Additional fix to the AVRISP-MKII clone project for 256KB AVRs.
[pub/USBasp.git] / Projects / AVRISP-MKII / Lib / ISP / ISPProtocol.c
1 /*
2 LUFA Library
3 Copyright (C) Dean Camera, 2010.
4
5 dean [at] fourwalledcubicle [dot] com
6 www.fourwalledcubicle.com
7 */
8
9 /*
10 Copyright 2010 Dean Camera (dean [at] fourwalledcubicle [dot] com)
11
12 Permission to use, copy, modify, distribute, and sell this
13 software and its documentation for any purpose is hereby granted
14 without fee, provided that the above copyright notice appear in
15 all copies and that both that the copyright notice and this
16 permission notice and warranty disclaimer appear in supporting
17 documentation, and that the name of the author not be used in
18 advertising or publicity pertaining to distribution of the
19 software without specific, written prior permission.
20
21 The author disclaim all warranties with regard to this
22 software, including all implied warranties of merchantability
23 and fitness. In no event shall the author be liable for any
24 special, indirect or consequential damages or any damages
25 whatsoever resulting from loss of use, data or profits, whether
26 in an action of contract, negligence or other tortious action,
27 arising out of or in connection with the use or performance of
28 this software.
29 */
30
31 /** \file
32 *
33 * ISP Protocol handler, to process V2 Protocol wrapped ISP commands used in Atmel programmer devices.
34 */
35
36 #include "ISPProtocol.h"
37
38 #if defined(ENABLE_ISP_PROTOCOL) || defined(__DOXYGEN__)
39
40 /** Handler for the CMD_ENTER_PROGMODE_ISP command, which attempts to enter programming mode on
41 * the attached device, returning success or failure back to the host.
42 */
43 void ISPProtocol_EnterISPMode(void)
44 {
45 struct
46 {
47 uint8_t TimeoutMS;
48 uint8_t PinStabDelayMS;
49 uint8_t ExecutionDelayMS;
50 uint8_t SynchLoops;
51 uint8_t ByteDelay;
52 uint8_t PollValue;
53 uint8_t PollIndex;
54 uint8_t EnterProgBytes[4];
55 } Enter_ISP_Params;
56
57 Endpoint_Read_Stream_LE(&Enter_ISP_Params, sizeof(Enter_ISP_Params), NO_STREAM_CALLBACK);
58
59 Endpoint_ClearOUT();
60 Endpoint_SelectEndpoint(AVRISP_DATA_IN_EPNUM);
61 Endpoint_SetEndpointDirection(ENDPOINT_DIR_IN);
62
63 uint8_t ResponseStatus = STATUS_CMD_FAILED;
64
65 CurrentAddress = 0;
66
67 /* Set up the synchronous USART to generate the recovery clock on XCK pin */
68 UBRR1 = (F_CPU / 500000UL);
69 UCSR1B = (1 << TXEN1);
70 UCSR1C = (1 << UMSEL10) | (1 << UPM11) | (1 << USBS1) | (1 << UCSZ11) | (1 << UCSZ10) | (1 << UCPOL1);
71 DDRD |= (1 << 5);
72
73 /* Perform execution delay, initialize SPI bus */
74 ISPProtocol_DelayMS(Enter_ISP_Params.ExecutionDelayMS);
75 SPI_Init(ISPTarget_GetSPIPrescalerMask() | SPI_SCK_LEAD_RISING | SPI_SAMPLE_LEADING | SPI_MODE_MASTER);
76
77 /* Continuously attempt to synchronize with the target until either the number of attempts specified
78 * by the host has exceeded, or the the device sends back the expected response values */
79 while (Enter_ISP_Params.SynchLoops-- && (ResponseStatus == STATUS_CMD_FAILED) && TimeoutMSRemaining)
80 {
81 uint8_t ResponseBytes[4];
82
83 ISPTarget_ChangeTargetResetLine(true);
84 ISPProtocol_DelayMS(Enter_ISP_Params.PinStabDelayMS);
85
86 for (uint8_t RByte = 0; RByte < sizeof(ResponseBytes); RByte++)
87 {
88 ISPProtocol_DelayMS(Enter_ISP_Params.ByteDelay);
89 ResponseBytes[RByte] = SPI_TransferByte(Enter_ISP_Params.EnterProgBytes[RByte]);
90 }
91
92 /* Check if polling disabled, or if the polled value matches the expected value */
93 if (!(Enter_ISP_Params.PollIndex) || (ResponseBytes[Enter_ISP_Params.PollIndex - 1] == Enter_ISP_Params.PollValue))
94 {
95 ResponseStatus = STATUS_CMD_OK;
96 }
97 else
98 {
99 ISPTarget_ChangeTargetResetLine(false);
100 ISPProtocol_DelayMS(Enter_ISP_Params.PinStabDelayMS);
101 }
102 }
103
104 Endpoint_Write_Byte(CMD_ENTER_PROGMODE_ISP);
105 Endpoint_Write_Byte(ResponseStatus);
106 Endpoint_ClearIN();
107 }
108
109 /** Handler for the CMD_LEAVE_ISP command, which releases the target from programming mode. */
110 void ISPProtocol_LeaveISPMode(void)
111 {
112 struct
113 {
114 uint8_t PreDelayMS;
115 uint8_t PostDelayMS;
116 } Leave_ISP_Params;
117
118 Endpoint_Read_Stream_LE(&Leave_ISP_Params, sizeof(Leave_ISP_Params), NO_STREAM_CALLBACK);
119
120 Endpoint_ClearOUT();
121 Endpoint_SelectEndpoint(AVRISP_DATA_IN_EPNUM);
122 Endpoint_SetEndpointDirection(ENDPOINT_DIR_IN);
123
124 /* Perform pre-exit delay, release the target /RESET, disable the SPI bus and perform the post-exit delay */
125 ISPProtocol_DelayMS(Leave_ISP_Params.PreDelayMS);
126 ISPTarget_ChangeTargetResetLine(false);
127 SPI_ShutDown();
128 ISPProtocol_DelayMS(Leave_ISP_Params.PostDelayMS);
129
130 /* Turn off the synchronous USART to terminate the recovery clock on XCK pin */
131 UBRR1 = (F_CPU / 500000UL);
132 UCSR1B = (1 << TXEN1);
133 UCSR1C = (1 << UMSEL10) | (1 << UPM11) | (1 << USBS1) | (1 << UCSZ11) | (1 << UCSZ10) | (1 << UCPOL1);
134 DDRD &= ~(1 << 5);
135
136 Endpoint_Write_Byte(CMD_LEAVE_PROGMODE_ISP);
137 Endpoint_Write_Byte(STATUS_CMD_OK);
138 Endpoint_ClearIN();
139 }
140
141 /** Handler for the CMD_PROGRAM_FLASH_ISP and CMD_PROGRAM_EEPROM_ISP commands, writing out bytes,
142 * words or pages of data to the attached device.
143 *
144 * \param[in] V2Command Issued V2 Protocol command byte from the host
145 */
146 void ISPProtocol_ProgramMemory(uint8_t V2Command)
147 {
148 struct
149 {
150 uint16_t BytesToWrite;
151 uint8_t ProgrammingMode;
152 uint8_t DelayMS;
153 uint8_t ProgrammingCommands[3];
154 uint8_t PollValue1;
155 uint8_t PollValue2;
156 uint8_t ProgData[256]; // Note, the Jungo driver has a very short ACK timeout period, need to buffer the
157 } Write_Memory_Params; // whole page and ACK the packet as fast as possible to prevent it from aborting
158
159 Endpoint_Read_Stream_LE(&Write_Memory_Params, (sizeof(Write_Memory_Params) -
160 sizeof(Write_Memory_Params.ProgData)), NO_STREAM_CALLBACK);
161
162
163 Write_Memory_Params.BytesToWrite = SwapEndian_16(Write_Memory_Params.BytesToWrite);
164
165 if (Write_Memory_Params.BytesToWrite > sizeof(Write_Memory_Params.ProgData))
166 {
167 Endpoint_ClearOUT();
168 Endpoint_SelectEndpoint(AVRISP_DATA_IN_EPNUM);
169 Endpoint_SetEndpointDirection(ENDPOINT_DIR_IN);
170
171 Endpoint_Write_Byte(V2Command);
172 Endpoint_Write_Byte(STATUS_CMD_FAILED);
173 Endpoint_ClearIN();
174 return;
175 }
176
177 Endpoint_Read_Stream_LE(&Write_Memory_Params.ProgData, Write_Memory_Params.BytesToWrite, NO_STREAM_CALLBACK);
178
179 Endpoint_ClearOUT();
180 Endpoint_SelectEndpoint(AVRISP_DATA_IN_EPNUM);
181 Endpoint_SetEndpointDirection(ENDPOINT_DIR_IN);
182
183 uint8_t ProgrammingStatus = STATUS_CMD_OK;
184 uint16_t PollAddress = 0;
185 uint8_t PollValue = (V2Command == CMD_PROGRAM_FLASH_ISP) ? Write_Memory_Params.PollValue1 :
186 Write_Memory_Params.PollValue2;
187 uint8_t* NextWriteByte = Write_Memory_Params.ProgData;
188
189 /* Check to see if the host has issued a SET ADDRESS command and we haven't sent a
190 * LOAD EXTENDED ADDRESS command (if needed, used when operating beyond the 128KB
191 * FLASH barrier) */
192 if (MustSetAddress)
193 {
194 if (CurrentAddress & (1UL << 31))
195 ISPTarget_LoadExtendedAddress();
196
197 MustSetAddress = false;
198 }
199
200 /* Check the programming mode desired by the host, either Paged or Word memory writes */
201 if (Write_Memory_Params.ProgrammingMode & PROG_MODE_PAGED_WRITES_MASK)
202 {
203 uint16_t StartAddress = (CurrentAddress & 0xFFFF);
204
205 /* Paged mode memory programming */
206 for (uint16_t CurrentByte = 0; CurrentByte < Write_Memory_Params.BytesToWrite; CurrentByte++)
207 {
208 bool IsOddByte = (CurrentByte & 0x01);
209 uint8_t ByteToWrite = *(NextWriteByte++);
210
211 SPI_SendByte(Write_Memory_Params.ProgrammingCommands[0]);
212 SPI_SendByte(CurrentAddress >> 8);
213 SPI_SendByte(CurrentAddress & 0xFF);
214 SPI_SendByte(ByteToWrite);
215
216 /* AVR FLASH addressing requires us to modify the write command based on if we are writing a high
217 * or low byte at the current word address */
218 if (V2Command == CMD_PROGRAM_FLASH_ISP)
219 Write_Memory_Params.ProgrammingCommands[0] ^= READ_WRITE_HIGH_BYTE_MASK;
220
221 /* Check to see the write completion method, to see if we have a valid polling address */
222 if (!(PollAddress) && (ByteToWrite != PollValue))
223 {
224 if (IsOddByte && (V2Command == CMD_PROGRAM_FLASH_ISP))
225 Write_Memory_Params.ProgrammingCommands[2] |= READ_WRITE_HIGH_BYTE_MASK;
226
227 PollAddress = (CurrentAddress & 0xFFFF);
228 }
229
230 /* EEPROM increments the address on each byte, flash needs to increment on each word */
231 if (IsOddByte || (V2Command == CMD_PROGRAM_EEPROM_ISP))
232 CurrentAddress++;
233 }
234
235 /* If the current page must be committed, send the PROGRAM PAGE command to the target */
236 if (Write_Memory_Params.ProgrammingMode & PROG_MODE_COMMIT_PAGE_MASK)
237 {
238 SPI_SendByte(Write_Memory_Params.ProgrammingCommands[1]);
239 SPI_SendByte(StartAddress >> 8);
240 SPI_SendByte(StartAddress & 0xFF);
241 SPI_SendByte(0x00);
242
243 /* Check if polling is possible, if not switch to timed delay mode */
244 if (!(PollAddress))
245 {
246 Write_Memory_Params.ProgrammingMode &= ~PROG_MODE_PAGED_VALUE_MASK;
247 Write_Memory_Params.ProgrammingMode |= PROG_MODE_PAGED_TIMEDELAY_MASK;
248 }
249
250 ProgrammingStatus = ISPTarget_WaitForProgComplete(Write_Memory_Params.ProgrammingMode, PollAddress, PollValue,
251 Write_Memory_Params.DelayMS, Write_Memory_Params.ProgrammingCommands[2]);
252
253 /* Check to see if the FLASH address has crossed the extended address boundary */
254 if ((V2Command == CMD_PROGRAM_FLASH_ISP) && !(CurrentAddress & 0xFFFF))
255 ISPTarget_LoadExtendedAddress();
256 }
257 }
258 else
259 {
260 /* Word/byte mode memory programming */
261 for (uint16_t CurrentByte = 0; CurrentByte < Write_Memory_Params.BytesToWrite; CurrentByte++)
262 {
263 bool IsOddByte = (CurrentByte & 0x01);
264 uint8_t ByteToWrite = *(NextWriteByte++);
265
266 SPI_SendByte(Write_Memory_Params.ProgrammingCommands[0]);
267 SPI_SendByte(CurrentAddress >> 8);
268 SPI_SendByte(CurrentAddress & 0xFF);
269 SPI_SendByte(ByteToWrite);
270
271 /* AVR FLASH addressing requires us to modify the write command based on if we are writing a high
272 * or low byte at the current word address */
273 if (V2Command == CMD_PROGRAM_FLASH_ISP)
274 Write_Memory_Params.ProgrammingCommands[0] ^= READ_WRITE_HIGH_BYTE_MASK;
275
276 if (ByteToWrite != PollValue)
277 {
278 if (IsOddByte && (V2Command == CMD_PROGRAM_FLASH_ISP))
279 Write_Memory_Params.ProgrammingCommands[2] |= READ_WRITE_HIGH_BYTE_MASK;
280
281 PollAddress = (CurrentAddress & 0xFFFF);
282 }
283
284 ProgrammingStatus = ISPTarget_WaitForProgComplete(Write_Memory_Params.ProgrammingMode, PollAddress, PollValue,
285 Write_Memory_Params.DelayMS, Write_Memory_Params.ProgrammingCommands[2]);
286
287 /* Abort the programming loop early if the byte/word programming failed */
288 if (ProgrammingStatus != STATUS_CMD_OK)
289 break;
290
291 /* EEPROM just increments the address each byte, flash needs to increment on each word and
292 * also check to ensure that a LOAD EXTENDED ADDRESS command is issued each time the extended
293 * address boundary has been crossed */
294 if (V2Command == CMD_PROGRAM_EEPROM_ISP)
295 {
296 CurrentAddress++;
297 }
298 else if (IsOddByte)
299 {
300 if (!(++CurrentAddress & 0xFFFF))
301 ISPTarget_LoadExtendedAddress();
302 }
303 }
304 }
305
306 Endpoint_Write_Byte(V2Command);
307 Endpoint_Write_Byte(ProgrammingStatus);
308 Endpoint_ClearIN();
309 }
310
311 /** Handler for the CMD_READ_FLASH_ISP and CMD_READ_EEPROM_ISP commands, reading in bytes,
312 * words or pages of data from the attached device.
313 *
314 * \param[in] V2Command Issued V2 Protocol command byte from the host
315 */
316 void ISPProtocol_ReadMemory(uint8_t V2Command)
317 {
318 struct
319 {
320 uint16_t BytesToRead;
321 uint8_t ReadMemoryCommand;
322 } Read_Memory_Params;
323
324 Endpoint_Read_Stream_LE(&Read_Memory_Params, sizeof(Read_Memory_Params), NO_STREAM_CALLBACK);
325 Read_Memory_Params.BytesToRead = SwapEndian_16(Read_Memory_Params.BytesToRead);
326
327 Endpoint_ClearOUT();
328 Endpoint_SelectEndpoint(AVRISP_DATA_IN_EPNUM);
329 Endpoint_SetEndpointDirection(ENDPOINT_DIR_IN);
330
331 Endpoint_Write_Byte(V2Command);
332 Endpoint_Write_Byte(STATUS_CMD_OK);
333
334 /* Check to see if the host has issued a SET ADDRESS command and we haven't sent a
335 * LOAD EXTENDED ADDRESS command (if needed, used when operating beyond the 128KB
336 * FLASH barrier) */
337 if (MustSetAddress)
338 {
339 if (CurrentAddress & (1UL << 31))
340 ISPTarget_LoadExtendedAddress();
341
342 MustSetAddress = false;
343 }
344
345 /* Read each byte from the device and write them to the packet for the host */
346 for (uint16_t CurrentByte = 0; CurrentByte < Read_Memory_Params.BytesToRead; CurrentByte++)
347 {
348 /* Read the next byte from the desired memory space in the device */
349 SPI_SendByte(Read_Memory_Params.ReadMemoryCommand);
350 SPI_SendByte(CurrentAddress >> 8);
351 SPI_SendByte(CurrentAddress & 0xFF);
352 Endpoint_Write_Byte(SPI_ReceiveByte());
353
354 /* Check if the endpoint bank is currently full, if so send the packet */
355 if (!(Endpoint_IsReadWriteAllowed()))
356 {
357 Endpoint_ClearIN();
358 Endpoint_WaitUntilReady();
359 }
360
361 /* AVR FLASH addressing requires us to modify the read command based on if we are reading a high
362 * or low byte at the current word address */
363 if (V2Command == CMD_READ_FLASH_ISP)
364 Read_Memory_Params.ReadMemoryCommand ^= READ_WRITE_HIGH_BYTE_MASK;
365
366 /* EEPROM just increments the address each byte, flash needs to increment on each word and
367 * also check to ensure that a LOAD EXTENDED ADDRESS command is issued each time the extended
368 * address boundary has been crossed */
369 if (V2Command == CMD_READ_EEPROM_ISP)
370 {
371 CurrentAddress++;
372 }
373 else if (CurrentByte & 0x01)
374 {
375 if (!(++CurrentAddress & 0xFFFF))
376 ISPTarget_LoadExtendedAddress();
377 }
378 }
379
380 Endpoint_Write_Byte(STATUS_CMD_OK);
381
382 bool IsEndpointFull = !(Endpoint_IsReadWriteAllowed());
383 Endpoint_ClearIN();
384
385 /* Ensure last packet is a short packet to terminate the transfer */
386 if (IsEndpointFull)
387 {
388 Endpoint_WaitUntilReady();
389 Endpoint_ClearIN();
390 Endpoint_WaitUntilReady();
391 }
392 }
393
394 /** Handler for the CMD_CHI_ERASE_ISP command, clearing the target's FLASH memory. */
395 void ISPProtocol_ChipErase(void)
396 {
397 struct
398 {
399 uint8_t EraseDelayMS;
400 uint8_t PollMethod;
401 uint8_t EraseCommandBytes[4];
402 } Erase_Chip_Params;
403
404 Endpoint_Read_Stream_LE(&Erase_Chip_Params, sizeof(Erase_Chip_Params), NO_STREAM_CALLBACK);
405
406 Endpoint_ClearOUT();
407 Endpoint_SelectEndpoint(AVRISP_DATA_IN_EPNUM);
408 Endpoint_SetEndpointDirection(ENDPOINT_DIR_IN);
409
410 uint8_t ResponseStatus = STATUS_CMD_OK;
411
412 /* Send the chip erase commands as given by the host to the device */
413 for (uint8_t SByte = 0; SByte < sizeof(Erase_Chip_Params.EraseCommandBytes); SByte++)
414 SPI_SendByte(Erase_Chip_Params.EraseCommandBytes[SByte]);
415
416 /* Use appropriate command completion check as given by the host (delay or busy polling) */
417 if (!(Erase_Chip_Params.PollMethod))
418 ISPProtocol_DelayMS(Erase_Chip_Params.EraseDelayMS);
419 else
420 ResponseStatus = ISPTarget_WaitWhileTargetBusy();
421
422 Endpoint_Write_Byte(CMD_CHIP_ERASE_ISP);
423 Endpoint_Write_Byte(ResponseStatus);
424 Endpoint_ClearIN();
425 }
426
427 /** Handler for the CMD_READ_FUSE_ISP, CMD_READ_LOCK_ISP, CMD_READ_SIGNATURE_ISP and CMD_READ_OSCCAL commands,
428 * reading the requested configuration byte from the device.
429 *
430 * \param[in] V2Command Issued V2 Protocol command byte from the host
431 */
432 void ISPProtocol_ReadFuseLockSigOSCCAL(uint8_t V2Command)
433 {
434 struct
435 {
436 uint8_t RetByte;
437 uint8_t ReadCommandBytes[4];
438 } Read_FuseLockSigOSCCAL_Params;
439
440 Endpoint_Read_Stream_LE(&Read_FuseLockSigOSCCAL_Params, sizeof(Read_FuseLockSigOSCCAL_Params), NO_STREAM_CALLBACK);
441
442 Endpoint_ClearOUT();
443 Endpoint_SelectEndpoint(AVRISP_DATA_IN_EPNUM);
444 Endpoint_SetEndpointDirection(ENDPOINT_DIR_IN);
445
446 uint8_t ResponseBytes[4];
447
448 /* Send the Fuse or Lock byte read commands as given by the host to the device, store response */
449 for (uint8_t RByte = 0; RByte < sizeof(ResponseBytes); RByte++)
450 ResponseBytes[RByte] = SPI_TransferByte(Read_FuseLockSigOSCCAL_Params.ReadCommandBytes[RByte]);
451
452 Endpoint_Write_Byte(V2Command);
453 Endpoint_Write_Byte(STATUS_CMD_OK);
454 Endpoint_Write_Byte(ResponseBytes[Read_FuseLockSigOSCCAL_Params.RetByte - 1]);
455 Endpoint_Write_Byte(STATUS_CMD_OK);
456 Endpoint_ClearIN();
457 }
458
459 /** Handler for the CMD_WRITE_FUSE_ISP and CMD_WRITE_LOCK_ISP commands, writing the requested configuration
460 * byte to the device.
461 *
462 * \param[in] V2Command Issued V2 Protocol command byte from the host
463 */
464 void ISPProtocol_WriteFuseLock(uint8_t V2Command)
465 {
466 struct
467 {
468 uint8_t WriteCommandBytes[4];
469 } Write_FuseLockSig_Params;
470
471 Endpoint_Read_Stream_LE(&Write_FuseLockSig_Params, sizeof(Write_FuseLockSig_Params), NO_STREAM_CALLBACK);
472
473 Endpoint_ClearOUT();
474 Endpoint_SelectEndpoint(AVRISP_DATA_IN_EPNUM);
475 Endpoint_SetEndpointDirection(ENDPOINT_DIR_IN);
476
477 /* Send the Fuse or Lock byte program commands as given by the host to the device */
478 for (uint8_t SByte = 0; SByte < sizeof(Write_FuseLockSig_Params.WriteCommandBytes); SByte++)
479 SPI_SendByte(Write_FuseLockSig_Params.WriteCommandBytes[SByte]);
480
481 Endpoint_Write_Byte(V2Command);
482 Endpoint_Write_Byte(STATUS_CMD_OK);
483 Endpoint_Write_Byte(STATUS_CMD_OK);
484 Endpoint_ClearIN();
485 }
486
487 /** Handler for the CMD_SPI_MULTI command, writing and reading arbitrary SPI data to and from the attached device. */
488 void ISPProtocol_SPIMulti(void)
489 {
490 struct
491 {
492 uint8_t TxBytes;
493 uint8_t RxBytes;
494 uint8_t RxStartAddr;
495 uint8_t TxData[255];
496 } SPI_Multi_Params;
497
498 Endpoint_Read_Stream_LE(&SPI_Multi_Params, (sizeof(SPI_Multi_Params) - sizeof(SPI_Multi_Params.TxData)), NO_STREAM_CALLBACK);
499 Endpoint_Read_Stream_LE(&SPI_Multi_Params.TxData, SPI_Multi_Params.TxBytes, NO_STREAM_CALLBACK);
500
501 Endpoint_ClearOUT();
502 Endpoint_SelectEndpoint(AVRISP_DATA_IN_EPNUM);
503 Endpoint_SetEndpointDirection(ENDPOINT_DIR_IN);
504
505 Endpoint_Write_Byte(CMD_SPI_MULTI);
506 Endpoint_Write_Byte(STATUS_CMD_OK);
507
508 uint8_t CurrTxPos = 0;
509 uint8_t CurrRxPos = 0;
510
511 /* Write out bytes to transmit until the start of the bytes to receive is met */
512 while (CurrTxPos < SPI_Multi_Params.RxStartAddr)
513 {
514 if (CurrTxPos < SPI_Multi_Params.TxBytes)
515 SPI_SendByte(SPI_Multi_Params.TxData[CurrTxPos]);
516 else
517 SPI_SendByte(0);
518
519 CurrTxPos++;
520 }
521
522 /* Transmit remaining bytes with padding as needed, read in response bytes */
523 while (CurrRxPos < SPI_Multi_Params.RxBytes)
524 {
525 if (CurrTxPos < SPI_Multi_Params.TxBytes)
526 Endpoint_Write_Byte(SPI_TransferByte(SPI_Multi_Params.TxData[CurrTxPos++]));
527 else
528 Endpoint_Write_Byte(SPI_ReceiveByte());
529
530 /* Check to see if we have filled the endpoint bank and need to send the packet */
531 if (!(Endpoint_IsReadWriteAllowed()))
532 {
533 Endpoint_ClearIN();
534 Endpoint_WaitUntilReady();
535 }
536
537 CurrRxPos++;
538 }
539
540 Endpoint_Write_Byte(STATUS_CMD_OK);
541
542 bool IsEndpointFull = !(Endpoint_IsReadWriteAllowed());
543 Endpoint_ClearIN();
544
545 /* Ensure last packet is a short packet to terminate the transfer */
546 if (IsEndpointFull)
547 {
548 Endpoint_WaitUntilReady();
549 Endpoint_ClearIN();
550 Endpoint_WaitUntilReady();
551 }
552 }
553
554 /** Blocking delay for a given number of milliseconds.
555 *
556 * \param[in] DelayMS Number of milliseconds to delay for
557 */
558 void ISPProtocol_DelayMS(uint8_t DelayMS)
559 {
560 while (DelayMS-- && TimeoutMSRemaining)
561 {
562 if (TimeoutMSRemaining)
563 TimeoutMSRemaining--;
564
565 _delay_ms(1);
566 }
567 }
568
569 #endif