Switch over Demos, Bootloaders and Projects to the new and improved build system.
[pub/USBasp.git] / Bootloaders / DFU / BootloaderDFU.c
1 /*
2 LUFA Library
3 Copyright (C) Dean Camera, 2012.
4
5 dean [at] fourwalledcubicle [dot] com
6 www.lufa-lib.org
7 */
8
9 /*
10 Copyright 2012 Dean Camera (dean [at] fourwalledcubicle [dot] com)
11
12 Permission to use, copy, modify, distribute, and sell this
13 software and its documentation for any purpose is hereby granted
14 without fee, provided that the above copyright notice appear in
15 all copies and that both that the copyright notice and this
16 permission notice and warranty disclaimer appear in supporting
17 documentation, and that the name of the author not be used in
18 advertising or publicity pertaining to distribution of the
19 software without specific, written prior permission.
20
21 The author disclaim all warranties with regard to this
22 software, including all implied warranties of merchantability
23 and fitness. In no event shall the author be liable for any
24 special, indirect or consequential damages or any damages
25 whatsoever resulting from loss of use, data or profits, whether
26 in an action of contract, negligence or other tortious action,
27 arising out of or in connection with the use or performance of
28 this software.
29 */
30
31 /** \file
32 *
33 * Main source file for the DFU class bootloader. This file contains the complete bootloader logic.
34 */
35
36 #define INCLUDE_FROM_BOOTLOADER_C
37 #include "BootloaderDFU.h"
38
39 /** Flag to indicate if the bootloader is currently running in secure mode, disallowing memory operations
40 * other than erase. This is initially set to the value set by SECURE_MODE, and cleared by the bootloader
41 * once a memory erase has completed in a bootloader session.
42 */
43 static bool IsSecure = SECURE_MODE;
44
45 /** Flag to indicate if the bootloader should be running, or should exit and allow the application code to run
46 * via a soft reset. When cleared, the bootloader will abort, the USB interface will shut down and the application
47 * jumped to via an indirect jump to location 0x0000 (or other location specified by the host).
48 */
49 static bool RunBootloader = true;
50
51 /** Flag to indicate if the bootloader is waiting to exit. When the host requests the bootloader to exit and
52 * jump to the application address it specifies, it sends two sequential commands which must be properly
53 * acknowledged. Upon reception of the first the RunBootloader flag is cleared and the WaitForExit flag is set,
54 * causing the bootloader to wait for the final exit command before shutting down.
55 */
56 static bool WaitForExit = false;
57
58 /** Current DFU state machine state, one of the values in the DFU_State_t enum. */
59 static uint8_t DFU_State = dfuIDLE;
60
61 /** Status code of the last executed DFU command. This is set to one of the values in the DFU_Status_t enum after
62 * each operation, and returned to the host when a Get Status DFU request is issued.
63 */
64 static uint8_t DFU_Status = OK;
65
66 /** Data containing the DFU command sent from the host. */
67 static DFU_Command_t SentCommand;
68
69 /** Response to the last issued Read Data DFU command. Unlike other DFU commands, the read command
70 * requires a single byte response from the bootloader containing the read data when the next DFU_UPLOAD command
71 * is issued by the host.
72 */
73 static uint8_t ResponseByte;
74
75 /** Pointer to the start of the user application. By default this is 0x0000 (the reset vector), however the host
76 * may specify an alternate address when issuing the application soft-start command.
77 */
78 static AppPtr_t AppStartPtr = (AppPtr_t)0x0000;
79
80 /** 64-bit flash page number. This is concatenated with the current 16-bit address on USB AVRs containing more than
81 * 64KB of flash memory.
82 */
83 static uint8_t Flash64KBPage = 0;
84
85 /** Memory start address, indicating the current address in the memory being addressed (either FLASH or EEPROM
86 * depending on the issued command from the host).
87 */
88 static uint16_t StartAddr = 0x0000;
89
90 /** Memory end address, indicating the end address to read from/write to in the memory being addressed (either FLASH
91 * of EEPROM depending on the issued command from the host).
92 */
93 static uint16_t EndAddr = 0x0000;
94
95 /** Magic lock for forced application start. If the HWBE fuse is programmed and BOOTRST is unprogrammed, the bootloader
96 * will start if the /HWB line of the AVR is held low and the system is reset. However, if the /HWB line is still held
97 * low when the application attempts to start via a watchdog reset, the bootloader will re-start. If set to the value
98 * \ref MAGIC_BOOT_KEY the special init function \ref Application_Jump_Check() will force the application to start.
99 */
100 uint32_t MagicBootKey ATTR_NO_INIT;
101
102
103 /** Special startup routine to check if the bootloader was started via a watchdog reset, and if the magic application
104 * start key has been loaded into \ref MagicBootKey. If the bootloader started via the watchdog and the key is valid,
105 * this will force the user application to start via a software jump.
106 */
107 void Application_Jump_Check(void)
108 {
109 /* If the reset source was the bootloader and the key is correct, clear it and jump to the application */
110 if ((MCUSR & (1 << WDRF)) && (MagicBootKey == MAGIC_BOOT_KEY))
111 {
112 /* Turn off the watchdog */
113 MCUSR &= ~(1<<WDRF);
114 wdt_disable();
115
116 /* Clear the boot key and jump to the user application */
117 MagicBootKey = 0;
118
119 // cppcheck-suppress constStatement
120 ((void (*)(void))0x0000)();
121 }
122 }
123
124 /** Main program entry point. This routine configures the hardware required by the bootloader, then continuously
125 * runs the bootloader processing routine until instructed to soft-exit, or hard-reset via the watchdog to start
126 * the loaded application code.
127 */
128 int main(void)
129 {
130 /* Configure hardware required by the bootloader */
131 SetupHardware();
132
133 #if ((BOARD == BOARD_XPLAIN) || (BOARD == BOARD_XPLAIN_REV1))
134 /* Disable JTAG debugging */
135 MCUCR |= (1 << JTD);
136 MCUCR |= (1 << JTD);
137
138 /* Enable pull-up on the JTAG TCK pin so we can use it to select the mode */
139 PORTF |= (1 << 4);
140 Delay_MS(10);
141
142 /* If the TCK pin is not jumpered to ground, start the user application instead */
143 RunBootloader = (!(PINF & (1 << 4)));
144
145 /* Re-enable JTAG debugging */
146 MCUCR &= ~(1 << JTD);
147 MCUCR &= ~(1 << JTD);
148 #endif
149
150 /* Turn on first LED on the board to indicate that the bootloader has started */
151 LEDs_SetAllLEDs(LEDS_LED1);
152
153 /* Enable global interrupts so that the USB stack can function */
154 sei();
155
156 /* Run the USB management task while the bootloader is supposed to be running */
157 while (RunBootloader || WaitForExit)
158 USB_USBTask();
159
160 /* Reset configured hardware back to their original states for the user application */
161 ResetHardware();
162
163 /* Start the user application */
164 AppStartPtr();
165 }
166
167 /** Configures all hardware required for the bootloader. */
168 static void SetupHardware(void)
169 {
170 /* Disable watchdog if enabled by bootloader/fuses */
171 MCUSR &= ~(1 << WDRF);
172 wdt_disable();
173
174 /* Disable clock division */
175 clock_prescale_set(clock_div_1);
176
177 /* Relocate the interrupt vector table to the bootloader section */
178 MCUCR = (1 << IVCE);
179 MCUCR = (1 << IVSEL);
180
181 /* Initialize the USB and other board hardware drivers */
182 USB_Init();
183 LEDs_Init();
184
185 /* Bootloader active LED toggle timer initialization */
186 TIMSK1 = (1 << TOIE1);
187 TCCR1B = ((1 << CS11) | (1 << CS10));
188 }
189
190 /** Resets all configured hardware required for the bootloader back to their original states. */
191 static void ResetHardware(void)
192 {
193 /* Shut down the USB and other board hardware drivers */
194 USB_Disable();
195 LEDs_Disable();
196
197 /* Disable Bootloader active LED toggle timer */
198 TIMSK1 = 0;
199 TCCR1B = 0;
200
201 /* Relocate the interrupt vector table back to the application section */
202 MCUCR = (1 << IVCE);
203 MCUCR = 0;
204 }
205
206 /** ISR to periodically toggle the LEDs on the board to indicate that the bootloader is active. */
207 ISR(TIMER1_OVF_vect, ISR_BLOCK)
208 {
209 LEDs_ToggleLEDs(LEDS_LED1 | LEDS_LED2);
210 }
211
212 /** Event handler for the USB_ControlRequest event. This is used to catch and process control requests sent to
213 * the device from the USB host before passing along unhandled control requests to the library for processing
214 * internally.
215 */
216 void EVENT_USB_Device_ControlRequest(void)
217 {
218 /* Ignore any requests that aren't directed to the DFU interface */
219 if ((USB_ControlRequest.bmRequestType & (CONTROL_REQTYPE_TYPE | CONTROL_REQTYPE_RECIPIENT)) !=
220 (REQTYPE_CLASS | REQREC_INTERFACE))
221 {
222 return;
223 }
224
225 /* Activity - toggle indicator LEDs */
226 LEDs_ToggleLEDs(LEDS_LED1 | LEDS_LED2);
227
228 /* Get the size of the command and data from the wLength value */
229 SentCommand.DataSize = USB_ControlRequest.wLength;
230
231 switch (USB_ControlRequest.bRequest)
232 {
233 case DFU_REQ_DNLOAD:
234 Endpoint_ClearSETUP();
235
236 /* Check if bootloader is waiting to terminate */
237 if (WaitForExit)
238 {
239 /* Bootloader is terminating - process last received command */
240 ProcessBootloaderCommand();
241
242 /* Indicate that the last command has now been processed - free to exit bootloader */
243 WaitForExit = false;
244 }
245
246 /* If the request has a data stage, load it into the command struct */
247 if (SentCommand.DataSize)
248 {
249 while (!(Endpoint_IsOUTReceived()))
250 {
251 if (USB_DeviceState == DEVICE_STATE_Unattached)
252 return;
253 }
254
255 /* First byte of the data stage is the DNLOAD request's command */
256 SentCommand.Command = Endpoint_Read_8();
257
258 /* One byte of the data stage is the command, so subtract it from the total data bytes */
259 SentCommand.DataSize--;
260
261 /* Load in the rest of the data stage as command parameters */
262 for (uint8_t DataByte = 0; (DataByte < sizeof(SentCommand.Data)) &&
263 Endpoint_BytesInEndpoint(); DataByte++)
264 {
265 SentCommand.Data[DataByte] = Endpoint_Read_8();
266 SentCommand.DataSize--;
267 }
268
269 /* Process the command */
270 ProcessBootloaderCommand();
271 }
272
273 /* Check if currently downloading firmware */
274 if (DFU_State == dfuDNLOAD_IDLE)
275 {
276 if (!(SentCommand.DataSize))
277 {
278 DFU_State = dfuIDLE;
279 }
280 else
281 {
282 /* Throw away the filler bytes before the start of the firmware */
283 DiscardFillerBytes(DFU_FILLER_BYTES_SIZE);
284
285 /* Throw away the packet alignment filler bytes before the start of the firmware */
286 DiscardFillerBytes(StartAddr % FIXED_CONTROL_ENDPOINT_SIZE);
287
288 /* Calculate the number of bytes remaining to be written */
289 uint16_t BytesRemaining = ((EndAddr - StartAddr) + 1);
290
291 if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x00)) // Write flash
292 {
293 /* Calculate the number of words to be written from the number of bytes to be written */
294 uint16_t WordsRemaining = (BytesRemaining >> 1);
295
296 union
297 {
298 uint16_t Words[2];
299 uint32_t Long;
300 } CurrFlashAddress = {.Words = {StartAddr, Flash64KBPage}};
301
302 uint32_t CurrFlashPageStartAddress = CurrFlashAddress.Long;
303 uint8_t WordsInFlashPage = 0;
304
305 while (WordsRemaining--)
306 {
307 /* Check if endpoint is empty - if so clear it and wait until ready for next packet */
308 if (!(Endpoint_BytesInEndpoint()))
309 {
310 Endpoint_ClearOUT();
311
312 while (!(Endpoint_IsOUTReceived()))
313 {
314 if (USB_DeviceState == DEVICE_STATE_Unattached)
315 return;
316 }
317 }
318
319 /* Write the next word into the current flash page */
320 boot_page_fill(CurrFlashAddress.Long, Endpoint_Read_16_LE());
321
322 /* Adjust counters */
323 WordsInFlashPage += 1;
324 CurrFlashAddress.Long += 2;
325
326 /* See if an entire page has been written to the flash page buffer */
327 if ((WordsInFlashPage == (SPM_PAGESIZE >> 1)) || !(WordsRemaining))
328 {
329 /* Commit the flash page to memory */
330 boot_page_write(CurrFlashPageStartAddress);
331 boot_spm_busy_wait();
332
333 /* Check if programming incomplete */
334 if (WordsRemaining)
335 {
336 CurrFlashPageStartAddress = CurrFlashAddress.Long;
337 WordsInFlashPage = 0;
338
339 /* Erase next page's temp buffer */
340 boot_page_erase(CurrFlashAddress.Long);
341 boot_spm_busy_wait();
342 }
343 }
344 }
345
346 /* Once programming complete, start address equals the end address */
347 StartAddr = EndAddr;
348
349 /* Re-enable the RWW section of flash */
350 boot_rww_enable();
351 }
352 else // Write EEPROM
353 {
354 while (BytesRemaining--)
355 {
356 /* Check if endpoint is empty - if so clear it and wait until ready for next packet */
357 if (!(Endpoint_BytesInEndpoint()))
358 {
359 Endpoint_ClearOUT();
360
361 while (!(Endpoint_IsOUTReceived()))
362 {
363 if (USB_DeviceState == DEVICE_STATE_Unattached)
364 return;
365 }
366 }
367
368 /* Read the byte from the USB interface and write to to the EEPROM */
369 eeprom_write_byte((uint8_t*)StartAddr, Endpoint_Read_8());
370
371 /* Adjust counters */
372 StartAddr++;
373 }
374 }
375
376 /* Throw away the currently unused DFU file suffix */
377 DiscardFillerBytes(DFU_FILE_SUFFIX_SIZE);
378 }
379 }
380
381 Endpoint_ClearOUT();
382
383 Endpoint_ClearStatusStage();
384
385 break;
386 case DFU_REQ_UPLOAD:
387 Endpoint_ClearSETUP();
388
389 while (!(Endpoint_IsINReady()))
390 {
391 if (USB_DeviceState == DEVICE_STATE_Unattached)
392 return;
393 }
394
395 if (DFU_State != dfuUPLOAD_IDLE)
396 {
397 if ((DFU_State == dfuERROR) && IS_ONEBYTE_COMMAND(SentCommand.Data, 0x01)) // Blank Check
398 {
399 /* Blank checking is performed in the DFU_DNLOAD request - if we get here we've told the host
400 that the memory isn't blank, and the host is requesting the first non-blank address */
401 Endpoint_Write_16_LE(StartAddr);
402 }
403 else
404 {
405 /* Idle state upload - send response to last issued command */
406 Endpoint_Write_8(ResponseByte);
407 }
408 }
409 else
410 {
411 /* Determine the number of bytes remaining in the current block */
412 uint16_t BytesRemaining = ((EndAddr - StartAddr) + 1);
413
414 if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x00)) // Read FLASH
415 {
416 /* Calculate the number of words to be written from the number of bytes to be written */
417 uint16_t WordsRemaining = (BytesRemaining >> 1);
418
419 union
420 {
421 uint16_t Words[2];
422 uint32_t Long;
423 } CurrFlashAddress = {.Words = {StartAddr, Flash64KBPage}};
424
425 while (WordsRemaining--)
426 {
427 /* Check if endpoint is full - if so clear it and wait until ready for next packet */
428 if (Endpoint_BytesInEndpoint() == FIXED_CONTROL_ENDPOINT_SIZE)
429 {
430 Endpoint_ClearIN();
431
432 while (!(Endpoint_IsINReady()))
433 {
434 if (USB_DeviceState == DEVICE_STATE_Unattached)
435 return;
436 }
437 }
438
439 /* Read the flash word and send it via USB to the host */
440 #if (FLASHEND > 0xFFFF)
441 Endpoint_Write_16_LE(pgm_read_word_far(CurrFlashAddress.Long));
442 #else
443 Endpoint_Write_16_LE(pgm_read_word(CurrFlashAddress.Long));
444 #endif
445
446 /* Adjust counters */
447 CurrFlashAddress.Long += 2;
448 }
449
450 /* Once reading is complete, start address equals the end address */
451 StartAddr = EndAddr;
452 }
453 else if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x02)) // Read EEPROM
454 {
455 while (BytesRemaining--)
456 {
457 /* Check if endpoint is full - if so clear it and wait until ready for next packet */
458 if (Endpoint_BytesInEndpoint() == FIXED_CONTROL_ENDPOINT_SIZE)
459 {
460 Endpoint_ClearIN();
461
462 while (!(Endpoint_IsINReady()))
463 {
464 if (USB_DeviceState == DEVICE_STATE_Unattached)
465 return;
466 }
467 }
468
469 /* Read the EEPROM byte and send it via USB to the host */
470 Endpoint_Write_8(eeprom_read_byte((uint8_t*)StartAddr));
471
472 /* Adjust counters */
473 StartAddr++;
474 }
475 }
476
477 /* Return to idle state */
478 DFU_State = dfuIDLE;
479 }
480
481 Endpoint_ClearIN();
482
483 Endpoint_ClearStatusStage();
484 break;
485 case DFU_REQ_GETSTATUS:
486 Endpoint_ClearSETUP();
487
488 /* Write 8-bit status value */
489 Endpoint_Write_8(DFU_Status);
490
491 /* Write 24-bit poll timeout value */
492 Endpoint_Write_8(0);
493 Endpoint_Write_16_LE(0);
494
495 /* Write 8-bit state value */
496 Endpoint_Write_8(DFU_State);
497
498 /* Write 8-bit state string ID number */
499 Endpoint_Write_8(0);
500
501 Endpoint_ClearIN();
502
503 Endpoint_ClearStatusStage();
504 break;
505 case DFU_REQ_CLRSTATUS:
506 Endpoint_ClearSETUP();
507
508 /* Reset the status value variable to the default OK status */
509 DFU_Status = OK;
510
511 Endpoint_ClearStatusStage();
512 break;
513 case DFU_REQ_GETSTATE:
514 Endpoint_ClearSETUP();
515
516 /* Write the current device state to the endpoint */
517 Endpoint_Write_8(DFU_State);
518
519 Endpoint_ClearIN();
520
521 Endpoint_ClearStatusStage();
522 break;
523 case DFU_REQ_ABORT:
524 Endpoint_ClearSETUP();
525
526 /* Reset the current state variable to the default idle state */
527 DFU_State = dfuIDLE;
528
529 Endpoint_ClearStatusStage();
530 break;
531 }
532 }
533
534 /** Routine to discard the specified number of bytes from the control endpoint stream. This is used to
535 * discard unused bytes in the stream from the host, including the memory program block suffix.
536 *
537 * \param[in] NumberOfBytes Number of bytes to discard from the host from the control endpoint
538 */
539 static void DiscardFillerBytes(uint8_t NumberOfBytes)
540 {
541 while (NumberOfBytes--)
542 {
543 if (!(Endpoint_BytesInEndpoint()))
544 {
545 Endpoint_ClearOUT();
546
547 /* Wait until next data packet received */
548 while (!(Endpoint_IsOUTReceived()))
549 {
550 if (USB_DeviceState == DEVICE_STATE_Unattached)
551 return;
552 }
553 }
554 else
555 {
556 Endpoint_Discard_8();
557 }
558 }
559 }
560
561 /** Routine to process an issued command from the host, via a DFU_DNLOAD request wrapper. This routine ensures
562 * that the command is allowed based on the current secure mode flag value, and passes the command off to the
563 * appropriate handler function.
564 */
565 static void ProcessBootloaderCommand(void)
566 {
567 /* Check if device is in secure mode */
568 if (IsSecure)
569 {
570 /* Don't process command unless it is a READ or chip erase command */
571 if (!(((SentCommand.Command == COMMAND_WRITE) &&
572 IS_TWOBYTE_COMMAND(SentCommand.Data, 0x00, 0xFF)) ||
573 (SentCommand.Command == COMMAND_READ)))
574 {
575 /* Set the state and status variables to indicate the error */
576 DFU_State = dfuERROR;
577 DFU_Status = errWRITE;
578
579 /* Stall command */
580 Endpoint_StallTransaction();
581
582 /* Don't process the command */
583 return;
584 }
585 }
586
587 /* Dispatch the required command processing routine based on the command type */
588 switch (SentCommand.Command)
589 {
590 case COMMAND_PROG_START:
591 ProcessMemProgCommand();
592 break;
593 case COMMAND_DISP_DATA:
594 ProcessMemReadCommand();
595 break;
596 case COMMAND_WRITE:
597 ProcessWriteCommand();
598 break;
599 case COMMAND_READ:
600 ProcessReadCommand();
601 break;
602 case COMMAND_CHANGE_BASE_ADDR:
603 if (IS_TWOBYTE_COMMAND(SentCommand.Data, 0x03, 0x00)) // Set 64KB flash page command
604 Flash64KBPage = SentCommand.Data[2];
605
606 break;
607 }
608 }
609
610 /** Routine to concatenate the given pair of 16-bit memory start and end addresses from the host, and store them
611 * in the StartAddr and EndAddr global variables.
612 */
613 static void LoadStartEndAddresses(void)
614 {
615 union
616 {
617 uint8_t Bytes[2];
618 uint16_t Word;
619 } Address[2] = {{.Bytes = {SentCommand.Data[2], SentCommand.Data[1]}},
620 {.Bytes = {SentCommand.Data[4], SentCommand.Data[3]}}};
621
622 /* Load in the start and ending read addresses from the sent data packet */
623 StartAddr = Address[0].Word;
624 EndAddr = Address[1].Word;
625 }
626
627 /** Handler for a Memory Program command issued by the host. This routine handles the preparations needed
628 * to write subsequent data from the host into the specified memory.
629 */
630 static void ProcessMemProgCommand(void)
631 {
632 if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x00) || // Write FLASH command
633 IS_ONEBYTE_COMMAND(SentCommand.Data, 0x01)) // Write EEPROM command
634 {
635 /* Load in the start and ending read addresses */
636 LoadStartEndAddresses();
637
638 /* If FLASH is being written to, we need to pre-erase the first page to write to */
639 if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x00))
640 {
641 union
642 {
643 uint16_t Words[2];
644 uint32_t Long;
645 } CurrFlashAddress = {.Words = {StartAddr, Flash64KBPage}};
646
647 /* Erase the current page's temp buffer */
648 boot_page_erase(CurrFlashAddress.Long);
649 boot_spm_busy_wait();
650 }
651
652 /* Set the state so that the next DNLOAD requests reads in the firmware */
653 DFU_State = dfuDNLOAD_IDLE;
654 }
655 }
656
657 /** Handler for a Memory Read command issued by the host. This routine handles the preparations needed
658 * to read subsequent data from the specified memory out to the host, as well as implementing the memory
659 * blank check command.
660 */
661 static void ProcessMemReadCommand(void)
662 {
663 if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x00) || // Read FLASH command
664 IS_ONEBYTE_COMMAND(SentCommand.Data, 0x02)) // Read EEPROM command
665 {
666 /* Load in the start and ending read addresses */
667 LoadStartEndAddresses();
668
669 /* Set the state so that the next UPLOAD requests read out the firmware */
670 DFU_State = dfuUPLOAD_IDLE;
671 }
672 else if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x01)) // Blank check FLASH command
673 {
674 uint32_t CurrFlashAddress = 0;
675
676 while (CurrFlashAddress < (uint32_t)BOOT_START_ADDR)
677 {
678 /* Check if the current byte is not blank */
679 #if (FLASHEND > 0xFFFF)
680 if (pgm_read_byte_far(CurrFlashAddress) != 0xFF)
681 #else
682 if (pgm_read_byte(CurrFlashAddress) != 0xFF)
683 #endif
684 {
685 /* Save the location of the first non-blank byte for response back to the host */
686 Flash64KBPage = (CurrFlashAddress >> 16);
687 StartAddr = CurrFlashAddress;
688
689 /* Set state and status variables to the appropriate error values */
690 DFU_State = dfuERROR;
691 DFU_Status = errCHECK_ERASED;
692
693 break;
694 }
695
696 CurrFlashAddress++;
697 }
698 }
699 }
700
701 /** Handler for a Data Write command issued by the host. This routine handles non-programming commands such as
702 * bootloader exit (both via software jumps and hardware watchdog resets) and flash memory erasure.
703 */
704 static void ProcessWriteCommand(void)
705 {
706 if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x03)) // Start application
707 {
708 /* Indicate that the bootloader is terminating */
709 WaitForExit = true;
710
711 /* Check if data supplied for the Start Program command - no data executes the program */
712 if (SentCommand.DataSize)
713 {
714 if (SentCommand.Data[1] == 0x01) // Start via jump
715 {
716 union
717 {
718 uint8_t Bytes[2];
719 AppPtr_t FuncPtr;
720 } Address = {.Bytes = {SentCommand.Data[4], SentCommand.Data[3]}};
721
722 /* Load in the jump address into the application start address pointer */
723 AppStartPtr = Address.FuncPtr;
724 }
725 }
726 else
727 {
728 if (SentCommand.Data[1] == 0x00) // Start via watchdog
729 {
730 /* Unlock the forced application start mode of the bootloader if it is restarted */
731 MagicBootKey = MAGIC_BOOT_KEY;
732
733 /* Start the watchdog to reset the AVR once the communications are finalized */
734 wdt_enable(WDTO_250MS);
735 }
736 else // Start via jump
737 {
738 /* Set the flag to terminate the bootloader at next opportunity */
739 RunBootloader = false;
740 }
741 }
742 }
743 else if (IS_TWOBYTE_COMMAND(SentCommand.Data, 0x00, 0xFF)) // Erase flash
744 {
745 uint32_t CurrFlashAddress = 0;
746
747 /* Clear the application section of flash */
748 while (CurrFlashAddress < (uint32_t)BOOT_START_ADDR)
749 {
750 boot_page_erase(CurrFlashAddress);
751 boot_spm_busy_wait();
752 boot_page_write(CurrFlashAddress);
753 boot_spm_busy_wait();
754
755 CurrFlashAddress += SPM_PAGESIZE;
756 }
757
758 /* Re-enable the RWW section of flash as writing to the flash locks it out */
759 boot_rww_enable();
760
761 /* Memory has been erased, reset the security bit so that programming/reading is allowed */
762 IsSecure = false;
763 }
764 }
765
766 /** Handler for a Data Read command issued by the host. This routine handles bootloader information retrieval
767 * commands such as device signature and bootloader version retrieval.
768 */
769 static void ProcessReadCommand(void)
770 {
771 const uint8_t BootloaderInfo[3] = {BOOTLOADER_VERSION, BOOTLOADER_ID_BYTE1, BOOTLOADER_ID_BYTE2};
772 const uint8_t SignatureInfo[3] = {AVR_SIGNATURE_1, AVR_SIGNATURE_2, AVR_SIGNATURE_3};
773
774 uint8_t DataIndexToRead = SentCommand.Data[1];
775
776 if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x00)) // Read bootloader info
777 ResponseByte = BootloaderInfo[DataIndexToRead];
778 else if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x01)) // Read signature byte
779 ResponseByte = SignatureInfo[DataIndexToRead - 0x30];
780 }
781