Add Leonardo compatibility to most bootloaders, run user application if BOOTRST fuse...
[pub/USBasp.git] / Bootloaders / DFU / BootloaderDFU.c
1 /*
2 LUFA Library
3 Copyright (C) Dean Camera, 2014.
4
5 dean [at] fourwalledcubicle [dot] com
6 www.lufa-lib.org
7 */
8
9 /*
10 Copyright 2014 Dean Camera (dean [at] fourwalledcubicle [dot] com)
11
12 Permission to use, copy, modify, distribute, and sell this
13 software and its documentation for any purpose is hereby granted
14 without fee, provided that the above copyright notice appear in
15 all copies and that both that the copyright notice and this
16 permission notice and warranty disclaimer appear in supporting
17 documentation, and that the name of the author not be used in
18 advertising or publicity pertaining to distribution of the
19 software without specific, written prior permission.
20
21 The author disclaims all warranties with regard to this
22 software, including all implied warranties of merchantability
23 and fitness. In no event shall the author be liable for any
24 special, indirect or consequential damages or any damages
25 whatsoever resulting from loss of use, data or profits, whether
26 in an action of contract, negligence or other tortious action,
27 arising out of or in connection with the use or performance of
28 this software.
29 */
30
31 /** \file
32 *
33 * Main source file for the DFU class bootloader. This file contains the complete bootloader logic.
34 */
35
36 #define INCLUDE_FROM_BOOTLOADER_C
37 #include "BootloaderDFU.h"
38
39 /** Flag to indicate if the bootloader is currently running in secure mode, disallowing memory operations
40 * other than erase. This is initially set to the value set by SECURE_MODE, and cleared by the bootloader
41 * once a memory erase has completed in a bootloader session.
42 */
43 static bool IsSecure = SECURE_MODE;
44
45 /** Flag to indicate if the bootloader should be running, or should exit and allow the application code to run
46 * via a soft reset. When cleared, the bootloader will abort, the USB interface will shut down and the application
47 * jumped to via an indirect jump to location 0x0000 (or other location specified by the host).
48 */
49 static bool RunBootloader = true;
50
51 /** Flag to indicate if the bootloader is waiting to exit. When the host requests the bootloader to exit and
52 * jump to the application address it specifies, it sends two sequential commands which must be properly
53 * acknowledged. Upon reception of the first the RunBootloader flag is cleared and the WaitForExit flag is set,
54 * causing the bootloader to wait for the final exit command before shutting down.
55 */
56 static bool WaitForExit = false;
57
58 /** Current DFU state machine state, one of the values in the DFU_State_t enum. */
59 static uint8_t DFU_State = dfuIDLE;
60
61 /** Status code of the last executed DFU command. This is set to one of the values in the DFU_Status_t enum after
62 * each operation, and returned to the host when a Get Status DFU request is issued.
63 */
64 static uint8_t DFU_Status = OK;
65
66 /** Data containing the DFU command sent from the host. */
67 static DFU_Command_t SentCommand;
68
69 /** Response to the last issued Read Data DFU command. Unlike other DFU commands, the read command
70 * requires a single byte response from the bootloader containing the read data when the next DFU_UPLOAD command
71 * is issued by the host.
72 */
73 static uint8_t ResponseByte;
74
75 /** Pointer to the start of the user application. By default this is 0x0000 (the reset vector), however the host
76 * may specify an alternate address when issuing the application soft-start command.
77 */
78 static AppPtr_t AppStartPtr = (AppPtr_t)0x0000;
79
80 /** 64-bit flash page number. This is concatenated with the current 16-bit address on USB AVRs containing more than
81 * 64KB of flash memory.
82 */
83 static uint8_t Flash64KBPage = 0;
84
85 /** Memory start address, indicating the current address in the memory being addressed (either FLASH or EEPROM
86 * depending on the issued command from the host).
87 */
88 static uint16_t StartAddr = 0x0000;
89
90 /** Memory end address, indicating the end address to read from/write to in the memory being addressed (either FLASH
91 * of EEPROM depending on the issued command from the host).
92 */
93 static uint16_t EndAddr = 0x0000;
94
95 /** Magic lock for forced application start. If the HWBE fuse is programmed and BOOTRST is unprogrammed, the bootloader
96 * will start if the /HWB line of the AVR is held low and the system is reset. However, if the /HWB line is still held
97 * low when the application attempts to start via a watchdog reset, the bootloader will re-start. If set to the value
98 * \ref MAGIC_BOOT_KEY the special init function \ref Application_Jump_Check() will force the application to start.
99 */
100 uint16_t MagicBootKey ATTR_NO_INIT;
101
102
103 /** Special startup routine to check if the bootloader was started via a watchdog reset, and if the magic application
104 * start key has been loaded into \ref MagicBootKey. If the bootloader started via the watchdog and the key is valid,
105 * this will force the user application to start via a software jump.
106 */
107 void Application_Jump_Check(void)
108 {
109 bool JumpToApplication = false;
110
111 #if (BOARD == BOARD_LEONARDO)
112 /* Enable pull-up on the IO13 pin so we can use it to select the mode */
113 PORTC |= (1 << 7);
114 Delay_MS(10);
115
116 /* If IO13 is not jumpered to ground, start the user application instead */
117 JumpToApplication = ((PINC & (1 << 7)) != 0);
118
119 /* Disable pull-up after the check has completed */
120 PORTC &= ~(1 << 7);
121 #elif ((BOARD == BOARD_XPLAIN) || (BOARD == BOARD_XPLAIN_REV1))
122 /* Disable JTAG debugging */
123 JTAG_DISABLE();
124
125 /* Enable pull-up on the JTAG TCK pin so we can use it to select the mode */
126 PORTF |= (1 << 4);
127 Delay_MS(10);
128
129 /* If the TCK pin is not jumpered to ground, start the user application instead */
130 JumpToApplication = ((PINF & (1 << 4)) != 0);
131
132 /* Re-enable JTAG debugging */
133 JTAG_ENABLE();
134 #else
135 /* Check if the device's BOOTRST fuse is set */
136 if (boot_lock_fuse_bits_get(GET_HIGH_FUSE_BITS) & FUSE_BOOTRST)
137 {
138 /* If the reset source was not an external reset or the key is correct, clear it and jump to the application */
139 if (!(MCUSR & (1 << EXTRF)) || (MagicBootKey == MAGIC_BOOT_KEY))
140 JumpToApplication = true;
141
142 MCUSR &= ~(1 << EXTRF);
143 }
144 #endif
145
146 /* Don't run the user application if the reset vector is blank (no app loaded) */
147 bool ApplicationValid = (pgm_read_word_near(0) != 0xFFFF);
148
149 /* If a request has been made to jump to the user application, honor it */
150 if (JumpToApplication && ApplicationValid)
151 {
152 /* Turn off the watchdog */
153 MCUSR &= ~(1 << WDRF);
154 wdt_disable();
155
156 /* Clear the boot key and jump to the user application */
157 MagicBootKey = 0;
158
159 // cppcheck-suppress constStatement
160 ((void (*)(void))0x0000)();
161 }
162 }
163
164 /** Main program entry point. This routine configures the hardware required by the bootloader, then continuously
165 * runs the bootloader processing routine until instructed to soft-exit, or hard-reset via the watchdog to start
166 * the loaded application code.
167 */
168 int main(void)
169 {
170 /* Configure hardware required by the bootloader */
171 SetupHardware();
172
173 /* Turn on first LED on the board to indicate that the bootloader has started */
174 LEDs_SetAllLEDs(LEDS_LED1);
175
176 /* Enable global interrupts so that the USB stack can function */
177 GlobalInterruptEnable();
178
179 /* Run the USB management task while the bootloader is supposed to be running */
180 while (RunBootloader || WaitForExit)
181 USB_USBTask();
182
183 /* Reset configured hardware back to their original states for the user application */
184 ResetHardware();
185
186 /* Start the user application */
187 AppStartPtr();
188 }
189
190 /** Configures all hardware required for the bootloader. */
191 static void SetupHardware(void)
192 {
193 /* Disable watchdog if enabled by bootloader/fuses */
194 MCUSR &= ~(1 << WDRF);
195 wdt_disable();
196
197 /* Disable clock division */
198 clock_prescale_set(clock_div_1);
199
200 /* Relocate the interrupt vector table to the bootloader section */
201 MCUCR = (1 << IVCE);
202 MCUCR = (1 << IVSEL);
203
204 /* Initialize the USB and other board hardware drivers */
205 USB_Init();
206 LEDs_Init();
207
208 /* Bootloader active LED toggle timer initialization */
209 TIMSK1 = (1 << TOIE1);
210 TCCR1B = ((1 << CS11) | (1 << CS10));
211 }
212
213 /** Resets all configured hardware required for the bootloader back to their original states. */
214 static void ResetHardware(void)
215 {
216 /* Shut down the USB and other board hardware drivers */
217 USB_Disable();
218 LEDs_Disable();
219
220 /* Disable Bootloader active LED toggle timer */
221 TIMSK1 = 0;
222 TCCR1B = 0;
223
224 /* Relocate the interrupt vector table back to the application section */
225 MCUCR = (1 << IVCE);
226 MCUCR = 0;
227 }
228
229 /** ISR to periodically toggle the LEDs on the board to indicate that the bootloader is active. */
230 ISR(TIMER1_OVF_vect, ISR_BLOCK)
231 {
232 LEDs_ToggleLEDs(LEDS_LED1 | LEDS_LED2);
233 }
234
235 /** Event handler for the USB_ControlRequest event. This is used to catch and process control requests sent to
236 * the device from the USB host before passing along unhandled control requests to the library for processing
237 * internally.
238 */
239 void EVENT_USB_Device_ControlRequest(void)
240 {
241 /* Ignore any requests that aren't directed to the DFU interface */
242 if ((USB_ControlRequest.bmRequestType & (CONTROL_REQTYPE_TYPE | CONTROL_REQTYPE_RECIPIENT)) !=
243 (REQTYPE_CLASS | REQREC_INTERFACE))
244 {
245 return;
246 }
247
248 /* Activity - toggle indicator LEDs */
249 LEDs_ToggleLEDs(LEDS_LED1 | LEDS_LED2);
250
251 /* Get the size of the command and data from the wLength value */
252 SentCommand.DataSize = USB_ControlRequest.wLength;
253
254 switch (USB_ControlRequest.bRequest)
255 {
256 case DFU_REQ_DNLOAD:
257 Endpoint_ClearSETUP();
258
259 /* Check if bootloader is waiting to terminate */
260 if (WaitForExit)
261 {
262 /* Bootloader is terminating - process last received command */
263 ProcessBootloaderCommand();
264
265 /* Indicate that the last command has now been processed - free to exit bootloader */
266 WaitForExit = false;
267 }
268
269 /* If the request has a data stage, load it into the command struct */
270 if (SentCommand.DataSize)
271 {
272 while (!(Endpoint_IsOUTReceived()))
273 {
274 if (USB_DeviceState == DEVICE_STATE_Unattached)
275 return;
276 }
277
278 /* First byte of the data stage is the DNLOAD request's command */
279 SentCommand.Command = Endpoint_Read_8();
280
281 /* One byte of the data stage is the command, so subtract it from the total data bytes */
282 SentCommand.DataSize--;
283
284 /* Load in the rest of the data stage as command parameters */
285 for (uint8_t DataByte = 0; (DataByte < sizeof(SentCommand.Data)) &&
286 Endpoint_BytesInEndpoint(); DataByte++)
287 {
288 SentCommand.Data[DataByte] = Endpoint_Read_8();
289 SentCommand.DataSize--;
290 }
291
292 /* Process the command */
293 ProcessBootloaderCommand();
294 }
295
296 /* Check if currently downloading firmware */
297 if (DFU_State == dfuDNLOAD_IDLE)
298 {
299 if (!(SentCommand.DataSize))
300 {
301 DFU_State = dfuIDLE;
302 }
303 else
304 {
305 /* Throw away the filler bytes before the start of the firmware */
306 DiscardFillerBytes(DFU_FILLER_BYTES_SIZE);
307
308 /* Throw away the packet alignment filler bytes before the start of the firmware */
309 DiscardFillerBytes(StartAddr % FIXED_CONTROL_ENDPOINT_SIZE);
310
311 /* Calculate the number of bytes remaining to be written */
312 uint16_t BytesRemaining = ((EndAddr - StartAddr) + 1);
313
314 if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x00)) // Write flash
315 {
316 /* Calculate the number of words to be written from the number of bytes to be written */
317 uint16_t WordsRemaining = (BytesRemaining >> 1);
318
319 union
320 {
321 uint16_t Words[2];
322 uint32_t Long;
323 } CurrFlashAddress = {.Words = {StartAddr, Flash64KBPage}};
324
325 uint32_t CurrFlashPageStartAddress = CurrFlashAddress.Long;
326 uint8_t WordsInFlashPage = 0;
327
328 while (WordsRemaining--)
329 {
330 /* Check if endpoint is empty - if so clear it and wait until ready for next packet */
331 if (!(Endpoint_BytesInEndpoint()))
332 {
333 Endpoint_ClearOUT();
334
335 while (!(Endpoint_IsOUTReceived()))
336 {
337 if (USB_DeviceState == DEVICE_STATE_Unattached)
338 return;
339 }
340 }
341
342 /* Write the next word into the current flash page */
343 boot_page_fill(CurrFlashAddress.Long, Endpoint_Read_16_LE());
344
345 /* Adjust counters */
346 WordsInFlashPage += 1;
347 CurrFlashAddress.Long += 2;
348
349 /* See if an entire page has been written to the flash page buffer */
350 if ((WordsInFlashPage == (SPM_PAGESIZE >> 1)) || !(WordsRemaining))
351 {
352 /* Commit the flash page to memory */
353 boot_page_write(CurrFlashPageStartAddress);
354 boot_spm_busy_wait();
355
356 /* Check if programming incomplete */
357 if (WordsRemaining)
358 {
359 CurrFlashPageStartAddress = CurrFlashAddress.Long;
360 WordsInFlashPage = 0;
361
362 /* Erase next page's temp buffer */
363 boot_page_erase(CurrFlashAddress.Long);
364 boot_spm_busy_wait();
365 }
366 }
367 }
368
369 /* Once programming complete, start address equals the end address */
370 StartAddr = EndAddr;
371
372 /* Re-enable the RWW section of flash */
373 boot_rww_enable();
374 }
375 else // Write EEPROM
376 {
377 while (BytesRemaining--)
378 {
379 /* Check if endpoint is empty - if so clear it and wait until ready for next packet */
380 if (!(Endpoint_BytesInEndpoint()))
381 {
382 Endpoint_ClearOUT();
383
384 while (!(Endpoint_IsOUTReceived()))
385 {
386 if (USB_DeviceState == DEVICE_STATE_Unattached)
387 return;
388 }
389 }
390
391 /* Read the byte from the USB interface and write to to the EEPROM */
392 eeprom_write_byte((uint8_t*)StartAddr, Endpoint_Read_8());
393
394 /* Adjust counters */
395 StartAddr++;
396 }
397 }
398
399 /* Throw away the currently unused DFU file suffix */
400 DiscardFillerBytes(DFU_FILE_SUFFIX_SIZE);
401 }
402 }
403
404 Endpoint_ClearOUT();
405
406 Endpoint_ClearStatusStage();
407
408 break;
409 case DFU_REQ_UPLOAD:
410 Endpoint_ClearSETUP();
411
412 while (!(Endpoint_IsINReady()))
413 {
414 if (USB_DeviceState == DEVICE_STATE_Unattached)
415 return;
416 }
417
418 if (DFU_State != dfuUPLOAD_IDLE)
419 {
420 if ((DFU_State == dfuERROR) && IS_ONEBYTE_COMMAND(SentCommand.Data, 0x01)) // Blank Check
421 {
422 /* Blank checking is performed in the DFU_DNLOAD request - if we get here we've told the host
423 that the memory isn't blank, and the host is requesting the first non-blank address */
424 Endpoint_Write_16_LE(StartAddr);
425 }
426 else
427 {
428 /* Idle state upload - send response to last issued command */
429 Endpoint_Write_8(ResponseByte);
430 }
431 }
432 else
433 {
434 /* Determine the number of bytes remaining in the current block */
435 uint16_t BytesRemaining = ((EndAddr - StartAddr) + 1);
436
437 if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x00)) // Read FLASH
438 {
439 /* Calculate the number of words to be written from the number of bytes to be written */
440 uint16_t WordsRemaining = (BytesRemaining >> 1);
441
442 union
443 {
444 uint16_t Words[2];
445 uint32_t Long;
446 } CurrFlashAddress = {.Words = {StartAddr, Flash64KBPage}};
447
448 while (WordsRemaining--)
449 {
450 /* Check if endpoint is full - if so clear it and wait until ready for next packet */
451 if (Endpoint_BytesInEndpoint() == FIXED_CONTROL_ENDPOINT_SIZE)
452 {
453 Endpoint_ClearIN();
454
455 while (!(Endpoint_IsINReady()))
456 {
457 if (USB_DeviceState == DEVICE_STATE_Unattached)
458 return;
459 }
460 }
461
462 /* Read the flash word and send it via USB to the host */
463 #if (FLASHEND > 0xFFFF)
464 Endpoint_Write_16_LE(pgm_read_word_far(CurrFlashAddress.Long));
465 #else
466 Endpoint_Write_16_LE(pgm_read_word(CurrFlashAddress.Long));
467 #endif
468
469 /* Adjust counters */
470 CurrFlashAddress.Long += 2;
471 }
472
473 /* Once reading is complete, start address equals the end address */
474 StartAddr = EndAddr;
475 }
476 else if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x02)) // Read EEPROM
477 {
478 while (BytesRemaining--)
479 {
480 /* Check if endpoint is full - if so clear it and wait until ready for next packet */
481 if (Endpoint_BytesInEndpoint() == FIXED_CONTROL_ENDPOINT_SIZE)
482 {
483 Endpoint_ClearIN();
484
485 while (!(Endpoint_IsINReady()))
486 {
487 if (USB_DeviceState == DEVICE_STATE_Unattached)
488 return;
489 }
490 }
491
492 /* Read the EEPROM byte and send it via USB to the host */
493 Endpoint_Write_8(eeprom_read_byte((uint8_t*)StartAddr));
494
495 /* Adjust counters */
496 StartAddr++;
497 }
498 }
499
500 /* Return to idle state */
501 DFU_State = dfuIDLE;
502 }
503
504 Endpoint_ClearIN();
505
506 Endpoint_ClearStatusStage();
507 break;
508 case DFU_REQ_GETSTATUS:
509 Endpoint_ClearSETUP();
510
511 while (!(Endpoint_IsINReady()))
512 {
513 if (USB_DeviceState == DEVICE_STATE_Unattached)
514 return;
515 }
516
517 /* Write 8-bit status value */
518 Endpoint_Write_8(DFU_Status);
519
520 /* Write 24-bit poll timeout value */
521 Endpoint_Write_8(0);
522 Endpoint_Write_16_LE(0);
523
524 /* Write 8-bit state value */
525 Endpoint_Write_8(DFU_State);
526
527 /* Write 8-bit state string ID number */
528 Endpoint_Write_8(0);
529
530 Endpoint_ClearIN();
531
532 Endpoint_ClearStatusStage();
533 break;
534 case DFU_REQ_CLRSTATUS:
535 Endpoint_ClearSETUP();
536
537 /* Reset the status value variable to the default OK status */
538 DFU_Status = OK;
539
540 Endpoint_ClearStatusStage();
541 break;
542 case DFU_REQ_GETSTATE:
543 Endpoint_ClearSETUP();
544
545 while (!(Endpoint_IsINReady()))
546 {
547 if (USB_DeviceState == DEVICE_STATE_Unattached)
548 return;
549 }
550
551 /* Write the current device state to the endpoint */
552 Endpoint_Write_8(DFU_State);
553
554 Endpoint_ClearIN();
555
556 Endpoint_ClearStatusStage();
557 break;
558 case DFU_REQ_ABORT:
559 Endpoint_ClearSETUP();
560
561 /* Reset the current state variable to the default idle state */
562 DFU_State = dfuIDLE;
563
564 Endpoint_ClearStatusStage();
565 break;
566 }
567 }
568
569 /** Routine to discard the specified number of bytes from the control endpoint stream. This is used to
570 * discard unused bytes in the stream from the host, including the memory program block suffix.
571 *
572 * \param[in] NumberOfBytes Number of bytes to discard from the host from the control endpoint
573 */
574 static void DiscardFillerBytes(uint8_t NumberOfBytes)
575 {
576 while (NumberOfBytes--)
577 {
578 if (!(Endpoint_BytesInEndpoint()))
579 {
580 Endpoint_ClearOUT();
581
582 /* Wait until next data packet received */
583 while (!(Endpoint_IsOUTReceived()))
584 {
585 if (USB_DeviceState == DEVICE_STATE_Unattached)
586 return;
587 }
588 }
589 else
590 {
591 Endpoint_Discard_8();
592 }
593 }
594 }
595
596 /** Routine to process an issued command from the host, via a DFU_DNLOAD request wrapper. This routine ensures
597 * that the command is allowed based on the current secure mode flag value, and passes the command off to the
598 * appropriate handler function.
599 */
600 static void ProcessBootloaderCommand(void)
601 {
602 /* Check if device is in secure mode */
603 if (IsSecure)
604 {
605 /* Don't process command unless it is a READ or chip erase command */
606 if (!(((SentCommand.Command == COMMAND_WRITE) &&
607 IS_TWOBYTE_COMMAND(SentCommand.Data, 0x00, 0xFF)) ||
608 (SentCommand.Command == COMMAND_READ)))
609 {
610 /* Set the state and status variables to indicate the error */
611 DFU_State = dfuERROR;
612 DFU_Status = errWRITE;
613
614 /* Stall command */
615 Endpoint_StallTransaction();
616
617 /* Don't process the command */
618 return;
619 }
620 }
621
622 /* Dispatch the required command processing routine based on the command type */
623 switch (SentCommand.Command)
624 {
625 case COMMAND_PROG_START:
626 ProcessMemProgCommand();
627 break;
628 case COMMAND_DISP_DATA:
629 ProcessMemReadCommand();
630 break;
631 case COMMAND_WRITE:
632 ProcessWriteCommand();
633 break;
634 case COMMAND_READ:
635 ProcessReadCommand();
636 break;
637 case COMMAND_CHANGE_BASE_ADDR:
638 if (IS_TWOBYTE_COMMAND(SentCommand.Data, 0x03, 0x00)) // Set 64KB flash page command
639 Flash64KBPage = SentCommand.Data[2];
640
641 break;
642 }
643 }
644
645 /** Routine to concatenate the given pair of 16-bit memory start and end addresses from the host, and store them
646 * in the StartAddr and EndAddr global variables.
647 */
648 static void LoadStartEndAddresses(void)
649 {
650 union
651 {
652 uint8_t Bytes[2];
653 uint16_t Word;
654 } Address[2] = {{.Bytes = {SentCommand.Data[2], SentCommand.Data[1]}},
655 {.Bytes = {SentCommand.Data[4], SentCommand.Data[3]}}};
656
657 /* Load in the start and ending read addresses from the sent data packet */
658 StartAddr = Address[0].Word;
659 EndAddr = Address[1].Word;
660 }
661
662 /** Handler for a Memory Program command issued by the host. This routine handles the preparations needed
663 * to write subsequent data from the host into the specified memory.
664 */
665 static void ProcessMemProgCommand(void)
666 {
667 if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x00) || // Write FLASH command
668 IS_ONEBYTE_COMMAND(SentCommand.Data, 0x01)) // Write EEPROM command
669 {
670 /* Load in the start and ending read addresses */
671 LoadStartEndAddresses();
672
673 /* If FLASH is being written to, we need to pre-erase the first page to write to */
674 if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x00))
675 {
676 union
677 {
678 uint16_t Words[2];
679 uint32_t Long;
680 } CurrFlashAddress = {.Words = {StartAddr, Flash64KBPage}};
681
682 /* Erase the current page's temp buffer */
683 boot_page_erase(CurrFlashAddress.Long);
684 boot_spm_busy_wait();
685 }
686
687 /* Set the state so that the next DNLOAD requests reads in the firmware */
688 DFU_State = dfuDNLOAD_IDLE;
689 }
690 }
691
692 /** Handler for a Memory Read command issued by the host. This routine handles the preparations needed
693 * to read subsequent data from the specified memory out to the host, as well as implementing the memory
694 * blank check command.
695 */
696 static void ProcessMemReadCommand(void)
697 {
698 if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x00) || // Read FLASH command
699 IS_ONEBYTE_COMMAND(SentCommand.Data, 0x02)) // Read EEPROM command
700 {
701 /* Load in the start and ending read addresses */
702 LoadStartEndAddresses();
703
704 /* Set the state so that the next UPLOAD requests read out the firmware */
705 DFU_State = dfuUPLOAD_IDLE;
706 }
707 else if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x01)) // Blank check FLASH command
708 {
709 uint32_t CurrFlashAddress = 0;
710
711 while (CurrFlashAddress < (uint32_t)BOOT_START_ADDR)
712 {
713 /* Check if the current byte is not blank */
714 #if (FLASHEND > 0xFFFF)
715 if (pgm_read_byte_far(CurrFlashAddress) != 0xFF)
716 #else
717 if (pgm_read_byte(CurrFlashAddress) != 0xFF)
718 #endif
719 {
720 /* Save the location of the first non-blank byte for response back to the host */
721 Flash64KBPage = (CurrFlashAddress >> 16);
722 StartAddr = CurrFlashAddress;
723
724 /* Set state and status variables to the appropriate error values */
725 DFU_State = dfuERROR;
726 DFU_Status = errCHECK_ERASED;
727
728 break;
729 }
730
731 CurrFlashAddress++;
732 }
733 }
734 }
735
736 /** Handler for a Data Write command issued by the host. This routine handles non-programming commands such as
737 * bootloader exit (both via software jumps and hardware watchdog resets) and flash memory erasure.
738 */
739 static void ProcessWriteCommand(void)
740 {
741 if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x03)) // Start application
742 {
743 /* Indicate that the bootloader is terminating */
744 WaitForExit = true;
745
746 /* Check if data supplied for the Start Program command - no data executes the program */
747 if (SentCommand.DataSize)
748 {
749 if (SentCommand.Data[1] == 0x01) // Start via jump
750 {
751 union
752 {
753 uint8_t Bytes[2];
754 AppPtr_t FuncPtr;
755 } Address = {.Bytes = {SentCommand.Data[4], SentCommand.Data[3]}};
756
757 /* Load in the jump address into the application start address pointer */
758 AppStartPtr = Address.FuncPtr;
759 }
760 }
761 else
762 {
763 if (SentCommand.Data[1] == 0x00) // Start via watchdog
764 {
765 /* Unlock the forced application start mode of the bootloader if it is restarted */
766 MagicBootKey = MAGIC_BOOT_KEY;
767
768 /* Start the watchdog to reset the AVR once the communications are finalized */
769 wdt_enable(WDTO_250MS);
770 }
771 else // Start via jump
772 {
773 /* Set the flag to terminate the bootloader at next opportunity if a valid application has been loaded */
774 if (pgm_read_word_near(0) == 0xFFFF)
775 RunBootloader = false;
776 }
777 }
778 }
779 else if (IS_TWOBYTE_COMMAND(SentCommand.Data, 0x00, 0xFF)) // Erase flash
780 {
781 uint32_t CurrFlashAddress = 0;
782
783 /* Clear the application section of flash */
784 while (CurrFlashAddress < (uint32_t)BOOT_START_ADDR)
785 {
786 boot_page_erase(CurrFlashAddress);
787 boot_spm_busy_wait();
788 boot_page_write(CurrFlashAddress);
789 boot_spm_busy_wait();
790
791 CurrFlashAddress += SPM_PAGESIZE;
792 }
793
794 /* Re-enable the RWW section of flash as writing to the flash locks it out */
795 boot_rww_enable();
796
797 /* Memory has been erased, reset the security bit so that programming/reading is allowed */
798 IsSecure = false;
799 }
800 }
801
802 /** Handler for a Data Read command issued by the host. This routine handles bootloader information retrieval
803 * commands such as device signature and bootloader version retrieval.
804 */
805 static void ProcessReadCommand(void)
806 {
807 const uint8_t BootloaderInfo[3] = {BOOTLOADER_VERSION, BOOTLOADER_ID_BYTE1, BOOTLOADER_ID_BYTE2};
808 const uint8_t SignatureInfo[4] = {0x58, AVR_SIGNATURE_1, AVR_SIGNATURE_2, AVR_SIGNATURE_3};
809
810 uint8_t DataIndexToRead = SentCommand.Data[1];
811
812 if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x00)) // Read bootloader info
813 {
814 ResponseByte = BootloaderInfo[DataIndexToRead];
815 }
816 else if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x01)) // Read signature byte
817 {
818 if (DataIndexToRead < 0x60)
819 ResponseByte = SignatureInfo[DataIndexToRead - 0x30];
820 else
821 ResponseByte = SignatureInfo[DataIndexToRead - 0x60 + 3];
822 }
823 }
824