Reintegrate the FullEPAddresses development branch into trunk.
[pub/USBasp.git] / Bootloaders / CDC / BootloaderCDC.c
1 /*
2 LUFA Library
3 Copyright (C) Dean Camera, 2012.
4
5 dean [at] fourwalledcubicle [dot] com
6 www.lufa-lib.org
7 */
8
9 /*
10 Copyright 2012 Dean Camera (dean [at] fourwalledcubicle [dot] com)
11
12 Permission to use, copy, modify, distribute, and sell this
13 software and its documentation for any purpose is hereby granted
14 without fee, provided that the above copyright notice appear in
15 all copies and that both that the copyright notice and this
16 permission notice and warranty disclaimer appear in supporting
17 documentation, and that the name of the author not be used in
18 advertising or publicity pertaining to distribution of the
19 software without specific, written prior permission.
20
21 The author disclaim all warranties with regard to this
22 software, including all implied warranties of merchantability
23 and fitness. In no event shall the author be liable for any
24 special, indirect or consequential damages or any damages
25 whatsoever resulting from loss of use, data or profits, whether
26 in an action of contract, negligence or other tortious action,
27 arising out of or in connection with the use or performance of
28 this software.
29 */
30
31 /** \file
32 *
33 * Main source file for the CDC class bootloader. This file contains the complete bootloader logic.
34 */
35
36 #define INCLUDE_FROM_BOOTLOADERCDC_C
37 #include "BootloaderCDC.h"
38
39 /** Contains the current baud rate and other settings of the first virtual serial port. This must be retained as some
40 * operating systems will not open the port unless the settings can be set successfully.
41 */
42 static CDC_LineEncoding_t LineEncoding = { .BaudRateBPS = 0,
43 .CharFormat = CDC_LINEENCODING_OneStopBit,
44 .ParityType = CDC_PARITY_None,
45 .DataBits = 8 };
46
47 /** Current address counter. This stores the current address of the FLASH or EEPROM as set by the host,
48 * and is used when reading or writing to the AVRs memory (either FLASH or EEPROM depending on the issued
49 * command.)
50 */
51 static uint32_t CurrAddress;
52
53 /** Flag to indicate if the bootloader should be running, or should exit and allow the application code to run
54 * via a watchdog reset. When cleared the bootloader will exit, starting the watchdog and entering an infinite
55 * loop until the AVR restarts and the application runs.
56 */
57 static bool RunBootloader = true;
58
59
60 /** Main program entry point. This routine configures the hardware required by the bootloader, then continuously
61 * runs the bootloader processing routine until instructed to soft-exit, or hard-reset via the watchdog to start
62 * the loaded application code.
63 */
64 int main(void)
65 {
66 /* Setup hardware required for the bootloader */
67 SetupHardware();
68
69 /* Turn on first LED on the board to indicate that the bootloader has started */
70 LEDs_SetAllLEDs(LEDS_LED1);
71
72 /* Enable global interrupts so that the USB stack can function */
73 sei();
74
75 while (RunBootloader)
76 {
77 CDC_Task();
78 USB_USBTask();
79 }
80
81 /* Disconnect from the host - USB interface will be reset later along with the AVR */
82 USB_Detach();
83
84 /* Enable the watchdog and force a timeout to reset the AVR */
85 wdt_enable(WDTO_250MS);
86
87 for (;;);
88 }
89
90 /** Configures all hardware required for the bootloader. */
91 static void SetupHardware(void)
92 {
93 /* Disable watchdog if enabled by bootloader/fuses */
94 MCUSR &= ~(1 << WDRF);
95 wdt_disable();
96
97 /* Disable clock division */
98 clock_prescale_set(clock_div_1);
99
100 /* Relocate the interrupt vector table to the bootloader section */
101 MCUCR = (1 << IVCE);
102 MCUCR = (1 << IVSEL);
103
104 /* Initialize the USB and other board hardware drivers */
105 USB_Init();
106 LEDs_Init();
107
108 /* Bootloader active LED toggle timer initialization */
109 TIMSK1 = (1 << TOIE1);
110 TCCR1B = ((1 << CS11) | (1 << CS10));
111 }
112
113 /** ISR to periodically toggle the LEDs on the board to indicate that the bootloader is active. */
114 ISR(TIMER1_OVF_vect, ISR_BLOCK)
115 {
116 LEDs_ToggleLEDs(LEDS_LED1 | LEDS_LED2);
117 }
118
119 /** Event handler for the USB_ConfigurationChanged event. This configures the device's endpoints ready
120 * to relay data to and from the attached USB host.
121 */
122 void EVENT_USB_Device_ConfigurationChanged(void)
123 {
124 /* Setup CDC Notification, Rx and Tx Endpoints */
125 Endpoint_ConfigureEndpoint(CDC_NOTIFICATION_EPADDR, EP_TYPE_INTERRUPT,
126 CDC_NOTIFICATION_EPSIZE, 1);
127
128 Endpoint_ConfigureEndpoint(CDC_TX_EPADDR, EP_TYPE_BULK, CDC_TXRX_EPSIZE, 1);
129
130 Endpoint_ConfigureEndpoint(CDC_RX_EPADDR, EP_TYPE_BULK, CDC_TXRX_EPSIZE, 1);
131 }
132
133 /** Event handler for the USB_ControlRequest event. This is used to catch and process control requests sent to
134 * the device from the USB host before passing along unhandled control requests to the library for processing
135 * internally.
136 */
137 void EVENT_USB_Device_ControlRequest(void)
138 {
139 /* Ignore any requests that aren't directed to the CDC interface */
140 if ((USB_ControlRequest.bmRequestType & (CONTROL_REQTYPE_TYPE | CONTROL_REQTYPE_RECIPIENT)) !=
141 (REQTYPE_CLASS | REQREC_INTERFACE))
142 {
143 return;
144 }
145
146 /* Activity - toggle indicator LEDs */
147 LEDs_ToggleLEDs(LEDS_LED1 | LEDS_LED2);
148
149 /* Process CDC specific control requests */
150 switch (USB_ControlRequest.bRequest)
151 {
152 case CDC_REQ_GetLineEncoding:
153 if (USB_ControlRequest.bmRequestType == (REQDIR_DEVICETOHOST | REQTYPE_CLASS | REQREC_INTERFACE))
154 {
155 Endpoint_ClearSETUP();
156
157 /* Write the line coding data to the control endpoint */
158 Endpoint_Write_Control_Stream_LE(&LineEncoding, sizeof(CDC_LineEncoding_t));
159 Endpoint_ClearOUT();
160 }
161
162 break;
163 case CDC_REQ_SetLineEncoding:
164 if (USB_ControlRequest.bmRequestType == (REQDIR_HOSTTODEVICE | REQTYPE_CLASS | REQREC_INTERFACE))
165 {
166 Endpoint_ClearSETUP();
167
168 /* Read the line coding data in from the host into the global struct */
169 Endpoint_Read_Control_Stream_LE(&LineEncoding, sizeof(CDC_LineEncoding_t));
170 Endpoint_ClearIN();
171 }
172
173 break;
174 }
175 }
176
177 #if !defined(NO_BLOCK_SUPPORT)
178 /** Reads or writes a block of EEPROM or FLASH memory to or from the appropriate CDC data endpoint, depending
179 * on the AVR910 protocol command issued.
180 *
181 * \param[in] Command Single character AVR910 protocol command indicating what memory operation to perform
182 */
183 static void ReadWriteMemoryBlock(const uint8_t Command)
184 {
185 uint16_t BlockSize;
186 char MemoryType;
187
188 bool HighByte = false;
189 uint8_t LowByte = 0;
190
191 BlockSize = (FetchNextCommandByte() << 8);
192 BlockSize |= FetchNextCommandByte();
193
194 MemoryType = FetchNextCommandByte();
195
196 if ((MemoryType != 'E') && (MemoryType != 'F'))
197 {
198 /* Send error byte back to the host */
199 WriteNextResponseByte('?');
200
201 return;
202 }
203
204 /* Check if command is to read memory */
205 if (Command == 'g')
206 {
207 /* Re-enable RWW section */
208 boot_rww_enable();
209
210 while (BlockSize--)
211 {
212 if (MemoryType == 'F')
213 {
214 /* Read the next FLASH byte from the current FLASH page */
215 #if (FLASHEND > 0xFFFF)
216 WriteNextResponseByte(pgm_read_byte_far(CurrAddress | HighByte));
217 #else
218 WriteNextResponseByte(pgm_read_byte(CurrAddress | HighByte));
219 #endif
220
221 /* If both bytes in current word have been read, increment the address counter */
222 if (HighByte)
223 CurrAddress += 2;
224
225 HighByte = !HighByte;
226 }
227 else
228 {
229 /* Read the next EEPROM byte into the endpoint */
230 WriteNextResponseByte(eeprom_read_byte((uint8_t*)(intptr_t)(CurrAddress >> 1)));
231
232 /* Increment the address counter after use */
233 CurrAddress += 2;
234 }
235 }
236 }
237 else
238 {
239 uint32_t PageStartAddress = CurrAddress;
240
241 if (MemoryType == 'F')
242 {
243 boot_page_erase(PageStartAddress);
244 boot_spm_busy_wait();
245 }
246
247 while (BlockSize--)
248 {
249 if (MemoryType == 'F')
250 {
251 /* If both bytes in current word have been written, increment the address counter */
252 if (HighByte)
253 {
254 /* Write the next FLASH word to the current FLASH page */
255 boot_page_fill(CurrAddress, ((FetchNextCommandByte() << 8) | LowByte));
256
257 /* Increment the address counter after use */
258 CurrAddress += 2;
259 }
260 else
261 {
262 LowByte = FetchNextCommandByte();
263 }
264
265 HighByte = !HighByte;
266 }
267 else
268 {
269 /* Write the next EEPROM byte from the endpoint */
270 eeprom_write_byte((uint8_t*)((intptr_t)(CurrAddress >> 1)), FetchNextCommandByte());
271
272 /* Increment the address counter after use */
273 CurrAddress += 2;
274 }
275 }
276
277 /* If in FLASH programming mode, commit the page after writing */
278 if (MemoryType == 'F')
279 {
280 /* Commit the flash page to memory */
281 boot_page_write(PageStartAddress);
282
283 /* Wait until write operation has completed */
284 boot_spm_busy_wait();
285 }
286
287 /* Send response byte back to the host */
288 WriteNextResponseByte('\r');
289 }
290 }
291 #endif
292
293 /** Retrieves the next byte from the host in the CDC data OUT endpoint, and clears the endpoint bank if needed
294 * to allow reception of the next data packet from the host.
295 *
296 * \return Next received byte from the host in the CDC data OUT endpoint
297 */
298 static uint8_t FetchNextCommandByte(void)
299 {
300 /* Select the OUT endpoint so that the next data byte can be read */
301 Endpoint_SelectEndpoint(CDC_RX_EPADDR);
302
303 /* If OUT endpoint empty, clear it and wait for the next packet from the host */
304 while (!(Endpoint_IsReadWriteAllowed()))
305 {
306 Endpoint_ClearOUT();
307
308 while (!(Endpoint_IsOUTReceived()))
309 {
310 if (USB_DeviceState == DEVICE_STATE_Unattached)
311 return 0;
312 }
313 }
314
315 /* Fetch the next byte from the OUT endpoint */
316 return Endpoint_Read_8();
317 }
318
319 /** Writes the next response byte to the CDC data IN endpoint, and sends the endpoint back if needed to free up the
320 * bank when full ready for the next byte in the packet to the host.
321 *
322 * \param[in] Response Next response byte to send to the host
323 */
324 static void WriteNextResponseByte(const uint8_t Response)
325 {
326 /* Select the IN endpoint so that the next data byte can be written */
327 Endpoint_SelectEndpoint(CDC_TX_EPADDR);
328
329 /* If IN endpoint full, clear it and wait until ready for the next packet to the host */
330 if (!(Endpoint_IsReadWriteAllowed()))
331 {
332 Endpoint_ClearIN();
333
334 while (!(Endpoint_IsINReady()))
335 {
336 if (USB_DeviceState == DEVICE_STATE_Unattached)
337 return;
338 }
339 }
340
341 /* Write the next byte to the IN endpoint */
342 Endpoint_Write_8(Response);
343 }
344
345 /** Task to read in AVR910 commands from the CDC data OUT endpoint, process them, perform the required actions
346 * and send the appropriate response back to the host.
347 */
348 static void CDC_Task(void)
349 {
350 /* Select the OUT endpoint */
351 Endpoint_SelectEndpoint(CDC_RX_EPADDR);
352
353 /* Check if endpoint has a command in it sent from the host */
354 if (!(Endpoint_IsOUTReceived()))
355 return;
356
357 /* Read in the bootloader command (first byte sent from host) */
358 uint8_t Command = FetchNextCommandByte();
359
360 if (Command == 'E')
361 {
362 RunBootloader = false;
363
364 /* Send confirmation byte back to the host */
365 WriteNextResponseByte('\r');
366 }
367 else if (Command == 'T')
368 {
369 FetchNextCommandByte();
370
371 /* Send confirmation byte back to the host */
372 WriteNextResponseByte('\r');
373 }
374 else if ((Command == 'L') || (Command == 'P'))
375 {
376 /* Send confirmation byte back to the host */
377 WriteNextResponseByte('\r');
378 }
379 else if (Command == 't')
380 {
381 /* Return ATMEGA128 part code - this is only to allow AVRProg to use the bootloader */
382 WriteNextResponseByte(0x44);
383 WriteNextResponseByte(0x00);
384 }
385 else if (Command == 'a')
386 {
387 /* Indicate auto-address increment is supported */
388 WriteNextResponseByte('Y');
389 }
390 else if (Command == 'A')
391 {
392 /* Set the current address to that given by the host */
393 CurrAddress = (FetchNextCommandByte() << 9);
394 CurrAddress |= (FetchNextCommandByte() << 1);
395
396 /* Send confirmation byte back to the host */
397 WriteNextResponseByte('\r');
398 }
399 else if (Command == 'p')
400 {
401 /* Indicate serial programmer back to the host */
402 WriteNextResponseByte('S');
403 }
404 else if (Command == 'S')
405 {
406 /* Write the 7-byte software identifier to the endpoint */
407 for (uint8_t CurrByte = 0; CurrByte < 7; CurrByte++)
408 WriteNextResponseByte(SOFTWARE_IDENTIFIER[CurrByte]);
409 }
410 else if (Command == 'V')
411 {
412 WriteNextResponseByte('0' + BOOTLOADER_VERSION_MAJOR);
413 WriteNextResponseByte('0' + BOOTLOADER_VERSION_MINOR);
414 }
415 else if (Command == 's')
416 {
417 WriteNextResponseByte(AVR_SIGNATURE_3);
418 WriteNextResponseByte(AVR_SIGNATURE_2);
419 WriteNextResponseByte(AVR_SIGNATURE_1);
420 }
421 else if (Command == 'e')
422 {
423 /* Clear the application section of flash */
424 for (uint32_t CurrFlashAddress = 0; CurrFlashAddress < BOOT_START_ADDR; CurrFlashAddress += SPM_PAGESIZE)
425 {
426 boot_page_erase(CurrFlashAddress);
427 boot_spm_busy_wait();
428 boot_page_write(CurrFlashAddress);
429 boot_spm_busy_wait();
430 }
431
432 /* Send confirmation byte back to the host */
433 WriteNextResponseByte('\r');
434 }
435 #if !defined(NO_LOCK_BYTE_WRITE_SUPPORT)
436 else if (Command == 'l')
437 {
438 /* Set the lock bits to those given by the host */
439 boot_lock_bits_set(FetchNextCommandByte());
440
441 /* Send confirmation byte back to the host */
442 WriteNextResponseByte('\r');
443 }
444 #endif
445 else if (Command == 'r')
446 {
447 WriteNextResponseByte(boot_lock_fuse_bits_get(GET_LOCK_BITS));
448 }
449 else if (Command == 'F')
450 {
451 WriteNextResponseByte(boot_lock_fuse_bits_get(GET_LOW_FUSE_BITS));
452 }
453 else if (Command == 'N')
454 {
455 WriteNextResponseByte(boot_lock_fuse_bits_get(GET_HIGH_FUSE_BITS));
456 }
457 else if (Command == 'Q')
458 {
459 WriteNextResponseByte(boot_lock_fuse_bits_get(GET_EXTENDED_FUSE_BITS));
460 }
461 #if !defined(NO_BLOCK_SUPPORT)
462 else if (Command == 'b')
463 {
464 WriteNextResponseByte('Y');
465
466 /* Send block size to the host */
467 WriteNextResponseByte(SPM_PAGESIZE >> 8);
468 WriteNextResponseByte(SPM_PAGESIZE & 0xFF);
469 }
470 else if ((Command == 'B') || (Command == 'g'))
471 {
472 /* Delegate the block write/read to a separate function for clarity */
473 ReadWriteMemoryBlock(Command);
474 }
475 #endif
476 #if !defined(NO_FLASH_BYTE_SUPPORT)
477 else if (Command == 'C')
478 {
479 /* Write the high byte to the current flash page */
480 boot_page_fill(CurrAddress, FetchNextCommandByte());
481
482 /* Send confirmation byte back to the host */
483 WriteNextResponseByte('\r');
484 }
485 else if (Command == 'c')
486 {
487 /* Write the low byte to the current flash page */
488 boot_page_fill(CurrAddress | 0x01, FetchNextCommandByte());
489
490 /* Increment the address */
491 CurrAddress += 2;
492
493 /* Send confirmation byte back to the host */
494 WriteNextResponseByte('\r');
495 }
496 else if (Command == 'm')
497 {
498 /* Commit the flash page to memory */
499 boot_page_write(CurrAddress);
500
501 /* Wait until write operation has completed */
502 boot_spm_busy_wait();
503
504 /* Send confirmation byte back to the host */
505 WriteNextResponseByte('\r');
506 }
507 else if (Command == 'R')
508 {
509 #if (FLASHEND > 0xFFFF)
510 uint16_t ProgramWord = pgm_read_word_far(CurrAddress);
511 #else
512 uint16_t ProgramWord = pgm_read_word(CurrAddress);
513 #endif
514
515 WriteNextResponseByte(ProgramWord >> 8);
516 WriteNextResponseByte(ProgramWord & 0xFF);
517 }
518 #endif
519 #if !defined(NO_EEPROM_BYTE_SUPPORT)
520 else if (Command == 'D')
521 {
522 /* Read the byte from the endpoint and write it to the EEPROM */
523 eeprom_write_byte((uint8_t*)((intptr_t)(CurrAddress >> 1)), FetchNextCommandByte());
524
525 /* Increment the address after use */
526 CurrAddress += 2;
527
528 /* Send confirmation byte back to the host */
529 WriteNextResponseByte('\r');
530 }
531 else if (Command == 'd')
532 {
533 /* Read the EEPROM byte and write it to the endpoint */
534 WriteNextResponseByte(eeprom_read_byte((uint8_t*)((intptr_t)(CurrAddress >> 1))));
535
536 /* Increment the address after use */
537 CurrAddress += 2;
538 }
539 #endif
540 else if (Command != 27)
541 {
542 /* Unknown (non-sync) command, return fail code */
543 WriteNextResponseByte('?');
544 }
545
546 /* Select the IN endpoint */
547 Endpoint_SelectEndpoint(CDC_TX_EPADDR);
548
549 /* Remember if the endpoint is completely full before clearing it */
550 bool IsEndpointFull = !(Endpoint_IsReadWriteAllowed());
551
552 /* Send the endpoint data to the host */
553 Endpoint_ClearIN();
554
555 /* If a full endpoint's worth of data was sent, we need to send an empty packet afterwards to signal end of transfer */
556 if (IsEndpointFull)
557 {
558 while (!(Endpoint_IsINReady()))
559 {
560 if (USB_DeviceState == DEVICE_STATE_Unattached)
561 return;
562 }
563
564 Endpoint_ClearIN();
565 }
566
567 /* Wait until the data has been sent to the host */
568 while (!(Endpoint_IsINReady()))
569 {
570 if (USB_DeviceState == DEVICE_STATE_Unattached)
571 return;
572 }
573
574 /* Select the OUT endpoint */
575 Endpoint_SelectEndpoint(CDC_RX_EPADDR);
576
577 /* Acknowledge the command from the host */
578 Endpoint_ClearOUT();
579 }
580