Added LED flashing to the CDC and DFU class bootloaders to indicate when they are...
[pub/USBasp.git] / Bootloaders / DFU / BootloaderDFU.c
1 /*
2 LUFA Library
3 Copyright (C) Dean Camera, 2011.
4
5 dean [at] fourwalledcubicle [dot] com
6 www.lufa-lib.org
7 */
8
9 /*
10 Copyright 2011 Dean Camera (dean [at] fourwalledcubicle [dot] com)
11
12 Permission to use, copy, modify, distribute, and sell this
13 software and its documentation for any purpose is hereby granted
14 without fee, provided that the above copyright notice appear in
15 all copies and that both that the copyright notice and this
16 permission notice and warranty disclaimer appear in supporting
17 documentation, and that the name of the author not be used in
18 advertising or publicity pertaining to distribution of the
19 software without specific, written prior permission.
20
21 The author disclaim all warranties with regard to this
22 software, including all implied warranties of merchantability
23 and fitness. In no event shall the author be liable for any
24 special, indirect or consequential damages or any damages
25 whatsoever resulting from loss of use, data or profits, whether
26 in an action of contract, negligence or other tortious action,
27 arising out of or in connection with the use or performance of
28 this software.
29 */
30
31 /** \file
32 *
33 * Main source file for the DFU class bootloader. This file contains the complete bootloader logic.
34 */
35
36 #define INCLUDE_FROM_BOOTLOADER_C
37 #include "BootloaderDFU.h"
38
39 /** Flag to indicate if the bootloader is currently running in secure mode, disallowing memory operations
40 * other than erase. This is initially set to the value set by SECURE_MODE, and cleared by the bootloader
41 * once a memory erase has completed in a bootloader session.
42 */
43 static bool IsSecure = SECURE_MODE;
44
45 /** Flag to indicate if the bootloader should be running, or should exit and allow the application code to run
46 * via a soft reset. When cleared, the bootloader will abort, the USB interface will shut down and the application
47 * jumped to via an indirect jump to location 0x0000 (or other location specified by the host).
48 */
49 static bool RunBootloader = true;
50
51 /** Flag to indicate if the bootloader is waiting to exit. When the host requests the bootloader to exit and
52 * jump to the application address it specifies, it sends two sequential commands which must be properly
53 * acknowledged. Upon reception of the first the RunBootloader flag is cleared and the WaitForExit flag is set,
54 * causing the bootloader to wait for the final exit command before shutting down.
55 */
56 static bool WaitForExit = false;
57
58 /** Current DFU state machine state, one of the values in the DFU_State_t enum. */
59 static uint8_t DFU_State = dfuIDLE;
60
61 /** Status code of the last executed DFU command. This is set to one of the values in the DFU_Status_t enum after
62 * each operation, and returned to the host when a Get Status DFU request is issued.
63 */
64 static uint8_t DFU_Status = OK;
65
66 /** Data containing the DFU command sent from the host. */
67 static DFU_Command_t SentCommand;
68
69 /** Response to the last issued Read Data DFU command. Unlike other DFU commands, the read command
70 * requires a single byte response from the bootloader containing the read data when the next DFU_UPLOAD command
71 * is issued by the host.
72 */
73 static uint8_t ResponseByte;
74
75 /** Pointer to the start of the user application. By default this is 0x0000 (the reset vector), however the host
76 * may specify an alternate address when issuing the application soft-start command.
77 */
78 static AppPtr_t AppStartPtr = (AppPtr_t)0x0000;
79
80 /** 64-bit flash page number. This is concatenated with the current 16-bit address on USB AVRs containing more than
81 * 64KB of flash memory.
82 */
83 static uint8_t Flash64KBPage = 0;
84
85 /** Memory start address, indicating the current address in the memory being addressed (either FLASH or EEPROM
86 * depending on the issued command from the host).
87 */
88 static uint16_t StartAddr = 0x0000;
89
90 /** Memory end address, indicating the end address to read to/write from in the memory being addressed (either FLASH
91 * of EEPROM depending on the issued command from the host).
92 */
93 static uint16_t EndAddr = 0x0000;
94
95
96 /** Main program entry point. This routine configures the hardware required by the bootloader, then continuously
97 * runs the bootloader processing routine until instructed to soft-exit, or hard-reset via the watchdog to start
98 * the loaded application code.
99 */
100 int main(void)
101 {
102 /* Configure hardware required by the bootloader */
103 SetupHardware();
104
105 #if ((BOARD == BOARD_XPLAIN) || (BOARD == BOARD_XPLAIN_REV1))
106 /* Disable JTAG debugging */
107 MCUCR |= (1 << JTD);
108 MCUCR |= (1 << JTD);
109
110 /* Enable pull-up on the JTAG TCK pin so we can use it to select the mode */
111 PORTF |= (1 << 4);
112 Delay_MS(10);
113
114 /* If the TCK pin is not jumpered to ground, start the user application instead */
115 RunBootloader = (!(PINF & (1 << 4)));
116
117 /* Re-enable JTAG debugging */
118 MCUCR &= ~(1 << JTD);
119 MCUCR &= ~(1 << JTD);
120 #endif
121
122 /* Turn on first LED on the board to indicate that the bootloader has started */
123 LEDs_SetAllLEDs(LEDS_LED1);
124
125 /* Enable global interrupts so that the USB stack can function */
126 sei();
127
128 /* Run the USB management task while the bootloader is supposed to be running */
129 while (RunBootloader || WaitForExit)
130 USB_USBTask();
131
132 /* Reset configured hardware back to their original states for the user application */
133 ResetHardware();
134
135 /* Start the user application */
136 AppStartPtr();
137 }
138
139 /** Configures all hardware required for the bootloader. */
140 void SetupHardware(void)
141 {
142 /* Disable watchdog if enabled by bootloader/fuses */
143 MCUSR &= ~(1 << WDRF);
144 wdt_disable();
145
146 /* Disable clock division */
147 clock_prescale_set(clock_div_1);
148
149 /* Relocate the interrupt vector table to the bootloader section */
150 MCUCR = (1 << IVCE);
151 MCUCR = (1 << IVSEL);
152
153 /* Initialize the USB subsystem */
154 USB_Init();
155 LEDs_Init();
156
157 /* Bootloader active LED toggle timer initialization */
158 TIMSK1 = (1 << TOIE1);
159 TCCR1B = ((1 << CS11) | (1 << CS10));
160 }
161
162 /** Resets all configured hardware required for the bootloader back to their original states. */
163 void ResetHardware(void)
164 {
165 /* Shut down the USB subsystem */
166 USB_Disable();
167
168 /* Relocate the interrupt vector table back to the application section */
169 MCUCR = (1 << IVCE);
170 MCUCR = 0;
171 }
172
173 /** ISR to periodically toggle the LEDs on the board to indicate that the bootloader is active. */
174 ISR(TIMER1_OVF_vect, ISR_BLOCK)
175 {
176 LEDs_ToggleLEDs(LEDS_LED1 | LEDS_LED2);
177 }
178
179 /** Event handler for the USB_ControlRequest event. This is used to catch and process control requests sent to
180 * the device from the USB host before passing along unhandled control requests to the library for processing
181 * internally.
182 */
183 void EVENT_USB_Device_ControlRequest(void)
184 {
185 /* Get the size of the command and data from the wLength value */
186 SentCommand.DataSize = USB_ControlRequest.wLength;
187
188 /* Ignore any requests that aren't directed to the DFU interface */
189 if ((USB_ControlRequest.bmRequestType & (CONTROL_REQTYPE_TYPE | CONTROL_REQTYPE_RECIPIENT)) !=
190 (REQTYPE_CLASS | REQREC_INTERFACE))
191 {
192 return;
193 }
194
195 switch (USB_ControlRequest.bRequest)
196 {
197 case DFU_REQ_DNLOAD:
198 Endpoint_ClearSETUP();
199
200 /* Check if bootloader is waiting to terminate */
201 if (WaitForExit)
202 {
203 /* Bootloader is terminating - process last received command */
204 ProcessBootloaderCommand();
205
206 /* Indicate that the last command has now been processed - free to exit bootloader */
207 WaitForExit = false;
208 }
209
210 /* If the request has a data stage, load it into the command struct */
211 if (SentCommand.DataSize)
212 {
213 while (!(Endpoint_IsOUTReceived()))
214 {
215 if (USB_DeviceState == DEVICE_STATE_Unattached)
216 return;
217 }
218
219 /* First byte of the data stage is the DNLOAD request's command */
220 SentCommand.Command = Endpoint_Read_8();
221
222 /* One byte of the data stage is the command, so subtract it from the total data bytes */
223 SentCommand.DataSize--;
224
225 /* Load in the rest of the data stage as command parameters */
226 for (uint8_t DataByte = 0; (DataByte < sizeof(SentCommand.Data)) &&
227 Endpoint_BytesInEndpoint(); DataByte++)
228 {
229 SentCommand.Data[DataByte] = Endpoint_Read_8();
230 SentCommand.DataSize--;
231 }
232
233 /* Process the command */
234 ProcessBootloaderCommand();
235 }
236
237 /* Check if currently downloading firmware */
238 if (DFU_State == dfuDNLOAD_IDLE)
239 {
240 if (!(SentCommand.DataSize))
241 {
242 DFU_State = dfuIDLE;
243 }
244 else
245 {
246 /* Throw away the filler bytes before the start of the firmware */
247 DiscardFillerBytes(DFU_FILLER_BYTES_SIZE);
248
249 /* Throw away the packet alignment filler bytes before the start of the firmware */
250 DiscardFillerBytes(StartAddr % FIXED_CONTROL_ENDPOINT_SIZE);
251
252 /* Calculate the number of bytes remaining to be written */
253 uint16_t BytesRemaining = ((EndAddr - StartAddr) + 1);
254
255 if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x00)) // Write flash
256 {
257 /* Calculate the number of words to be written from the number of bytes to be written */
258 uint16_t WordsRemaining = (BytesRemaining >> 1);
259
260 union
261 {
262 uint16_t Words[2];
263 uint32_t Long;
264 } CurrFlashAddress = {.Words = {StartAddr, Flash64KBPage}};
265
266 uint32_t CurrFlashPageStartAddress = CurrFlashAddress.Long;
267 uint8_t WordsInFlashPage = 0;
268
269 while (WordsRemaining--)
270 {
271 /* Check if endpoint is empty - if so clear it and wait until ready for next packet */
272 if (!(Endpoint_BytesInEndpoint()))
273 {
274 Endpoint_ClearOUT();
275
276 while (!(Endpoint_IsOUTReceived()))
277 {
278 if (USB_DeviceState == DEVICE_STATE_Unattached)
279 return;
280 }
281 }
282
283 /* Write the next word into the current flash page */
284 boot_page_fill(CurrFlashAddress.Long, Endpoint_Read_16_LE());
285
286 /* Adjust counters */
287 WordsInFlashPage += 1;
288 CurrFlashAddress.Long += 2;
289
290 /* See if an entire page has been written to the flash page buffer */
291 if ((WordsInFlashPage == (SPM_PAGESIZE >> 1)) || !(WordsRemaining))
292 {
293 /* Commit the flash page to memory */
294 boot_page_write(CurrFlashPageStartAddress);
295 boot_spm_busy_wait();
296
297 /* Check if programming incomplete */
298 if (WordsRemaining)
299 {
300 CurrFlashPageStartAddress = CurrFlashAddress.Long;
301 WordsInFlashPage = 0;
302
303 /* Erase next page's temp buffer */
304 boot_page_erase(CurrFlashAddress.Long);
305 boot_spm_busy_wait();
306 }
307 }
308 }
309
310 /* Once programming complete, start address equals the end address */
311 StartAddr = EndAddr;
312
313 /* Re-enable the RWW section of flash */
314 boot_rww_enable();
315 }
316 else // Write EEPROM
317 {
318 while (BytesRemaining--)
319 {
320 /* Check if endpoint is empty - if so clear it and wait until ready for next packet */
321 if (!(Endpoint_BytesInEndpoint()))
322 {
323 Endpoint_ClearOUT();
324
325 while (!(Endpoint_IsOUTReceived()))
326 {
327 if (USB_DeviceState == DEVICE_STATE_Unattached)
328 return;
329 }
330 }
331
332 /* Read the byte from the USB interface and write to to the EEPROM */
333 eeprom_write_byte((uint8_t*)StartAddr, Endpoint_Read_8());
334
335 /* Adjust counters */
336 StartAddr++;
337 }
338 }
339
340 /* Throw away the currently unused DFU file suffix */
341 DiscardFillerBytes(DFU_FILE_SUFFIX_SIZE);
342 }
343 }
344
345 Endpoint_ClearOUT();
346
347 Endpoint_ClearStatusStage();
348
349 break;
350 case DFU_REQ_UPLOAD:
351 Endpoint_ClearSETUP();
352
353 while (!(Endpoint_IsINReady()))
354 {
355 if (USB_DeviceState == DEVICE_STATE_Unattached)
356 return;
357 }
358
359 if (DFU_State != dfuUPLOAD_IDLE)
360 {
361 if ((DFU_State == dfuERROR) && IS_ONEBYTE_COMMAND(SentCommand.Data, 0x01)) // Blank Check
362 {
363 /* Blank checking is performed in the DFU_DNLOAD request - if we get here we've told the host
364 that the memory isn't blank, and the host is requesting the first non-blank address */
365 Endpoint_Write_16_LE(StartAddr);
366 }
367 else
368 {
369 /* Idle state upload - send response to last issued command */
370 Endpoint_Write_8(ResponseByte);
371 }
372 }
373 else
374 {
375 /* Determine the number of bytes remaining in the current block */
376 uint16_t BytesRemaining = ((EndAddr - StartAddr) + 1);
377
378 if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x00)) // Read FLASH
379 {
380 /* Calculate the number of words to be written from the number of bytes to be written */
381 uint16_t WordsRemaining = (BytesRemaining >> 1);
382
383 union
384 {
385 uint16_t Words[2];
386 uint32_t Long;
387 } CurrFlashAddress = {.Words = {StartAddr, Flash64KBPage}};
388
389 while (WordsRemaining--)
390 {
391 /* Check if endpoint is full - if so clear it and wait until ready for next packet */
392 if (Endpoint_BytesInEndpoint() == FIXED_CONTROL_ENDPOINT_SIZE)
393 {
394 Endpoint_ClearIN();
395
396 while (!(Endpoint_IsINReady()))
397 {
398 if (USB_DeviceState == DEVICE_STATE_Unattached)
399 return;
400 }
401 }
402
403 /* Read the flash word and send it via USB to the host */
404 #if (FLASHEND > 0xFFFF)
405 Endpoint_Write_16_LE(pgm_read_word_far(CurrFlashAddress.Long));
406 #else
407 Endpoint_Write_16_LE(pgm_read_word(CurrFlashAddress.Long));
408 #endif
409
410 /* Adjust counters */
411 CurrFlashAddress.Long += 2;
412 }
413
414 /* Once reading is complete, start address equals the end address */
415 StartAddr = EndAddr;
416 }
417 else if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x02)) // Read EEPROM
418 {
419 while (BytesRemaining--)
420 {
421 /* Check if endpoint is full - if so clear it and wait until ready for next packet */
422 if (Endpoint_BytesInEndpoint() == FIXED_CONTROL_ENDPOINT_SIZE)
423 {
424 Endpoint_ClearIN();
425
426 while (!(Endpoint_IsINReady()))
427 {
428 if (USB_DeviceState == DEVICE_STATE_Unattached)
429 return;
430 }
431 }
432
433 /* Read the EEPROM byte and send it via USB to the host */
434 Endpoint_Write_8(eeprom_read_byte((uint8_t*)StartAddr));
435
436 /* Adjust counters */
437 StartAddr++;
438 }
439 }
440
441 /* Return to idle state */
442 DFU_State = dfuIDLE;
443 }
444
445 Endpoint_ClearIN();
446
447 Endpoint_ClearStatusStage();
448 break;
449 case DFU_REQ_GETSTATUS:
450 Endpoint_ClearSETUP();
451
452 /* Write 8-bit status value */
453 Endpoint_Write_8(DFU_Status);
454
455 /* Write 24-bit poll timeout value */
456 Endpoint_Write_8(0);
457 Endpoint_Write_16_LE(0);
458
459 /* Write 8-bit state value */
460 Endpoint_Write_8(DFU_State);
461
462 /* Write 8-bit state string ID number */
463 Endpoint_Write_8(0);
464
465 Endpoint_ClearIN();
466
467 Endpoint_ClearStatusStage();
468 break;
469 case DFU_REQ_CLRSTATUS:
470 Endpoint_ClearSETUP();
471
472 /* Reset the status value variable to the default OK status */
473 DFU_Status = OK;
474
475 Endpoint_ClearStatusStage();
476 break;
477 case DFU_REQ_GETSTATE:
478 Endpoint_ClearSETUP();
479
480 /* Write the current device state to the endpoint */
481 Endpoint_Write_8(DFU_State);
482
483 Endpoint_ClearIN();
484
485 Endpoint_ClearStatusStage();
486 break;
487 case DFU_REQ_ABORT:
488 Endpoint_ClearSETUP();
489
490 /* Reset the current state variable to the default idle state */
491 DFU_State = dfuIDLE;
492
493 Endpoint_ClearStatusStage();
494 break;
495 }
496 }
497
498 /** Routine to discard the specified number of bytes from the control endpoint stream. This is used to
499 * discard unused bytes in the stream from the host, including the memory program block suffix.
500 *
501 * \param[in] NumberOfBytes Number of bytes to discard from the host from the control endpoint
502 */
503 static void DiscardFillerBytes(uint8_t NumberOfBytes)
504 {
505 while (NumberOfBytes--)
506 {
507 if (!(Endpoint_BytesInEndpoint()))
508 {
509 Endpoint_ClearOUT();
510
511 /* Wait until next data packet received */
512 while (!(Endpoint_IsOUTReceived()))
513 {
514 if (USB_DeviceState == DEVICE_STATE_Unattached)
515 return;
516 }
517 }
518 else
519 {
520 Endpoint_Discard_8();
521 }
522 }
523 }
524
525 /** Routine to process an issued command from the host, via a DFU_DNLOAD request wrapper. This routine ensures
526 * that the command is allowed based on the current secure mode flag value, and passes the command off to the
527 * appropriate handler function.
528 */
529 static void ProcessBootloaderCommand(void)
530 {
531 /* Check if device is in secure mode */
532 if (IsSecure)
533 {
534 /* Don't process command unless it is a READ or chip erase command */
535 if (!(((SentCommand.Command == COMMAND_WRITE) &&
536 IS_TWOBYTE_COMMAND(SentCommand.Data, 0x00, 0xFF)) ||
537 (SentCommand.Command == COMMAND_READ)))
538 {
539 /* Set the state and status variables to indicate the error */
540 DFU_State = dfuERROR;
541 DFU_Status = errWRITE;
542
543 /* Stall command */
544 Endpoint_StallTransaction();
545
546 /* Don't process the command */
547 return;
548 }
549 }
550
551 /* Dispatch the required command processing routine based on the command type */
552 switch (SentCommand.Command)
553 {
554 case COMMAND_PROG_START:
555 ProcessMemProgCommand();
556 break;
557 case COMMAND_DISP_DATA:
558 ProcessMemReadCommand();
559 break;
560 case COMMAND_WRITE:
561 ProcessWriteCommand();
562 break;
563 case COMMAND_READ:
564 ProcessReadCommand();
565 break;
566 case COMMAND_CHANGE_BASE_ADDR:
567 if (IS_TWOBYTE_COMMAND(SentCommand.Data, 0x03, 0x00)) // Set 64KB flash page command
568 Flash64KBPage = SentCommand.Data[2];
569
570 break;
571 }
572 }
573
574 /** Routine to concatenate the given pair of 16-bit memory start and end addresses from the host, and store them
575 * in the StartAddr and EndAddr global variables.
576 */
577 static void LoadStartEndAddresses(void)
578 {
579 union
580 {
581 uint8_t Bytes[2];
582 uint16_t Word;
583 } Address[2] = {{.Bytes = {SentCommand.Data[2], SentCommand.Data[1]}},
584 {.Bytes = {SentCommand.Data[4], SentCommand.Data[3]}}};
585
586 /* Load in the start and ending read addresses from the sent data packet */
587 StartAddr = Address[0].Word;
588 EndAddr = Address[1].Word;
589 }
590
591 /** Handler for a Memory Program command issued by the host. This routine handles the preparations needed
592 * to write subsequent data from the host into the specified memory.
593 */
594 static void ProcessMemProgCommand(void)
595 {
596 if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x00) || // Write FLASH command
597 IS_ONEBYTE_COMMAND(SentCommand.Data, 0x01)) // Write EEPROM command
598 {
599 /* Load in the start and ending read addresses */
600 LoadStartEndAddresses();
601
602 /* If FLASH is being written to, we need to pre-erase the first page to write to */
603 if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x00))
604 {
605 union
606 {
607 uint16_t Words[2];
608 uint32_t Long;
609 } CurrFlashAddress = {.Words = {StartAddr, Flash64KBPage}};
610
611 /* Erase the current page's temp buffer */
612 boot_page_erase(CurrFlashAddress.Long);
613 boot_spm_busy_wait();
614 }
615
616 /* Set the state so that the next DNLOAD requests reads in the firmware */
617 DFU_State = dfuDNLOAD_IDLE;
618 }
619 }
620
621 /** Handler for a Memory Read command issued by the host. This routine handles the preparations needed
622 * to read subsequent data from the specified memory out to the host, as well as implementing the memory
623 * blank check command.
624 */
625 static void ProcessMemReadCommand(void)
626 {
627 if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x00) || // Read FLASH command
628 IS_ONEBYTE_COMMAND(SentCommand.Data, 0x02)) // Read EEPROM command
629 {
630 /* Load in the start and ending read addresses */
631 LoadStartEndAddresses();
632
633 /* Set the state so that the next UPLOAD requests read out the firmware */
634 DFU_State = dfuUPLOAD_IDLE;
635 }
636 else if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x01)) // Blank check FLASH command
637 {
638 uint32_t CurrFlashAddress = 0;
639
640 while (CurrFlashAddress < BOOT_START_ADDR)
641 {
642 /* Check if the current byte is not blank */
643 #if (FLASHEND > 0xFFFF)
644 if (pgm_read_byte_far(CurrFlashAddress) != 0xFF)
645 #else
646 if (pgm_read_byte(CurrFlashAddress) != 0xFF)
647 #endif
648 {
649 /* Save the location of the first non-blank byte for response back to the host */
650 Flash64KBPage = (CurrFlashAddress >> 16);
651 StartAddr = CurrFlashAddress;
652
653 /* Set state and status variables to the appropriate error values */
654 DFU_State = dfuERROR;
655 DFU_Status = errCHECK_ERASED;
656
657 break;
658 }
659
660 CurrFlashAddress++;
661 }
662 }
663 }
664
665 /** Handler for a Data Write command issued by the host. This routine handles non-programming commands such as
666 * bootloader exit (both via software jumps and hardware watchdog resets) and flash memory erasure.
667 */
668 static void ProcessWriteCommand(void)
669 {
670 if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x03)) // Start application
671 {
672 /* Indicate that the bootloader is terminating */
673 WaitForExit = true;
674
675 /* Check if data supplied for the Start Program command - no data executes the program */
676 if (SentCommand.DataSize)
677 {
678 if (SentCommand.Data[1] == 0x01) // Start via jump
679 {
680 union
681 {
682 uint8_t Bytes[2];
683 AppPtr_t FuncPtr;
684 } Address = {.Bytes = {SentCommand.Data[4], SentCommand.Data[3]}};
685
686 /* Load in the jump address into the application start address pointer */
687 AppStartPtr = Address.FuncPtr;
688 }
689 }
690 else
691 {
692 if (SentCommand.Data[1] == 0x00) // Start via watchdog
693 {
694 /* Start the watchdog to reset the AVR once the communications are finalized */
695 wdt_enable(WDTO_250MS);
696 }
697 else // Start via jump
698 {
699 /* Set the flag to terminate the bootloader at next opportunity */
700 RunBootloader = false;
701 }
702 }
703 }
704 else if (IS_TWOBYTE_COMMAND(SentCommand.Data, 0x00, 0xFF)) // Erase flash
705 {
706 uint32_t CurrFlashAddress = 0;
707
708 /* Clear the application section of flash */
709 while (CurrFlashAddress < BOOT_START_ADDR)
710 {
711 boot_page_erase(CurrFlashAddress);
712 boot_spm_busy_wait();
713 boot_page_write(CurrFlashAddress);
714 boot_spm_busy_wait();
715
716 CurrFlashAddress += SPM_PAGESIZE;
717 }
718
719 /* Re-enable the RWW section of flash as writing to the flash locks it out */
720 boot_rww_enable();
721
722 /* Memory has been erased, reset the security bit so that programming/reading is allowed */
723 IsSecure = false;
724 }
725 }
726
727 /** Handler for a Data Read command issued by the host. This routine handles bootloader information retrieval
728 * commands such as device signature and bootloader version retrieval.
729 */
730 static void ProcessReadCommand(void)
731 {
732 const uint8_t BootloaderInfo[3] = {BOOTLOADER_VERSION, BOOTLOADER_ID_BYTE1, BOOTLOADER_ID_BYTE2};
733 const uint8_t SignatureInfo[3] = {AVR_SIGNATURE_1, AVR_SIGNATURE_2, AVR_SIGNATURE_3};
734
735 uint8_t DataIndexToRead = SentCommand.Data[1];
736
737 if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x00)) // Read bootloader info
738 ResponseByte = BootloaderInfo[DataIndexToRead];
739 else if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x01)) // Read signature byte
740 ResponseByte = SignatureInfo[DataIndexToRead - 0x30];
741 }
742