t DWord) ATTR_ALWAYS_INLINE;
770 static inline void Pipe_Write_DWord_BE(const uint32_t DWord)
771 {
772 Pipe_Write_Word_BE(DWord >> 16);
773 Pipe_Write_Word_BE(DWord);
774 }
775
776 /** Discards four bytes from the currently selected pipe's bank, for OUT direction pipes.
777 *
778 * \ingroup Group_PipeRW
779 */
780 static inline void Pipe_Discard_DWord(void) ATTR_ALWAYS_INLINE;
781 static inline void Pipe_Discard_DWord(void)
782 {
783 uint8_t Dummy;
784
785 Dummy = UPDATX;
786 Dummy = UPDATX;
787 Dummy = UPDATX;
788 Dummy = UPDATX;
789 }
790
791 /* External Variables: */
792 /** Global indicating the maximum packet size of the default control pipe located at address
793 * 0 in the device. This value is set to the value indicated in the attached device's device
794 * descriptor once the USB interface is initialized into host mode and a device is attached
795 * to the USB bus.
796 *
797 * \note This variable should be treated as read-only in the user application, and never manually
798 * changed in value.
799 */
800 extern uint8_t USB_ControlPipeSize;
801
802 /* Function Prototypes: */
803 /** Configures the specified pipe number with the given pipe type, token, target endpoint number in the
804 * attached device, bank size and banking mode. Pipes should be allocated in ascending order by their
805 * address in the device (i.e. pipe 1 should be configured before pipe 2 and so on).
806 *
807 * The pipe type may be one of the EP_TYPE_* macros listed in LowLevel.h, the token may be one of the
808 * PIPE_TOKEN_* masks.
809 *
810 * The bank size must indicate the maximum packet size that the pipe can handle. Different pipe
811 * numbers can handle different maximum packet sizes - refer to the chosen USB AVR's datasheet to
812 * determine the maximum bank size for each pipe.
813 *
814 * The banking mode may be either PIPE_BANK_SINGLE or PIPE_BANK_DOUBLE.
815 *
816 * A newly configured pipe is frozen by default, and must be unfrozen before use via the Pipe_Unfreeze() macro.
817 *
818 * \note This routine will select the specified pipe, and the pipe will remain selected once the
819 * routine completes regardless of if the pipe configuration succeeds.
820 *
821 * \return Boolean true if the configuration is successful, false otherwise
822 */
823 bool Pipe_ConfigurePipe(const uint8_t Number, const uint8_t Type, const uint8_t Token, const uint8_t EndpointNumber,
824 const uint16_t Size, const uint8_t Banks);
825
826 /** Spinloops until the currently selected non-control pipe is ready for the next packed of data
827 * to be read or written to it.
828 *
829 * \ingroup Group_PipeRW
830 *
831 * \return A value from the Pipe_WaitUntilReady_ErrorCodes_t enum.
832 */
833 uint8_t Pipe_WaitUntilReady(void);
834
835 /** Writes the given number of bytes to the pipe from the given buffer in little endian,
836 * sending full packets to the device as needed. The last packet filled is not automatically sent;
837 * the user is responsible for manually sending the last written packet to the host via the
838 * Pipe_ClearOUT() macro. Between each USB packet, the given stream callback function is
839 * executed repeatedly until the next packet is ready, allowing for early aborts of stream transfers.
840 *
841 * The callback routine should be created using the STREAM_CALLBACK() macro. If the token
842 * NO_STREAM_CALLBACKS is passed via the -D option to the compiler, stream callbacks are disabled
843 * and this function has the Callback parameter omitted.
844 *
845 * \ingroup Group_PipeRW
846 *
847 * \param Buffer Pointer to the source data buffer to read from.
848 * \param Length Number of bytes to read for the currently selected pipe into the buffer.
849 * \param Callback Name of a callback routine to call between successive USB packet transfers, NULL if no callback
850 *
851 * \return A value from the Pipe_Stream_RW_ErrorCodes_t enum.
852 */
853 uint8_t Pipe_Write_Stream_LE(const void* Buffer, uint16_t Length
854 #if !defined(NO_STREAM_CALLBACKS) || defined(__DOXYGEN__)
855 , uint8_t (* const Callback)(void)
856 #endif
857 ) ATTR_NON_NULL_PTR_ARG(1);
858
859 /** Writes the given number of bytes to the pipe from the given buffer in big endian,
860 * sending full packets to the device as needed. The last packet filled is not automatically sent;
861 * the user is responsible for manually sending the last written packet to the host via the
862 * Pipe_ClearOUT() macro. Between each USB packet, the given stream callback function is
863 * executed repeatedly until the next packet is ready, allowing for early aborts of stream transfers.
864 *
865 * The callback routine should be created using the STREAM_CALLBACK() macro. If the token
866 * NO_STREAM_CALLBACKS is passed via the -D option to the compiler, stream callbacks are disabled
867 * and this function has the Callback parameter omitted.
868 *
869 * \ingroup Group_PipeRW
870 *
871 * \param Buffer Pointer to the source data buffer to read from.
872 * \param Length Number of bytes to read for the currently selected pipe into the buffer.
873 * \param Callback Name of a callback routine to call between successive USB packet transfers, NULL if no callback
874 *
875 * \return A value from the Pipe_Stream_RW_ErrorCodes_t enum.
876 */
877 uint8_t Pipe_Write_Stream_BE(const void* Buffer, uint16_t Length
878 #if !defined(NO_STREAM_CALLBACKS) || defined(__DOXYGEN__)
879 , uint8_t (* const Callback)(void)
880 #endif
881 ) ATTR_NON_NULL_PTR_ARG(1);
882
883 /** Reads and discards the given number of bytes from the pipe, discarding fully read packets from the host
884 * as needed. The last packet is not automatically discarded once the remaining bytes has been read; the
885 * user is responsible for manually discarding the last packet from the device via the Pipe_ClearIN() macro.
886 * Between each USB packet, the given stream callback function is executed repeatedly until the next packet is ready,
887 * allowing for early aborts of stream transfers.
888 *
889 * The callback routine should be created using the STREAM_CALLBACK() macro. If the token
890 * NO_STREAM_CALLBACKS is passed via the -D option to the compiler, stream callbacks are disabled
891 * and this function has the Callback parameter omitted.
892 *
893 * \ingroup Group_PipeRW
894 *
895 * \param Length Number of bytes to send via the currently selected pipe.
896 * \param Callback Name of a callback routine to call between successive USB packet transfers, NULL if no callback
897 *
898 * \return A value from the Pipe_Stream_RW_ErrorCodes_t enum.
899 */
900 uint8_t Pipe_Discard_Stream(uint16_t Length
901 #if !defined(NO_STREAM_CALLBACKS) || defined(__DOXYGEN__)
902 , uint8_t (* const Callback)(void)
903 #endif
904 );
905
906 /** Reads the given number of bytes from the pipe into the given buffer in little endian,
907 * sending full packets to the device as needed. The last packet filled is not automatically sent;
908 * the user is responsible for manually sending the last written packet to the host via the
909 * Pipe_ClearIN() macro. Between each USB packet, the given stream callback function is
910 * executed repeatedly until the next packet is ready, allowing for early aborts of stream transfers.
911 *
912 * The callback routine should be created using the STREAM_CALLBACK() macro. If the token
913 * NO_STREAM_CALLBACKS is passed via the -D option to the compiler, stream callbacks are disabled
914 * and this function has the Callback parameter omitted.
915 *
916 * \ingroup Group_PipeRW
917 *
918 * \param Buffer Pointer to the source data buffer to write to.
919 * \param Length Number of bytes to read for the currently selected pipe to read from.
920 * \param Callback Name of a callback routine to call between successive USB packet transfers, NULL if no callback
921 *
922 * \return A value from the Pipe_Stream_RW_ErrorCodes_t enum.
923 */
924 uint8_t Pipe_Read_Stream_LE(void* Buffer, uint16_t Length
925 #if !defined(NO_STREAM_CALLBACKS) || defined(__DOXYGEN__)
926 , uint8_t (* const Callback)(void)
927 #endif
928 ) ATTR_NON_NULL_PTR_ARG(1);
929
930 /** Reads the given number of bytes from the pipe into the given buffer in big endian,
931 * sending full packets to the device as needed. The last packet filled is not automatically sent;
932 * the user is responsible for manually sending the last written packet to the host via the
933 * Pipe_ClearIN() macro. Between each USB packet, the given stream callback function is
934 * executed repeatedly until the next packet is ready, allowing for early aborts of stream transfers.
935 *
936 * The callback routine should be created using the STREAM_CALLBACK() macro. If the token
937 * NO_STREAM_CALLBACKS is passed via the -D option to the compiler, stream callbacks are disabled
938 * and this function has the Callback parameter omitted.
939 *
940 * \ingroup Group_PipeRW
941 *
942 * \param Buffer Pointer to the source data buffer to write to.
943 * \param Length Number of bytes to read for the currently selected pipe to read from.
944 * \param Callback Name of a callback routine to call between successive USB packet transfers, NULL if no callback
945 *
946 * \return A value from the Pipe_Stream_RW_ErrorCodes_t enum.
947 */
948 uint8_t Pipe_Read_Stream_BE(void* Buffer, uint16_t Length
949 #if !defined(NO_STREAM_CALLBACKS) || defined(__DOXYGEN__)
950 , uint8_t (* const Callback)(void)
951 #endif
952 ) ATTR_NON_NULL_PTR_ARG(1);
953
954 /* Private Interface - For use in library only: */
955 #if !defined(__DOXYGEN__)
956 /* Macros: */
957 #define PIPE_TOKEN_MASK (0x03 << PTOKEN0)
958
959 #define Pipe_AllocateMemory() MACROS{ UPCFG1X |= (1 << ALLOC); }MACROE
960 #define Pipe_DeallocateMemory() MACROS{ UPCFG1X &= ~(1 << ALLOC); }MACROE
961
962 /* Function Prototypes: */
963 void Pipe_ClearPipes(void);
964
965 /* Inline Functions: */
966 static inline uint8_t Pipe_BytesToEPSizeMask(uint16_t Bytes) ATTR_WARN_UNUSED_RESULT ATTR_CONST ATTR_ALWAYS_INLINE;
967 static inline uint8_t Pipe_BytesToEPSizeMask(uint16_t Bytes)
968 {
969 if (Bytes <= 8)
970 return (0 << EPSIZE0);
971 else if (Bytes <= 16)
972 return (1 << EPSIZE0);
973 else if (Bytes <= 32)
974 return (2 << EPSIZE0);
975 else if (Bytes <= 64)
976 return (3 << EPSIZE0);
977 else if (Bytes <= 128)
978 return (4 << EPSIZE0);
979 else
980 return (5 << EPSIZE0);
981 };
982
983 #endif
984
985 /* Disable C linkage for C++ Compilers: */
986 #if defined(__cplusplus)
987 }
988 #endif
989
990 #endif
991
992 /** @} */