Alter the XPLAINBridge and AVRISP-MKII clone projects so that the descriptors from...
[pub/USBasp.git] / Bootloaders / CDC / BootloaderCDC.c
1 /*
2 LUFA Library
3 Copyright (C) Dean Camera, 2012.
4
5 dean [at] fourwalledcubicle [dot] com
6 www.lufa-lib.org
7 */
8
9 /*
10 Copyright 2012 Dean Camera (dean [at] fourwalledcubicle [dot] com)
11
12 Permission to use, copy, modify, distribute, and sell this
13 software and its documentation for any purpose is hereby granted
14 without fee, provided that the above copyright notice appear in
15 all copies and that both that the copyright notice and this
16 permission notice and warranty disclaimer appear in supporting
17 documentation, and that the name of the author not be used in
18 advertising or publicity pertaining to distribution of the
19 software without specific, written prior permission.
20
21 The author disclaim all warranties with regard to this
22 software, including all implied warranties of merchantability
23 and fitness. In no event shall the author be liable for any
24 special, indirect or consequential damages or any damages
25 whatsoever resulting from loss of use, data or profits, whether
26 in an action of contract, negligence or other tortious action,
27 arising out of or in connection with the use or performance of
28 this software.
29 */
30
31 /** \file
32 *
33 * Main source file for the CDC class bootloader. This file contains the complete bootloader logic.
34 */
35
36 #define INCLUDE_FROM_BOOTLOADERCDC_C
37 #include "BootloaderCDC.h"
38
39 /** Contains the current baud rate and other settings of the first virtual serial port. This must be retained as some
40 * operating systems will not open the port unless the settings can be set successfully.
41 */
42 static CDC_LineEncoding_t LineEncoding = { .BaudRateBPS = 0,
43 .CharFormat = CDC_LINEENCODING_OneStopBit,
44 .ParityType = CDC_PARITY_None,
45 .DataBits = 8 };
46
47 /** Current address counter. This stores the current address of the FLASH or EEPROM as set by the host,
48 * and is used when reading or writing to the AVRs memory (either FLASH or EEPROM depending on the issued
49 * command.)
50 */
51 static uint32_t CurrAddress;
52
53 /** Flag to indicate if the bootloader should be running, or should exit and allow the application code to run
54 * via a watchdog reset. When cleared the bootloader will exit, starting the watchdog and entering an infinite
55 * loop until the AVR restarts and the application runs.
56 */
57 static bool RunBootloader = true;
58
59 /** Magic lock for forced application start. If the HWBE fuse is programmed and BOOTRST is unprogrammed, the bootloader
60 * will start if the /HWB line of the AVR is held low and the system is reset. However, if the /HWB line is still held
61 * low when the application attempts to start via a watchdog reset, the bootloader will re-start. If set to the value
62 * \ref MAGIC_BOOT_KEY the special init function \ref Application_Jump_Check() will force the application to start.
63 */
64 uint32_t MagicBootKey ATTR_NO_INIT;
65
66
67 /** Special startup routine to check if the bootloader was started via a watchdog reset, and if the magic application
68 * start key has been loaded into \ref MagicBootKey. If the bootloader started via the watchdog and the key is valid,
69 * this will force the user application to start via a software jump.
70 */
71 void Application_Jump_Check(void)
72 {
73 /* If the reset source was the bootloader and the key is correct, clear it and jump to the application */
74 if ((MCUSR & (1 << WDRF)) && (MagicBootKey == MAGIC_BOOT_KEY))
75 {
76 MagicBootKey = 0;
77 // cppcheck-suppress constStatement
78 ((void (*)(void))0x0000)();
79 }
80 }
81
82 /** Main program entry point. This routine configures the hardware required by the bootloader, then continuously
83 * runs the bootloader processing routine until instructed to soft-exit, or hard-reset via the watchdog to start
84 * the loaded application code.
85 */
86 int main(void)
87 {
88 /* Setup hardware required for the bootloader */
89 SetupHardware();
90
91 /* Turn on first LED on the board to indicate that the bootloader has started */
92 LEDs_SetAllLEDs(LEDS_LED1);
93
94 /* Enable global interrupts so that the USB stack can function */
95 sei();
96
97 while (RunBootloader)
98 {
99 CDC_Task();
100 USB_USBTask();
101 }
102
103 /* Disconnect from the host - USB interface will be reset later along with the AVR */
104 USB_Detach();
105
106 /* Unlock the forced application start mode of the bootloader if it is restarted */
107 MagicBootKey = MAGIC_BOOT_KEY;
108
109 /* Enable the watchdog and force a timeout to reset the AVR */
110 wdt_enable(WDTO_250MS);
111
112 for (;;);
113 }
114
115 /** Configures all hardware required for the bootloader. */
116 static void SetupHardware(void)
117 {
118 /* Disable watchdog if enabled by bootloader/fuses */
119 MCUSR &= ~(1 << WDRF);
120 wdt_disable();
121
122 /* Disable clock division */
123 clock_prescale_set(clock_div_1);
124
125 /* Relocate the interrupt vector table to the bootloader section */
126 MCUCR = (1 << IVCE);
127 MCUCR = (1 << IVSEL);
128
129 /* Initialize the USB and other board hardware drivers */
130 USB_Init();
131 LEDs_Init();
132
133 /* Bootloader active LED toggle timer initialization */
134 TIMSK1 = (1 << TOIE1);
135 TCCR1B = ((1 << CS11) | (1 << CS10));
136 }
137
138 /** ISR to periodically toggle the LEDs on the board to indicate that the bootloader is active. */
139 ISR(TIMER1_OVF_vect, ISR_BLOCK)
140 {
141 LEDs_ToggleLEDs(LEDS_LED1 | LEDS_LED2);
142 }
143
144 /** Event handler for the USB_ConfigurationChanged event. This configures the device's endpoints ready
145 * to relay data to and from the attached USB host.
146 */
147 void EVENT_USB_Device_ConfigurationChanged(void)
148 {
149 /* Setup CDC Notification, Rx and Tx Endpoints */
150 Endpoint_ConfigureEndpoint(CDC_NOTIFICATION_EPADDR, EP_TYPE_INTERRUPT,
151 CDC_NOTIFICATION_EPSIZE, 1);
152
153 Endpoint_ConfigureEndpoint(CDC_TX_EPADDR, EP_TYPE_BULK, CDC_TXRX_EPSIZE, 1);
154
155 Endpoint_ConfigureEndpoint(CDC_RX_EPADDR, EP_TYPE_BULK, CDC_TXRX_EPSIZE, 1);
156 }
157
158 /** Event handler for the USB_ControlRequest event. This is used to catch and process control requests sent to
159 * the device from the USB host before passing along unhandled control requests to the library for processing
160 * internally.
161 */
162 void EVENT_USB_Device_ControlRequest(void)
163 {
164 /* Ignore any requests that aren't directed to the CDC interface */
165 if ((USB_ControlRequest.bmRequestType & (CONTROL_REQTYPE_TYPE | CONTROL_REQTYPE_RECIPIENT)) !=
166 (REQTYPE_CLASS | REQREC_INTERFACE))
167 {
168 return;
169 }
170
171 /* Activity - toggle indicator LEDs */
172 LEDs_ToggleLEDs(LEDS_LED1 | LEDS_LED2);
173
174 /* Process CDC specific control requests */
175 switch (USB_ControlRequest.bRequest)
176 {
177 case CDC_REQ_GetLineEncoding:
178 if (USB_ControlRequest.bmRequestType == (REQDIR_DEVICETOHOST | REQTYPE_CLASS | REQREC_INTERFACE))
179 {
180 Endpoint_ClearSETUP();
181
182 /* Write the line coding data to the control endpoint */
183 Endpoint_Write_Control_Stream_LE(&LineEncoding, sizeof(CDC_LineEncoding_t));
184 Endpoint_ClearOUT();
185 }
186
187 break;
188 case CDC_REQ_SetLineEncoding:
189 if (USB_ControlRequest.bmRequestType == (REQDIR_HOSTTODEVICE | REQTYPE_CLASS | REQREC_INTERFACE))
190 {
191 Endpoint_ClearSETUP();
192
193 /* Read the line coding data in from the host into the global struct */
194 Endpoint_Read_Control_Stream_LE(&LineEncoding, sizeof(CDC_LineEncoding_t));
195 Endpoint_ClearIN();
196 }
197
198 break;
199 }
200 }
201
202 #if !defined(NO_BLOCK_SUPPORT)
203 /** Reads or writes a block of EEPROM or FLASH memory to or from the appropriate CDC data endpoint, depending
204 * on the AVR910 protocol command issued.
205 *
206 * \param[in] Command Single character AVR910 protocol command indicating what memory operation to perform
207 */
208 static void ReadWriteMemoryBlock(const uint8_t Command)
209 {
210 uint16_t BlockSize;
211 char MemoryType;
212
213 bool HighByte = false;
214 uint8_t LowByte = 0;
215
216 BlockSize = (FetchNextCommandByte() << 8);
217 BlockSize |= FetchNextCommandByte();
218
219 MemoryType = FetchNextCommandByte();
220
221 if ((MemoryType != 'E') && (MemoryType != 'F'))
222 {
223 /* Send error byte back to the host */
224 WriteNextResponseByte('?');
225
226 return;
227 }
228
229 /* Check if command is to read memory */
230 if (Command == 'g')
231 {
232 /* Re-enable RWW section */
233 boot_rww_enable();
234
235 while (BlockSize--)
236 {
237 if (MemoryType == 'F')
238 {
239 /* Read the next FLASH byte from the current FLASH page */
240 #if (FLASHEND > 0xFFFF)
241 WriteNextResponseByte(pgm_read_byte_far(CurrAddress | HighByte));
242 #else
243 WriteNextResponseByte(pgm_read_byte(CurrAddress | HighByte));
244 #endif
245
246 /* If both bytes in current word have been read, increment the address counter */
247 if (HighByte)
248 CurrAddress += 2;
249
250 HighByte = !HighByte;
251 }
252 else
253 {
254 /* Read the next EEPROM byte into the endpoint */
255 WriteNextResponseByte(eeprom_read_byte((uint8_t*)(intptr_t)(CurrAddress >> 1)));
256
257 /* Increment the address counter after use */
258 CurrAddress += 2;
259 }
260 }
261 }
262 else
263 {
264 uint32_t PageStartAddress = CurrAddress;
265
266 if (MemoryType == 'F')
267 {
268 boot_page_erase(PageStartAddress);
269 boot_spm_busy_wait();
270 }
271
272 while (BlockSize--)
273 {
274 if (MemoryType == 'F')
275 {
276 /* If both bytes in current word have been written, increment the address counter */
277 if (HighByte)
278 {
279 /* Write the next FLASH word to the current FLASH page */
280 boot_page_fill(CurrAddress, ((FetchNextCommandByte() << 8) | LowByte));
281
282 /* Increment the address counter after use */
283 CurrAddress += 2;
284 }
285 else
286 {
287 LowByte = FetchNextCommandByte();
288 }
289
290 HighByte = !HighByte;
291 }
292 else
293 {
294 /* Write the next EEPROM byte from the endpoint */
295 eeprom_write_byte((uint8_t*)((intptr_t)(CurrAddress >> 1)), FetchNextCommandByte());
296
297 /* Increment the address counter after use */
298 CurrAddress += 2;
299 }
300 }
301
302 /* If in FLASH programming mode, commit the page after writing */
303 if (MemoryType == 'F')
304 {
305 /* Commit the flash page to memory */
306 boot_page_write(PageStartAddress);
307
308 /* Wait until write operation has completed */
309 boot_spm_busy_wait();
310 }
311
312 /* Send response byte back to the host */
313 WriteNextResponseByte('\r');
314 }
315 }
316 #endif
317
318 /** Retrieves the next byte from the host in the CDC data OUT endpoint, and clears the endpoint bank if needed
319 * to allow reception of the next data packet from the host.
320 *
321 * \return Next received byte from the host in the CDC data OUT endpoint
322 */
323 static uint8_t FetchNextCommandByte(void)
324 {
325 /* Select the OUT endpoint so that the next data byte can be read */
326 Endpoint_SelectEndpoint(CDC_RX_EPADDR);
327
328 /* If OUT endpoint empty, clear it and wait for the next packet from the host */
329 while (!(Endpoint_IsReadWriteAllowed()))
330 {
331 Endpoint_ClearOUT();
332
333 while (!(Endpoint_IsOUTReceived()))
334 {
335 if (USB_DeviceState == DEVICE_STATE_Unattached)
336 return 0;
337 }
338 }
339
340 /* Fetch the next byte from the OUT endpoint */
341 return Endpoint_Read_8();
342 }
343
344 /** Writes the next response byte to the CDC data IN endpoint, and sends the endpoint back if needed to free up the
345 * bank when full ready for the next byte in the packet to the host.
346 *
347 * \param[in] Response Next response byte to send to the host
348 */
349 static void WriteNextResponseByte(const uint8_t Response)
350 {
351 /* Select the IN endpoint so that the next data byte can be written */
352 Endpoint_SelectEndpoint(CDC_TX_EPADDR);
353
354 /* If IN endpoint full, clear it and wait until ready for the next packet to the host */
355 if (!(Endpoint_IsReadWriteAllowed()))
356 {
357 Endpoint_ClearIN();
358
359 while (!(Endpoint_IsINReady()))
360 {
361 if (USB_DeviceState == DEVICE_STATE_Unattached)
362 return;
363 }
364 }
365
366 /* Write the next byte to the IN endpoint */
367 Endpoint_Write_8(Response);
368 }
369
370 /** Task to read in AVR910 commands from the CDC data OUT endpoint, process them, perform the required actions
371 * and send the appropriate response back to the host.
372 */
373 static void CDC_Task(void)
374 {
375 /* Select the OUT endpoint */
376 Endpoint_SelectEndpoint(CDC_RX_EPADDR);
377
378 /* Check if endpoint has a command in it sent from the host */
379 if (!(Endpoint_IsOUTReceived()))
380 return;
381
382 /* Read in the bootloader command (first byte sent from host) */
383 uint8_t Command = FetchNextCommandByte();
384
385 if (Command == 'E')
386 {
387 RunBootloader = false;
388
389 /* Send confirmation byte back to the host */
390 WriteNextResponseByte('\r');
391 }
392 else if (Command == 'T')
393 {
394 FetchNextCommandByte();
395
396 /* Send confirmation byte back to the host */
397 WriteNextResponseByte('\r');
398 }
399 else if ((Command == 'L') || (Command == 'P'))
400 {
401 /* Send confirmation byte back to the host */
402 WriteNextResponseByte('\r');
403 }
404 else if (Command == 't')
405 {
406 /* Return ATMEGA128 part code - this is only to allow AVRProg to use the bootloader */
407 WriteNextResponseByte(0x44);
408 WriteNextResponseByte(0x00);
409 }
410 else if (Command == 'a')
411 {
412 /* Indicate auto-address increment is supported */
413 WriteNextResponseByte('Y');
414 }
415 else if (Command == 'A')
416 {
417 /* Set the current address to that given by the host */
418 CurrAddress = (FetchNextCommandByte() << 9);
419 CurrAddress |= (FetchNextCommandByte() << 1);
420
421 /* Send confirmation byte back to the host */
422 WriteNextResponseByte('\r');
423 }
424 else if (Command == 'p')
425 {
426 /* Indicate serial programmer back to the host */
427 WriteNextResponseByte('S');
428 }
429 else if (Command == 'S')
430 {
431 /* Write the 7-byte software identifier to the endpoint */
432 for (uint8_t CurrByte = 0; CurrByte < 7; CurrByte++)
433 WriteNextResponseByte(SOFTWARE_IDENTIFIER[CurrByte]);
434 }
435 else if (Command == 'V')
436 {
437 WriteNextResponseByte('0' + BOOTLOADER_VERSION_MAJOR);
438 WriteNextResponseByte('0' + BOOTLOADER_VERSION_MINOR);
439 }
440 else if (Command == 's')
441 {
442 WriteNextResponseByte(AVR_SIGNATURE_3);
443 WriteNextResponseByte(AVR_SIGNATURE_2);
444 WriteNextResponseByte(AVR_SIGNATURE_1);
445 }
446 else if (Command == 'e')
447 {
448 /* Clear the application section of flash */
449 for (uint32_t CurrFlashAddress = 0; CurrFlashAddress < BOOT_START_ADDR; CurrFlashAddress += SPM_PAGESIZE)
450 {
451 boot_page_erase(CurrFlashAddress);
452 boot_spm_busy_wait();
453 boot_page_write(CurrFlashAddress);
454 boot_spm_busy_wait();
455 }
456
457 /* Send confirmation byte back to the host */
458 WriteNextResponseByte('\r');
459 }
460 #if !defined(NO_LOCK_BYTE_WRITE_SUPPORT)
461 else if (Command == 'l')
462 {
463 /* Set the lock bits to those given by the host */
464 boot_lock_bits_set(FetchNextCommandByte());
465
466 /* Send confirmation byte back to the host */
467 WriteNextResponseByte('\r');
468 }
469 #endif
470 else if (Command == 'r')
471 {
472 WriteNextResponseByte(boot_lock_fuse_bits_get(GET_LOCK_BITS));
473 }
474 else if (Command == 'F')
475 {
476 WriteNextResponseByte(boot_lock_fuse_bits_get(GET_LOW_FUSE_BITS));
477 }
478 else if (Command == 'N')
479 {
480 WriteNextResponseByte(boot_lock_fuse_bits_get(GET_HIGH_FUSE_BITS));
481 }
482 else if (Command == 'Q')
483 {
484 WriteNextResponseByte(boot_lock_fuse_bits_get(GET_EXTENDED_FUSE_BITS));
485 }
486 #if !defined(NO_BLOCK_SUPPORT)
487 else if (Command == 'b')
488 {
489 WriteNextResponseByte('Y');
490
491 /* Send block size to the host */
492 WriteNextResponseByte(SPM_PAGESIZE >> 8);
493 WriteNextResponseByte(SPM_PAGESIZE & 0xFF);
494 }
495 else if ((Command == 'B') || (Command == 'g'))
496 {
497 /* Delegate the block write/read to a separate function for clarity */
498 ReadWriteMemoryBlock(Command);
499 }
500 #endif
501 #if !defined(NO_FLASH_BYTE_SUPPORT)
502 else if (Command == 'C')
503 {
504 /* Write the high byte to the current flash page */
505 boot_page_fill(CurrAddress, FetchNextCommandByte());
506
507 /* Send confirmation byte back to the host */
508 WriteNextResponseByte('\r');
509 }
510 else if (Command == 'c')
511 {
512 /* Write the low byte to the current flash page */
513 boot_page_fill(CurrAddress | 0x01, FetchNextCommandByte());
514
515 /* Increment the address */
516 CurrAddress += 2;
517
518 /* Send confirmation byte back to the host */
519 WriteNextResponseByte('\r');
520 }
521 else if (Command == 'm')
522 {
523 /* Commit the flash page to memory */
524 boot_page_write(CurrAddress);
525
526 /* Wait until write operation has completed */
527 boot_spm_busy_wait();
528
529 /* Send confirmation byte back to the host */
530 WriteNextResponseByte('\r');
531 }
532 else if (Command == 'R')
533 {
534 #if (FLASHEND > 0xFFFF)
535 uint16_t ProgramWord = pgm_read_word_far(CurrAddress);
536 #else
537 uint16_t ProgramWord = pgm_read_word(CurrAddress);
538 #endif
539
540 WriteNextResponseByte(ProgramWord >> 8);
541 WriteNextResponseByte(ProgramWord & 0xFF);
542 }
543 #endif
544 #if !defined(NO_EEPROM_BYTE_SUPPORT)
545 else if (Command == 'D')
546 {
547 /* Read the byte from the endpoint and write it to the EEPROM */
548 eeprom_write_byte((uint8_t*)((intptr_t)(CurrAddress >> 1)), FetchNextCommandByte());
549
550 /* Increment the address after use */
551 CurrAddress += 2;
552
553 /* Send confirmation byte back to the host */
554 WriteNextResponseByte('\r');
555 }
556 else if (Command == 'd')
557 {
558 /* Read the EEPROM byte and write it to the endpoint */
559 WriteNextResponseByte(eeprom_read_byte((uint8_t*)((intptr_t)(CurrAddress >> 1))));
560
561 /* Increment the address after use */
562 CurrAddress += 2;
563 }
564 #endif
565 else if (Command != 27)
566 {
567 /* Unknown (non-sync) command, return fail code */
568 WriteNextResponseByte('?');
569 }
570
571 /* Select the IN endpoint */
572 Endpoint_SelectEndpoint(CDC_TX_EPADDR);
573
574 /* Remember if the endpoint is completely full before clearing it */
575 bool IsEndpointFull = !(Endpoint_IsReadWriteAllowed());
576
577 /* Send the endpoint data to the host */
578 Endpoint_ClearIN();
579
580 /* If a full endpoint's worth of data was sent, we need to send an empty packet afterwards to signal end of transfer */
581 if (IsEndpointFull)
582 {
583 while (!(Endpoint_IsINReady()))
584 {
585 if (USB_DeviceState == DEVICE_STATE_Unattached)
586 return;
587 }
588
589 Endpoint_ClearIN();
590 }
591
592 /* Wait until the data has been sent to the host */
593 while (!(Endpoint_IsINReady()))
594 {
595 if (USB_DeviceState == DEVICE_STATE_Unattached)
596 return;
597 }
598
599 /* Select the OUT endpoint */
600 Endpoint_SelectEndpoint(CDC_RX_EPADDR);
601
602 /* Acknowledge the command from the host */
603 Endpoint_ClearOUT();
604 }
605