Add Leonardo compatibility to most bootloaders, run user application if BOOTRST fuse...
[pub/USBasp.git] / Bootloaders / MassStorage / BootloaderMassStorage.c
1 /*
2 LUFA Library
3 Copyright (C) Dean Camera, 2014.
4
5 dean [at] fourwalledcubicle [dot] com
6 www.lufa-lib.org
7 */
8
9 /*
10 Copyright 2014 Dean Camera (dean [at] fourwalledcubicle [dot] com)
11
12 Permission to use, copy, modify, distribute, and sell this
13 software and its documentation for any purpose is hereby granted
14 without fee, provided that the above copyright notice appear in
15 all copies and that both that the copyright notice and this
16 permission notice and warranty disclaimer appear in supporting
17 documentation, and that the name of the author not be used in
18 advertising or publicity pertaining to distribution of the
19 software without specific, written prior permission.
20
21 The author disclaims all warranties with regard to this
22 software, including all implied warranties of merchantability
23 and fitness. In no event shall the author be liable for any
24 special, indirect or consequential damages or any damages
25 whatsoever resulting from loss of use, data or profits, whether
26 in an action of contract, negligence or other tortious action,
27 arising out of or in connection with the use or performance of
28 this software.
29 */
30
31 /** \file
32 *
33 * Main source file for the Mass Storage class bootloader. This file contains the complete bootloader logic.
34 */
35
36 #define INCLUDE_FROM_BOOTLOADER_MASSSTORAGE_C
37 #include "BootloaderMassStorage.h"
38
39 /** LUFA Mass Storage Class driver interface configuration and state information. This structure is
40 * passed to all Mass Storage Class driver functions, so that multiple instances of the same class
41 * within a device can be differentiated from one another.
42 */
43 USB_ClassInfo_MS_Device_t Disk_MS_Interface =
44 {
45 .Config =
46 {
47 .InterfaceNumber = INTERFACE_ID_MassStorage,
48 .DataINEndpoint =
49 {
50 .Address = MASS_STORAGE_IN_EPADDR,
51 .Size = MASS_STORAGE_IO_EPSIZE,
52 .Banks = 1,
53 },
54 .DataOUTEndpoint =
55 {
56 .Address = MASS_STORAGE_OUT_EPADDR,
57 .Size = MASS_STORAGE_IO_EPSIZE,
58 .Banks = 1,
59 },
60 .TotalLUNs = 1,
61 },
62 };
63
64 /** Flag to indicate if the bootloader should be running, or should exit and allow the application code to run
65 * via a soft reset. When cleared, the bootloader will abort, the USB interface will shut down and the application
66 * started via a forced watchdog reset.
67 */
68 bool RunBootloader = true;
69
70 /** Magic lock for forced application start. If the HWBE fuse is programmed and BOOTRST is unprogrammed, the bootloader
71 * will start if the /HWB line of the AVR is held low and the system is reset. However, if the /HWB line is still held
72 * low when the application attempts to start via a watchdog reset, the bootloader will re-start. If set to the value
73 * \ref MAGIC_BOOT_KEY the special init function \ref Application_Jump_Check() will force the application to start.
74 */
75 uint16_t MagicBootKey ATTR_NO_INIT;
76
77 /** Indicates if the bootloader is allowed to exit immediately if \ref RunBootloader is \c false. During shutdown all
78 * pending commands must be processed before jumping to the user-application, thus this tracks the main program loop
79 * iterations since a SCSI command from the host was received.
80 */
81 static uint8_t TicksSinceLastCommand = 0;
82
83
84 /** Special startup routine to check if the bootloader was started via a watchdog reset, and if the magic application
85 * start key has been loaded into \ref MagicBootKey. If the bootloader started via the watchdog and the key is valid,
86 * this will force the user application to start via a software jump.
87 */
88 void Application_Jump_Check(void)
89 {
90 bool JumpToApplication = false;
91
92 #if (BOARD == BOARD_LEONARDO)
93 /* Enable pull-up on the IO13 pin so we can use it to select the mode */
94 PORTC |= (1 << 7);
95 Delay_MS(10);
96
97 /* If IO13 is not jumpered to ground, start the user application instead */
98 JumpToApplication = ((PINC & (1 << 7)) != 0);
99
100 /* Disable pull-up after the check has completed */
101 PORTC &= ~(1 << 7);
102 #elif ((BOARD == BOARD_XPLAIN) || (BOARD == BOARD_XPLAIN_REV1))
103 /* Disable JTAG debugging */
104 JTAG_DISABLE();
105
106 /* Enable pull-up on the JTAG TCK pin so we can use it to select the mode */
107 PORTF |= (1 << 4);
108 Delay_MS(10);
109
110 /* If the TCK pin is not jumpered to ground, start the user application instead */
111 JumpToApplication = ((PINF & (1 << 4)) != 0);
112
113 /* Re-enable JTAG debugging */
114 JTAG_ENABLE();
115 #else
116 /* Check if the device's BOOTRST fuse is set */
117 if (boot_lock_fuse_bits_get(GET_HIGH_FUSE_BITS) & FUSE_BOOTRST)
118 {
119 /* If the reset source was not an external reset or the key is correct, clear it and jump to the application */
120 if (!(MCUSR & (1 << EXTRF)) || (MagicBootKey == MAGIC_BOOT_KEY))
121 JumpToApplication = true;
122
123 MCUSR &= ~(1 << EXTRF);
124 }
125 #endif
126
127 /* Don't run the user application if the reset vector is blank (no app loaded) */
128 bool ApplicationValid = (pgm_read_word_near(0) != 0xFFFF);
129
130 /* If a request has been made to jump to the user application, honor it */
131 if (JumpToApplication && ApplicationValid)
132 {
133 /* Turn off the watchdog */
134 MCUSR &= ~(1 << WDRF);
135 wdt_disable();
136
137 /* Clear the boot key and jump to the user application */
138 MagicBootKey = 0;
139
140 // cppcheck-suppress constStatement
141 ((void (*)(void))0x0000)();
142 }
143 }
144
145 /** Main program entry point. This routine configures the hardware required by the application, then
146 * enters a loop to run the application tasks in sequence.
147 */
148 int main(void)
149 {
150 SetupHardware();
151
152 LEDs_SetAllLEDs(LEDMASK_USB_NOTREADY);
153 GlobalInterruptEnable();
154
155 while (RunBootloader || TicksSinceLastCommand++ < 0xFF)
156 {
157 MS_Device_USBTask(&Disk_MS_Interface);
158 USB_USBTask();
159 }
160
161 /* Disconnect from the host - USB interface will be reset later along with the AVR */
162 USB_Detach();
163
164 /* Unlock the forced application start mode of the bootloader if it is restarted */
165 MagicBootKey = MAGIC_BOOT_KEY;
166
167 /* Enable the watchdog and force a timeout to reset the AVR */
168 wdt_enable(WDTO_250MS);
169
170 for (;;);
171 }
172
173 /** Configures the board hardware and chip peripherals for the demo's functionality. */
174 static void SetupHardware(void)
175 {
176 /* Disable watchdog if enabled by bootloader/fuses */
177 MCUSR &= ~(1 << WDRF);
178 wdt_disable();
179
180 /* Disable clock division */
181 clock_prescale_set(clock_div_1);
182
183 /* Relocate the interrupt vector table to the bootloader section */
184 MCUCR = (1 << IVCE);
185 MCUCR = (1 << IVSEL);
186
187 /* Hardware Initialization */
188 LEDs_Init();
189 USB_Init();
190
191 /* Bootloader active LED toggle timer initialization */
192 TIMSK1 = (1 << TOIE1);
193 TCCR1B = ((1 << CS11) | (1 << CS10));
194 }
195
196 /** ISR to periodically toggle the LEDs on the board to indicate that the bootloader is active. */
197 ISR(TIMER1_OVF_vect, ISR_BLOCK)
198 {
199 LEDs_ToggleLEDs(LEDS_LED1 | LEDS_LED2);
200 }
201
202 /** Event handler for the USB_Connect event. This indicates that the device is enumerating via the status LEDs. */
203 void EVENT_USB_Device_Connect(void)
204 {
205 /* Indicate USB enumerating */
206 LEDs_SetAllLEDs(LEDMASK_USB_ENUMERATING);
207 }
208
209 /** Event handler for the USB_Disconnect event. This indicates that the device is no longer connected to a host via
210 * the status LEDs and stops the Mass Storage management task.
211 */
212 void EVENT_USB_Device_Disconnect(void)
213 {
214 /* Indicate USB not ready */
215 LEDs_SetAllLEDs(LEDMASK_USB_NOTREADY);
216 }
217
218 /** Event handler for the library USB Configuration Changed event. */
219 void EVENT_USB_Device_ConfigurationChanged(void)
220 {
221 bool ConfigSuccess = true;
222
223 /* Setup Mass Storage Data Endpoints */
224 ConfigSuccess &= MS_Device_ConfigureEndpoints(&Disk_MS_Interface);
225
226 /* Indicate endpoint configuration success or failure */
227 LEDs_SetAllLEDs(ConfigSuccess ? LEDMASK_USB_READY : LEDMASK_USB_ERROR);
228 }
229
230 /** Event handler for the library USB Control Request reception event. */
231 void EVENT_USB_Device_ControlRequest(void)
232 {
233 MS_Device_ProcessControlRequest(&Disk_MS_Interface);
234 }
235
236 /** Mass Storage class driver callback function the reception of SCSI commands from the host, which must be processed.
237 *
238 * \param[in] MSInterfaceInfo Pointer to the Mass Storage class interface configuration structure being referenced
239 */
240 bool CALLBACK_MS_Device_SCSICommandReceived(USB_ClassInfo_MS_Device_t* const MSInterfaceInfo)
241 {
242 bool CommandSuccess;
243
244 LEDs_SetAllLEDs(LEDMASK_USB_BUSY);
245 CommandSuccess = SCSI_DecodeSCSICommand(MSInterfaceInfo);
246 LEDs_SetAllLEDs(LEDMASK_USB_READY);
247
248 /* Signal that a command was processed, must not exit bootloader yet */
249 TicksSinceLastCommand = 0;
250
251 return CommandSuccess;
252 }