AppConfigHeaders: Merge in latest trunk.
[pub/USBasp.git] / Bootloaders / CDC / BootloaderCDC.c
1 /*
2 LUFA Library
3 Copyright (C) Dean Camera, 2012.
4
5 dean [at] fourwalledcubicle [dot] com
6 www.lufa-lib.org
7 */
8
9 /*
10 Copyright 2012 Dean Camera (dean [at] fourwalledcubicle [dot] com)
11
12 Permission to use, copy, modify, distribute, and sell this
13 software and its documentation for any purpose is hereby granted
14 without fee, provided that the above copyright notice appear in
15 all copies and that both that the copyright notice and this
16 permission notice and warranty disclaimer appear in supporting
17 documentation, and that the name of the author not be used in
18 advertising or publicity pertaining to distribution of the
19 software without specific, written prior permission.
20
21 The author disclaim all warranties with regard to this
22 software, including all implied warranties of merchantability
23 and fitness. In no event shall the author be liable for any
24 special, indirect or consequential damages or any damages
25 whatsoever resulting from loss of use, data or profits, whether
26 in an action of contract, negligence or other tortious action,
27 arising out of or in connection with the use or performance of
28 this software.
29 */
30
31 /** \file
32 *
33 * Main source file for the CDC class bootloader. This file contains the complete bootloader logic.
34 */
35
36 #define INCLUDE_FROM_BOOTLOADERCDC_C
37 #include "BootloaderCDC.h"
38
39 /** Contains the current baud rate and other settings of the first virtual serial port. This must be retained as some
40 * operating systems will not open the port unless the settings can be set successfully.
41 */
42 static CDC_LineEncoding_t LineEncoding = { .BaudRateBPS = 0,
43 .CharFormat = CDC_LINEENCODING_OneStopBit,
44 .ParityType = CDC_PARITY_None,
45 .DataBits = 8 };
46
47 /** Current address counter. This stores the current address of the FLASH or EEPROM as set by the host,
48 * and is used when reading or writing to the AVRs memory (either FLASH or EEPROM depending on the issued
49 * command.)
50 */
51 static uint32_t CurrAddress;
52
53 /** Flag to indicate if the bootloader should be running, or should exit and allow the application code to run
54 * via a watchdog reset. When cleared the bootloader will exit, starting the watchdog and entering an infinite
55 * loop until the AVR restarts and the application runs.
56 */
57 static bool RunBootloader = true;
58
59 /** Magic lock for forced application start. If the HWBE fuse is programmed and BOOTRST is unprogrammed, the bootloader
60 * will start if the /HWB line of the AVR is held low and the system is reset. However, if the /HWB line is still held
61 * low when the application attempts to start via a watchdog reset, the bootloader will re-start. If set to the value
62 * \ref MAGIC_BOOT_KEY the special init function \ref Application_Jump_Check() will force the application to start.
63 */
64 uint32_t MagicBootKey ATTR_NO_INIT;
65
66
67 /** Special startup routine to check if the bootloader was started via a watchdog reset, and if the magic application
68 * start key has been loaded into \ref MagicBootKey. If the bootloader started via the watchdog and the key is valid,
69 * this will force the user application to start via a software jump.
70 */
71 void Application_Jump_Check(void)
72 {
73 /* If the reset source was the bootloader and the key is correct, clear it and jump to the application */
74 if ((MCUSR & (1 << WDRF)) && (MagicBootKey == MAGIC_BOOT_KEY))
75 {
76 /* Turn off the watchdog */
77 MCUSR &= ~(1<<WDRF);
78 wdt_disable();
79
80 /* Clear the boot key and jump to the user application */
81 MagicBootKey = 0;
82
83 // cppcheck-suppress constStatement
84 ((void (*)(void))0x0000)();
85 }
86 }
87
88 /** Main program entry point. This routine configures the hardware required by the bootloader, then continuously
89 * runs the bootloader processing routine until instructed to soft-exit, or hard-reset via the watchdog to start
90 * the loaded application code.
91 */
92 int main(void)
93 {
94 /* Setup hardware required for the bootloader */
95 SetupHardware();
96
97 /* Turn on first LED on the board to indicate that the bootloader has started */
98 LEDs_SetAllLEDs(LEDS_LED1);
99
100 /* Enable global interrupts so that the USB stack can function */
101 sei();
102
103 while (RunBootloader)
104 {
105 CDC_Task();
106 USB_USBTask();
107 }
108
109 /* Disconnect from the host - USB interface will be reset later along with the AVR */
110 USB_Detach();
111
112 /* Unlock the forced application start mode of the bootloader if it is restarted */
113 MagicBootKey = MAGIC_BOOT_KEY;
114
115 /* Enable the watchdog and force a timeout to reset the AVR */
116 wdt_enable(WDTO_250MS);
117
118 for (;;);
119 }
120
121 /** Configures all hardware required for the bootloader. */
122 static void SetupHardware(void)
123 {
124 /* Disable watchdog if enabled by bootloader/fuses */
125 MCUSR &= ~(1 << WDRF);
126 wdt_disable();
127
128 /* Disable clock division */
129 clock_prescale_set(clock_div_1);
130
131 /* Relocate the interrupt vector table to the bootloader section */
132 MCUCR = (1 << IVCE);
133 MCUCR = (1 << IVSEL);
134
135 /* Initialize the USB and other board hardware drivers */
136 USB_Init();
137 LEDs_Init();
138
139 /* Bootloader active LED toggle timer initialization */
140 TIMSK1 = (1 << TOIE1);
141 TCCR1B = ((1 << CS11) | (1 << CS10));
142 }
143
144 /** ISR to periodically toggle the LEDs on the board to indicate that the bootloader is active. */
145 ISR(TIMER1_OVF_vect, ISR_BLOCK)
146 {
147 LEDs_ToggleLEDs(LEDS_LED1 | LEDS_LED2);
148 }
149
150 /** Event handler for the USB_ConfigurationChanged event. This configures the device's endpoints ready
151 * to relay data to and from the attached USB host.
152 */
153 void EVENT_USB_Device_ConfigurationChanged(void)
154 {
155 /* Setup CDC Notification, Rx and Tx Endpoints */
156 Endpoint_ConfigureEndpoint(CDC_NOTIFICATION_EPADDR, EP_TYPE_INTERRUPT,
157 CDC_NOTIFICATION_EPSIZE, 1);
158
159 Endpoint_ConfigureEndpoint(CDC_TX_EPADDR, EP_TYPE_BULK, CDC_TXRX_EPSIZE, 1);
160
161 Endpoint_ConfigureEndpoint(CDC_RX_EPADDR, EP_TYPE_BULK, CDC_TXRX_EPSIZE, 1);
162 }
163
164 /** Event handler for the USB_ControlRequest event. This is used to catch and process control requests sent to
165 * the device from the USB host before passing along unhandled control requests to the library for processing
166 * internally.
167 */
168 void EVENT_USB_Device_ControlRequest(void)
169 {
170 /* Ignore any requests that aren't directed to the CDC interface */
171 if ((USB_ControlRequest.bmRequestType & (CONTROL_REQTYPE_TYPE | CONTROL_REQTYPE_RECIPIENT)) !=
172 (REQTYPE_CLASS | REQREC_INTERFACE))
173 {
174 return;
175 }
176
177 /* Activity - toggle indicator LEDs */
178 LEDs_ToggleLEDs(LEDS_LED1 | LEDS_LED2);
179
180 /* Process CDC specific control requests */
181 switch (USB_ControlRequest.bRequest)
182 {
183 case CDC_REQ_GetLineEncoding:
184 if (USB_ControlRequest.bmRequestType == (REQDIR_DEVICETOHOST | REQTYPE_CLASS | REQREC_INTERFACE))
185 {
186 Endpoint_ClearSETUP();
187
188 /* Write the line coding data to the control endpoint */
189 Endpoint_Write_Control_Stream_LE(&LineEncoding, sizeof(CDC_LineEncoding_t));
190 Endpoint_ClearOUT();
191 }
192
193 break;
194 case CDC_REQ_SetLineEncoding:
195 if (USB_ControlRequest.bmRequestType == (REQDIR_HOSTTODEVICE | REQTYPE_CLASS | REQREC_INTERFACE))
196 {
197 Endpoint_ClearSETUP();
198
199 /* Read the line coding data in from the host into the global struct */
200 Endpoint_Read_Control_Stream_LE(&LineEncoding, sizeof(CDC_LineEncoding_t));
201 Endpoint_ClearIN();
202 }
203
204 break;
205 }
206 }
207
208 #if !defined(NO_BLOCK_SUPPORT)
209 /** Reads or writes a block of EEPROM or FLASH memory to or from the appropriate CDC data endpoint, depending
210 * on the AVR910 protocol command issued.
211 *
212 * \param[in] Command Single character AVR910 protocol command indicating what memory operation to perform
213 */
214 static void ReadWriteMemoryBlock(const uint8_t Command)
215 {
216 uint16_t BlockSize;
217 char MemoryType;
218
219 bool HighByte = false;
220 uint8_t LowByte = 0;
221
222 BlockSize = (FetchNextCommandByte() << 8);
223 BlockSize |= FetchNextCommandByte();
224
225 MemoryType = FetchNextCommandByte();
226
227 if ((MemoryType != 'E') && (MemoryType != 'F'))
228 {
229 /* Send error byte back to the host */
230 WriteNextResponseByte('?');
231
232 return;
233 }
234
235 /* Check if command is to read memory */
236 if (Command == 'g')
237 {
238 /* Re-enable RWW section */
239 boot_rww_enable();
240
241 while (BlockSize--)
242 {
243 if (MemoryType == 'F')
244 {
245 /* Read the next FLASH byte from the current FLASH page */
246 #if (FLASHEND > 0xFFFF)
247 WriteNextResponseByte(pgm_read_byte_far(CurrAddress | HighByte));
248 #else
249 WriteNextResponseByte(pgm_read_byte(CurrAddress | HighByte));
250 #endif
251
252 /* If both bytes in current word have been read, increment the address counter */
253 if (HighByte)
254 CurrAddress += 2;
255
256 HighByte = !HighByte;
257 }
258 else
259 {
260 /* Read the next EEPROM byte into the endpoint */
261 WriteNextResponseByte(eeprom_read_byte((uint8_t*)(intptr_t)(CurrAddress >> 1)));
262
263 /* Increment the address counter after use */
264 CurrAddress += 2;
265 }
266 }
267 }
268 else
269 {
270 uint32_t PageStartAddress = CurrAddress;
271
272 if (MemoryType == 'F')
273 {
274 boot_page_erase(PageStartAddress);
275 boot_spm_busy_wait();
276 }
277
278 while (BlockSize--)
279 {
280 if (MemoryType == 'F')
281 {
282 /* If both bytes in current word have been written, increment the address counter */
283 if (HighByte)
284 {
285 /* Write the next FLASH word to the current FLASH page */
286 boot_page_fill(CurrAddress, ((FetchNextCommandByte() << 8) | LowByte));
287
288 /* Increment the address counter after use */
289 CurrAddress += 2;
290 }
291 else
292 {
293 LowByte = FetchNextCommandByte();
294 }
295
296 HighByte = !HighByte;
297 }
298 else
299 {
300 /* Write the next EEPROM byte from the endpoint */
301 eeprom_write_byte((uint8_t*)((intptr_t)(CurrAddress >> 1)), FetchNextCommandByte());
302
303 /* Increment the address counter after use */
304 CurrAddress += 2;
305 }
306 }
307
308 /* If in FLASH programming mode, commit the page after writing */
309 if (MemoryType == 'F')
310 {
311 /* Commit the flash page to memory */
312 boot_page_write(PageStartAddress);
313
314 /* Wait until write operation has completed */
315 boot_spm_busy_wait();
316 }
317
318 /* Send response byte back to the host */
319 WriteNextResponseByte('\r');
320 }
321 }
322 #endif
323
324 /** Retrieves the next byte from the host in the CDC data OUT endpoint, and clears the endpoint bank if needed
325 * to allow reception of the next data packet from the host.
326 *
327 * \return Next received byte from the host in the CDC data OUT endpoint
328 */
329 static uint8_t FetchNextCommandByte(void)
330 {
331 /* Select the OUT endpoint so that the next data byte can be read */
332 Endpoint_SelectEndpoint(CDC_RX_EPADDR);
333
334 /* If OUT endpoint empty, clear it and wait for the next packet from the host */
335 while (!(Endpoint_IsReadWriteAllowed()))
336 {
337 Endpoint_ClearOUT();
338
339 while (!(Endpoint_IsOUTReceived()))
340 {
341 if (USB_DeviceState == DEVICE_STATE_Unattached)
342 return 0;
343 }
344 }
345
346 /* Fetch the next byte from the OUT endpoint */
347 return Endpoint_Read_8();
348 }
349
350 /** Writes the next response byte to the CDC data IN endpoint, and sends the endpoint back if needed to free up the
351 * bank when full ready for the next byte in the packet to the host.
352 *
353 * \param[in] Response Next response byte to send to the host
354 */
355 static void WriteNextResponseByte(const uint8_t Response)
356 {
357 /* Select the IN endpoint so that the next data byte can be written */
358 Endpoint_SelectEndpoint(CDC_TX_EPADDR);
359
360 /* If IN endpoint full, clear it and wait until ready for the next packet to the host */
361 if (!(Endpoint_IsReadWriteAllowed()))
362 {
363 Endpoint_ClearIN();
364
365 while (!(Endpoint_IsINReady()))
366 {
367 if (USB_DeviceState == DEVICE_STATE_Unattached)
368 return;
369 }
370 }
371
372 /* Write the next byte to the IN endpoint */
373 Endpoint_Write_8(Response);
374 }
375
376 /** Task to read in AVR910 commands from the CDC data OUT endpoint, process them, perform the required actions
377 * and send the appropriate response back to the host.
378 */
379 static void CDC_Task(void)
380 {
381 /* Select the OUT endpoint */
382 Endpoint_SelectEndpoint(CDC_RX_EPADDR);
383
384 /* Check if endpoint has a command in it sent from the host */
385 if (!(Endpoint_IsOUTReceived()))
386 return;
387
388 /* Read in the bootloader command (first byte sent from host) */
389 uint8_t Command = FetchNextCommandByte();
390
391 if (Command == 'E')
392 {
393 RunBootloader = false;
394
395 /* Send confirmation byte back to the host */
396 WriteNextResponseByte('\r');
397 }
398 else if (Command == 'T')
399 {
400 FetchNextCommandByte();
401
402 /* Send confirmation byte back to the host */
403 WriteNextResponseByte('\r');
404 }
405 else if ((Command == 'L') || (Command == 'P'))
406 {
407 /* Send confirmation byte back to the host */
408 WriteNextResponseByte('\r');
409 }
410 else if (Command == 't')
411 {
412 /* Return ATMEGA128 part code - this is only to allow AVRProg to use the bootloader */
413 WriteNextResponseByte(0x44);
414 WriteNextResponseByte(0x00);
415 }
416 else if (Command == 'a')
417 {
418 /* Indicate auto-address increment is supported */
419 WriteNextResponseByte('Y');
420 }
421 else if (Command == 'A')
422 {
423 /* Set the current address to that given by the host */
424 CurrAddress = (FetchNextCommandByte() << 9);
425 CurrAddress |= (FetchNextCommandByte() << 1);
426
427 /* Send confirmation byte back to the host */
428 WriteNextResponseByte('\r');
429 }
430 else if (Command == 'p')
431 {
432 /* Indicate serial programmer back to the host */
433 WriteNextResponseByte('S');
434 }
435 else if (Command == 'S')
436 {
437 /* Write the 7-byte software identifier to the endpoint */
438 for (uint8_t CurrByte = 0; CurrByte < 7; CurrByte++)
439 WriteNextResponseByte(SOFTWARE_IDENTIFIER[CurrByte]);
440 }
441 else if (Command == 'V')
442 {
443 WriteNextResponseByte('0' + BOOTLOADER_VERSION_MAJOR);
444 WriteNextResponseByte('0' + BOOTLOADER_VERSION_MINOR);
445 }
446 else if (Command == 's')
447 {
448 WriteNextResponseByte(AVR_SIGNATURE_3);
449 WriteNextResponseByte(AVR_SIGNATURE_2);
450 WriteNextResponseByte(AVR_SIGNATURE_1);
451 }
452 else if (Command == 'e')
453 {
454 /* Clear the application section of flash */
455 for (uint32_t CurrFlashAddress = 0; CurrFlashAddress < BOOT_START_ADDR; CurrFlashAddress += SPM_PAGESIZE)
456 {
457 boot_page_erase(CurrFlashAddress);
458 boot_spm_busy_wait();
459 boot_page_write(CurrFlashAddress);
460 boot_spm_busy_wait();
461 }
462
463 /* Send confirmation byte back to the host */
464 WriteNextResponseByte('\r');
465 }
466 #if !defined(NO_LOCK_BYTE_WRITE_SUPPORT)
467 else if (Command == 'l')
468 {
469 /* Set the lock bits to those given by the host */
470 boot_lock_bits_set(FetchNextCommandByte());
471
472 /* Send confirmation byte back to the host */
473 WriteNextResponseByte('\r');
474 }
475 #endif
476 else if (Command == 'r')
477 {
478 WriteNextResponseByte(boot_lock_fuse_bits_get(GET_LOCK_BITS));
479 }
480 else if (Command == 'F')
481 {
482 WriteNextResponseByte(boot_lock_fuse_bits_get(GET_LOW_FUSE_BITS));
483 }
484 else if (Command == 'N')
485 {
486 WriteNextResponseByte(boot_lock_fuse_bits_get(GET_HIGH_FUSE_BITS));
487 }
488 else if (Command == 'Q')
489 {
490 WriteNextResponseByte(boot_lock_fuse_bits_get(GET_EXTENDED_FUSE_BITS));
491 }
492 #if !defined(NO_BLOCK_SUPPORT)
493 else if (Command == 'b')
494 {
495 WriteNextResponseByte('Y');
496
497 /* Send block size to the host */
498 WriteNextResponseByte(SPM_PAGESIZE >> 8);
499 WriteNextResponseByte(SPM_PAGESIZE & 0xFF);
500 }
501 else if ((Command == 'B') || (Command == 'g'))
502 {
503 /* Delegate the block write/read to a separate function for clarity */
504 ReadWriteMemoryBlock(Command);
505 }
506 #endif
507 #if !defined(NO_FLASH_BYTE_SUPPORT)
508 else if (Command == 'C')
509 {
510 /* Write the high byte to the current flash page */
511 boot_page_fill(CurrAddress, FetchNextCommandByte());
512
513 /* Send confirmation byte back to the host */
514 WriteNextResponseByte('\r');
515 }
516 else if (Command == 'c')
517 {
518 /* Write the low byte to the current flash page */
519 boot_page_fill(CurrAddress | 0x01, FetchNextCommandByte());
520
521 /* Increment the address */
522 CurrAddress += 2;
523
524 /* Send confirmation byte back to the host */
525 WriteNextResponseByte('\r');
526 }
527 else if (Command == 'm')
528 {
529 /* Commit the flash page to memory */
530 boot_page_write(CurrAddress);
531
532 /* Wait until write operation has completed */
533 boot_spm_busy_wait();
534
535 /* Send confirmation byte back to the host */
536 WriteNextResponseByte('\r');
537 }
538 else if (Command == 'R')
539 {
540 #if (FLASHEND > 0xFFFF)
541 uint16_t ProgramWord = pgm_read_word_far(CurrAddress);
542 #else
543 uint16_t ProgramWord = pgm_read_word(CurrAddress);
544 #endif
545
546 WriteNextResponseByte(ProgramWord >> 8);
547 WriteNextResponseByte(ProgramWord & 0xFF);
548 }
549 #endif
550 #if !defined(NO_EEPROM_BYTE_SUPPORT)
551 else if (Command == 'D')
552 {
553 /* Read the byte from the endpoint and write it to the EEPROM */
554 eeprom_write_byte((uint8_t*)((intptr_t)(CurrAddress >> 1)), FetchNextCommandByte());
555
556 /* Increment the address after use */
557 CurrAddress += 2;
558
559 /* Send confirmation byte back to the host */
560 WriteNextResponseByte('\r');
561 }
562 else if (Command == 'd')
563 {
564 /* Read the EEPROM byte and write it to the endpoint */
565 WriteNextResponseByte(eeprom_read_byte((uint8_t*)((intptr_t)(CurrAddress >> 1))));
566
567 /* Increment the address after use */
568 CurrAddress += 2;
569 }
570 #endif
571 else if (Command != 27)
572 {
573 /* Unknown (non-sync) command, return fail code */
574 WriteNextResponseByte('?');
575 }
576
577 /* Select the IN endpoint */
578 Endpoint_SelectEndpoint(CDC_TX_EPADDR);
579
580 /* Remember if the endpoint is completely full before clearing it */
581 bool IsEndpointFull = !(Endpoint_IsReadWriteAllowed());
582
583 /* Send the endpoint data to the host */
584 Endpoint_ClearIN();
585
586 /* If a full endpoint's worth of data was sent, we need to send an empty packet afterwards to signal end of transfer */
587 if (IsEndpointFull)
588 {
589 while (!(Endpoint_IsINReady()))
590 {
591 if (USB_DeviceState == DEVICE_STATE_Unattached)
592 return;
593 }
594
595 Endpoint_ClearIN();
596 }
597
598 /* Wait until the data has been sent to the host */
599 while (!(Endpoint_IsINReady()))
600 {
601 if (USB_DeviceState == DEVICE_STATE_Unattached)
602 return;
603 }
604
605 /* Select the OUT endpoint */
606 Endpoint_SelectEndpoint(CDC_RX_EPADDR);
607
608 /* Acknowledge the command from the host */
609 Endpoint_ClearOUT();
610 }
611