Fixed software application start command broken in the DFU class bootloader when...
[pub/USBasp.git] / Bootloaders / DFU / BootloaderDFU.c
1 /*
2 LUFA Library
3 Copyright (C) Dean Camera, 2010.
4
5 dean [at] fourwalledcubicle [dot] com
6 www.fourwalledcubicle.com
7 */
8
9 /*
10 Copyright 2010 Dean Camera (dean [at] fourwalledcubicle [dot] com)
11
12 Permission to use, copy, modify, distribute, and sell this
13 software and its documentation for any purpose is hereby granted
14 without fee, provided that the above copyright notice appear in
15 all copies and that both that the copyright notice and this
16 permission notice and warranty disclaimer appear in supporting
17 documentation, and that the name of the author not be used in
18 advertising or publicity pertaining to distribution of the
19 software without specific, written prior permission.
20
21 The author disclaim all warranties with regard to this
22 software, including all implied warranties of merchantability
23 and fitness. In no event shall the author be liable for any
24 special, indirect or consequential damages or any damages
25 whatsoever resulting from loss of use, data or profits, whether
26 in an action of contract, negligence or other tortious action,
27 arising out of or in connection with the use or performance of
28 this software.
29 */
30
31 /** \file
32 *
33 * Main source file for the DFU class bootloader. This file contains the complete bootloader logic.
34 */
35
36 #define INCLUDE_FROM_BOOTLOADER_C
37 #include "BootloaderDFU.h"
38
39 /** Flag to indicate if the bootloader is currently running in secure mode, disallowing memory operations
40 * other than erase. This is initially set to the value set by SECURE_MODE, and cleared by the bootloader
41 * once a memory erase has completed.
42 */
43 bool IsSecure = SECURE_MODE;
44
45 /** Flag to indicate if the bootloader should be running, or should exit and allow the application code to run
46 * via a soft reset. When cleared, the bootloader will abort, the USB interface will shut down and the application
47 * jumped to via an indirect jump to location 0x0000 (or other location specified by the host).
48 */
49 bool RunBootloader = true;
50
51 /** Flag to indicate if the bootloader is waiting to exit. When the host requests the bootloader to exit and
52 * jump to the application address it specifies, it sends two sequential commands which must be properly
53 * acknowledged. Upon reception of the first the RunBootloader flag is cleared and the WaitForExit flag is set,
54 * causing the bootloader to wait for the final exit command before shutting down.
55 */
56 bool WaitForExit = false;
57
58 /** Current DFU state machine state, one of the values in the DFU_State_t enum. */
59 uint8_t DFU_State = dfuIDLE;
60
61 /** Status code of the last executed DFU command. This is set to one of the values in the DFU_Status_t enum after
62 * each operation, and returned to the host when a Get Status DFU request is issued.
63 */
64 uint8_t DFU_Status = OK;
65
66 /** Data containing the DFU command sent from the host. */
67 DFU_Command_t SentCommand;
68
69 /** Response to the last issued Read Data DFU command. Unlike other DFU commands, the read command
70 * requires a single byte response from the bootloader containing the read data when the next DFU_UPLOAD command
71 * is issued by the host.
72 */
73 uint8_t ResponseByte;
74
75 /** Pointer to the start of the user application. By default this is 0x0000 (the reset vector), however the host
76 * may specify an alternate address when issuing the application soft-start command.
77 */
78 AppPtr_t AppStartPtr = (AppPtr_t)0x0000;
79
80 /** 64-bit flash page number. This is concatenated with the current 16-bit address on USB AVRs containing more than
81 * 64KB of flash memory.
82 */
83 uint8_t Flash64KBPage = 0;
84
85 /** Memory start address, indicating the current address in the memory being addressed (either FLASH or EEPROM
86 * depending on the issued command from the host).
87 */
88 uint16_t StartAddr = 0x0000;
89
90 /** Memory end address, indicating the end address to read to/write from in the memory being addressed (either FLASH
91 * of EEPROM depending on the issued command from the host).
92 */
93 uint16_t EndAddr = 0x0000;
94
95
96 /** Main program entry point. This routine configures the hardware required by the bootloader, then continuously
97 * runs the bootloader processing routine until instructed to soft-exit, or hard-reset via the watchdog to start
98 * the loaded application code.
99 */
100 int main(void)
101 {
102 /* Configure hardware required by the bootloader */
103 SetupHardware();
104
105 /* Enable global interrupts so that the USB stack can function */
106 sei();
107
108 /* Run the USB management task while the bootloader is supposed to be running */
109 while (RunBootloader || WaitForExit)
110 USB_USBTask();
111
112 /* Reset configured hardware back to their original states for the user application */
113 ResetHardware();
114
115 /* Start the user application */
116 AppStartPtr();
117 }
118
119 /** Configures all hardware required for the bootloader. */
120 void SetupHardware(void)
121 {
122 /* Disable watchdog if enabled by bootloader/fuses */
123 MCUSR &= ~(1 << WDRF);
124 wdt_disable();
125
126 /* Disable clock division */
127 clock_prescale_set(clock_div_1);
128
129 /* Relocate the interrupt vector table to the bootloader section */
130 MCUCR = (1 << IVCE);
131 MCUCR = (1 << IVSEL);
132
133 /* Initialize the USB subsystem */
134 USB_Init();
135 }
136
137 /** Resets all configured hardware required for the bootloader back to their original states. */
138 void ResetHardware(void)
139 {
140 /* Shut down the USB subsystem */
141 USB_ShutDown();
142
143 /* Relocate the interrupt vector table back to the application section */
144 MCUCR = (1 << IVCE);
145 MCUCR = 0;
146 }
147
148 /** Event handler for the USB_UnhandledControlRequest event. This is used to catch standard and class specific
149 * control requests that are not handled internally by the USB library (including the DFU commands, which are
150 * all issued via the control endpoint), so that they can be handled appropriately for the application.
151 */
152 void EVENT_USB_Device_UnhandledControlRequest(void)
153 {
154 /* Get the size of the command and data from the wLength value */
155 SentCommand.DataSize = USB_ControlRequest.wLength;
156
157 switch (USB_ControlRequest.bRequest)
158 {
159 case DFU_DNLOAD:
160 Endpoint_ClearSETUP();
161
162 /* Check if bootloader is waiting to terminate */
163 if (WaitForExit)
164 {
165 /* Bootloader is terminating - process last received command */
166 ProcessBootloaderCommand();
167
168 /* Indicate that the last command has now been processed - free to exit bootloader */
169 WaitForExit = false;
170 }
171
172 /* If the request has a data stage, load it into the command struct */
173 if (SentCommand.DataSize)
174 {
175 while (!(Endpoint_IsOUTReceived()))
176 {
177 if (USB_DeviceState == DEVICE_STATE_Unattached)
178 return;
179 }
180
181 /* First byte of the data stage is the DNLOAD request's command */
182 SentCommand.Command = Endpoint_Read_Byte();
183
184 /* One byte of the data stage is the command, so subtract it from the total data bytes */
185 SentCommand.DataSize--;
186
187 /* Load in the rest of the data stage as command parameters */
188 for (uint8_t DataByte = 0; (DataByte < sizeof(SentCommand.Data)) &&
189 Endpoint_BytesInEndpoint(); DataByte++)
190 {
191 SentCommand.Data[DataByte] = Endpoint_Read_Byte();
192 SentCommand.DataSize--;
193 }
194
195 /* Process the command */
196 ProcessBootloaderCommand();
197 }
198
199 /* Check if currently downloading firmware */
200 if (DFU_State == dfuDNLOAD_IDLE)
201 {
202 if (!(SentCommand.DataSize))
203 {
204 DFU_State = dfuIDLE;
205 }
206 else
207 {
208 /* Throw away the filler bytes before the start of the firmware */
209 DiscardFillerBytes(DFU_FILLER_BYTES_SIZE);
210
211 /* Throw away the packet alignment filler bytes before the start of the firmware */
212 DiscardFillerBytes(StartAddr % FIXED_CONTROL_ENDPOINT_SIZE);
213
214 /* Calculate the number of bytes remaining to be written */
215 uint16_t BytesRemaining = ((EndAddr - StartAddr) + 1);
216
217 if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x00)) // Write flash
218 {
219 /* Calculate the number of words to be written from the number of bytes to be written */
220 uint16_t WordsRemaining = (BytesRemaining >> 1);
221
222 union
223 {
224 uint16_t Words[2];
225 uint32_t Long;
226 } CurrFlashAddress = {.Words = {StartAddr, Flash64KBPage}};
227
228 uint32_t CurrFlashPageStartAddress = CurrFlashAddress.Long;
229 uint8_t WordsInFlashPage = 0;
230
231 while (WordsRemaining--)
232 {
233 /* Check if endpoint is empty - if so clear it and wait until ready for next packet */
234 if (!(Endpoint_BytesInEndpoint()))
235 {
236 Endpoint_ClearOUT();
237
238 while (!(Endpoint_IsOUTReceived()))
239 {
240 if (USB_DeviceState == DEVICE_STATE_Unattached)
241 return;
242 }
243 }
244
245 /* Write the next word into the current flash page */
246 boot_page_fill(CurrFlashAddress.Long, Endpoint_Read_Word_LE());
247
248 /* Adjust counters */
249 WordsInFlashPage += 1;
250 CurrFlashAddress.Long += 2;
251
252 /* See if an entire page has been written to the flash page buffer */
253 if ((WordsInFlashPage == (SPM_PAGESIZE >> 1)) || !(WordsRemaining))
254 {
255 /* Commit the flash page to memory */
256 boot_page_write(CurrFlashPageStartAddress);
257 boot_spm_busy_wait();
258
259 /* Check if programming incomplete */
260 if (WordsRemaining)
261 {
262 CurrFlashPageStartAddress = CurrFlashAddress.Long;
263 WordsInFlashPage = 0;
264
265 /* Erase next page's temp buffer */
266 boot_page_erase(CurrFlashAddress.Long);
267 boot_spm_busy_wait();
268 }
269 }
270 }
271
272 /* Once programming complete, start address equals the end address */
273 StartAddr = EndAddr;
274
275 /* Re-enable the RWW section of flash */
276 boot_rww_enable();
277 }
278 else // Write EEPROM
279 {
280 while (BytesRemaining--)
281 {
282 /* Check if endpoint is empty - if so clear it and wait until ready for next packet */
283 if (!(Endpoint_BytesInEndpoint()))
284 {
285 Endpoint_ClearOUT();
286
287 while (!(Endpoint_IsOUTReceived()))
288 {
289 if (USB_DeviceState == DEVICE_STATE_Unattached)
290 return;
291 }
292 }
293
294 /* Read the byte from the USB interface and write to to the EEPROM */
295 eeprom_write_byte((uint8_t*)StartAddr, Endpoint_Read_Byte());
296
297 /* Adjust counters */
298 StartAddr++;
299 }
300 }
301
302 /* Throw away the currently unused DFU file suffix */
303 DiscardFillerBytes(DFU_FILE_SUFFIX_SIZE);
304 }
305 }
306
307 Endpoint_ClearOUT();
308
309 Endpoint_ClearStatusStage();
310
311 break;
312 case DFU_UPLOAD:
313 Endpoint_ClearSETUP();
314
315 while (!(Endpoint_IsINReady()))
316 {
317 if (USB_DeviceState == DEVICE_STATE_Unattached)
318 return;
319 }
320
321 if (DFU_State != dfuUPLOAD_IDLE)
322 {
323 if ((DFU_State == dfuERROR) && IS_ONEBYTE_COMMAND(SentCommand.Data, 0x01)) // Blank Check
324 {
325 /* Blank checking is performed in the DFU_DNLOAD request - if we get here we've told the host
326 that the memory isn't blank, and the host is requesting the first non-blank address */
327 Endpoint_Write_Word_LE(StartAddr);
328 }
329 else
330 {
331 /* Idle state upload - send response to last issued command */
332 Endpoint_Write_Byte(ResponseByte);
333 }
334 }
335 else
336 {
337 /* Determine the number of bytes remaining in the current block */
338 uint16_t BytesRemaining = ((EndAddr - StartAddr) + 1);
339
340 if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x00)) // Read FLASH
341 {
342 /* Calculate the number of words to be written from the number of bytes to be written */
343 uint16_t WordsRemaining = (BytesRemaining >> 1);
344
345 union
346 {
347 uint16_t Words[2];
348 uint32_t Long;
349 } CurrFlashAddress = {.Words = {StartAddr, Flash64KBPage}};
350
351 while (WordsRemaining--)
352 {
353 /* Check if endpoint is full - if so clear it and wait until ready for next packet */
354 if (Endpoint_BytesInEndpoint() == FIXED_CONTROL_ENDPOINT_SIZE)
355 {
356 Endpoint_ClearIN();
357
358 while (!(Endpoint_IsINReady()))
359 {
360 if (USB_DeviceState == DEVICE_STATE_Unattached)
361 return;
362 }
363 }
364
365 /* Read the flash word and send it via USB to the host */
366 #if (FLASHEND > 0xFFFF)
367 Endpoint_Write_Word_LE(pgm_read_word_far(CurrFlashAddress.Long));
368 #else
369 Endpoint_Write_Word_LE(pgm_read_word(CurrFlashAddress.Long));
370 #endif
371
372 /* Adjust counters */
373 CurrFlashAddress.Long += 2;
374 }
375
376 /* Once reading is complete, start address equals the end address */
377 StartAddr = EndAddr;
378 }
379 else if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x02)) // Read EEPROM
380 {
381 while (BytesRemaining--)
382 {
383 /* Check if endpoint is full - if so clear it and wait until ready for next packet */
384 if (Endpoint_BytesInEndpoint() == FIXED_CONTROL_ENDPOINT_SIZE)
385 {
386 Endpoint_ClearIN();
387
388 while (!(Endpoint_IsINReady()))
389 {
390 if (USB_DeviceState == DEVICE_STATE_Unattached)
391 return;
392 }
393 }
394
395 /* Read the EEPROM byte and send it via USB to the host */
396 Endpoint_Write_Byte(eeprom_read_byte((uint8_t*)StartAddr));
397
398 /* Adjust counters */
399 StartAddr++;
400 }
401 }
402
403 /* Return to idle state */
404 DFU_State = dfuIDLE;
405 }
406
407 Endpoint_ClearIN();
408
409 Endpoint_ClearStatusStage();
410 break;
411 case DFU_GETSTATUS:
412 Endpoint_ClearSETUP();
413
414 /* Write 8-bit status value */
415 Endpoint_Write_Byte(DFU_Status);
416
417 /* Write 24-bit poll timeout value */
418 Endpoint_Write_Byte(0);
419 Endpoint_Write_Word_LE(0);
420
421 /* Write 8-bit state value */
422 Endpoint_Write_Byte(DFU_State);
423
424 /* Write 8-bit state string ID number */
425 Endpoint_Write_Byte(0);
426
427 Endpoint_ClearIN();
428
429 Endpoint_ClearStatusStage();
430 break;
431 case DFU_CLRSTATUS:
432 Endpoint_ClearSETUP();
433
434 /* Reset the status value variable to the default OK status */
435 DFU_Status = OK;
436
437 Endpoint_ClearStatusStage();
438 break;
439 case DFU_GETSTATE:
440 Endpoint_ClearSETUP();
441
442 /* Write the current device state to the endpoint */
443 Endpoint_Write_Byte(DFU_State);
444
445 Endpoint_ClearIN();
446
447 Endpoint_ClearStatusStage();
448 break;
449 case DFU_ABORT:
450 Endpoint_ClearSETUP();
451
452 /* Reset the current state variable to the default idle state */
453 DFU_State = dfuIDLE;
454
455 Endpoint_ClearStatusStage();
456 break;
457 }
458 }
459
460 /** Routine to discard the specified number of bytes from the control endpoint stream. This is used to
461 * discard unused bytes in the stream from the host, including the memory program block suffix.
462 *
463 * \param[in] NumberOfBytes Number of bytes to discard from the host from the control endpoint
464 */
465 static void DiscardFillerBytes(uint8_t NumberOfBytes)
466 {
467 while (NumberOfBytes--)
468 {
469 if (!(Endpoint_BytesInEndpoint()))
470 {
471 Endpoint_ClearOUT();
472
473 /* Wait until next data packet received */
474 while (!(Endpoint_IsOUTReceived()))
475 {
476 if (USB_DeviceState == DEVICE_STATE_Unattached)
477 return;
478 }
479 }
480 else
481 {
482 Endpoint_Discard_Byte();
483 }
484 }
485 }
486
487 /** Routine to process an issued command from the host, via a DFU_DNLOAD request wrapper. This routine ensures
488 * that the command is allowed based on the current secure mode flag value, and passes the command off to the
489 * appropriate handler function.
490 */
491 static void ProcessBootloaderCommand(void)
492 {
493 /* Check if device is in secure mode */
494 if (IsSecure)
495 {
496 /* Don't process command unless it is a READ or chip erase command */
497 if (!(((SentCommand.Command == COMMAND_WRITE) &&
498 IS_TWOBYTE_COMMAND(SentCommand.Data, 0x00, 0xFF)) ||
499 (SentCommand.Command == COMMAND_READ)))
500 {
501 /* Set the state and status variables to indicate the error */
502 DFU_State = dfuERROR;
503 DFU_Status = errWRITE;
504
505 /* Stall command */
506 Endpoint_StallTransaction();
507
508 /* Don't process the command */
509 return;
510 }
511 }
512
513 /* Dispatch the required command processing routine based on the command type */
514 switch (SentCommand.Command)
515 {
516 case COMMAND_PROG_START:
517 ProcessMemProgCommand();
518 break;
519 case COMMAND_DISP_DATA:
520 ProcessMemReadCommand();
521 break;
522 case COMMAND_WRITE:
523 ProcessWriteCommand();
524 break;
525 case COMMAND_READ:
526 ProcessReadCommand();
527 break;
528 case COMMAND_CHANGE_BASE_ADDR:
529 if (IS_TWOBYTE_COMMAND(SentCommand.Data, 0x03, 0x00)) // Set 64KB flash page command
530 Flash64KBPage = SentCommand.Data[2];
531
532 break;
533 }
534 }
535
536 /** Routine to concatenate the given pair of 16-bit memory start and end addresses from the host, and store them
537 * in the StartAddr and EndAddr global variables.
538 */
539 static void LoadStartEndAddresses(void)
540 {
541 union
542 {
543 uint8_t Bytes[2];
544 uint16_t Word;
545 } Address[2] = {{.Bytes = {SentCommand.Data[2], SentCommand.Data[1]}},
546 {.Bytes = {SentCommand.Data[4], SentCommand.Data[3]}}};
547
548 /* Load in the start and ending read addresses from the sent data packet */
549 StartAddr = Address[0].Word;
550 EndAddr = Address[1].Word;
551 }
552
553 /** Handler for a Memory Program command issued by the host. This routine handles the preparations needed
554 * to write subsequent data from the host into the specified memory.
555 */
556 static void ProcessMemProgCommand(void)
557 {
558 if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x00) || // Write FLASH command
559 IS_ONEBYTE_COMMAND(SentCommand.Data, 0x01)) // Write EEPROM command
560 {
561 /* Load in the start and ending read addresses */
562 LoadStartEndAddresses();
563
564 /* If FLASH is being written to, we need to pre-erase the first page to write to */
565 if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x00))
566 {
567 union
568 {
569 uint16_t Words[2];
570 uint32_t Long;
571 } CurrFlashAddress = {.Words = {StartAddr, Flash64KBPage}};
572
573 /* Erase the current page's temp buffer */
574 boot_page_erase(CurrFlashAddress.Long);
575 boot_spm_busy_wait();
576 }
577
578 /* Set the state so that the next DNLOAD requests reads in the firmware */
579 DFU_State = dfuDNLOAD_IDLE;
580 }
581 }
582
583 /** Handler for a Memory Read command issued by the host. This routine handles the preparations needed
584 * to read subsequent data from the specified memory out to the host, as well as implementing the memory
585 * blank check command.
586 */
587 static void ProcessMemReadCommand(void)
588 {
589 if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x00) || // Read FLASH command
590 IS_ONEBYTE_COMMAND(SentCommand.Data, 0x02)) // Read EEPROM command
591 {
592 /* Load in the start and ending read addresses */
593 LoadStartEndAddresses();
594
595 /* Set the state so that the next UPLOAD requests read out the firmware */
596 DFU_State = dfuUPLOAD_IDLE;
597 }
598 else if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x01)) // Blank check FLASH command
599 {
600 uint32_t CurrFlashAddress = 0;
601
602 while (CurrFlashAddress < BOOT_START_ADDR)
603 {
604 /* Check if the current byte is not blank */
605 #if (FLASHEND > 0xFFFF)
606 if (pgm_read_byte_far(CurrFlashAddress) != 0xFF)
607 #else
608 if (pgm_read_byte(CurrFlashAddress) != 0xFF)
609 #endif
610 {
611 /* Save the location of the first non-blank byte for response back to the host */
612 Flash64KBPage = (CurrFlashAddress >> 16);
613 StartAddr = CurrFlashAddress;
614
615 /* Set state and status variables to the appropriate error values */
616 DFU_State = dfuERROR;
617 DFU_Status = errCHECK_ERASED;
618
619 break;
620 }
621
622 CurrFlashAddress++;
623 }
624 }
625 }
626
627 /** Handler for a Data Write command issued by the host. This routine handles non-programming commands such as
628 * bootloader exit (both via software jumps and hardware watchdog resets) and flash memory erasure.
629 */
630 static void ProcessWriteCommand(void)
631 {
632 if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x03)) // Start application
633 {
634 /* Indicate that the bootloader is terminating */
635 WaitForExit = true;
636
637 /* Check if data supplied for the Start Program command - no data executes the program */
638 if (SentCommand.DataSize)
639 {
640 if (SentCommand.Data[1] == 0x01) // Start via jump
641 {
642 union
643 {
644 uint8_t Bytes[2];
645 AppPtr_t FuncPtr;
646 } Address = {.Bytes = {SentCommand.Data[4], SentCommand.Data[3]}};
647
648 /* Load in the jump address into the application start address pointer */
649 AppStartPtr = Address.FuncPtr;
650 }
651 }
652 else
653 {
654 if (SentCommand.Data[1] == 0x00) // Start via watchdog
655 {
656 /* Start the watchdog to reset the AVR once the communications are finalized */
657 wdt_enable(WDTO_250MS);
658 }
659 else // Start via jump
660 {
661 /* Set the flag to terminate the bootloader at next opportunity */
662 RunBootloader = false;
663 }
664 }
665 }
666 else if (IS_TWOBYTE_COMMAND(SentCommand.Data, 0x00, 0xFF)) // Erase flash
667 {
668 uint32_t CurrFlashAddress = 0;
669
670 /* Clear the application section of flash */
671 while (CurrFlashAddress < BOOT_START_ADDR)
672 {
673 boot_page_erase(CurrFlashAddress);
674 boot_spm_busy_wait();
675 boot_page_write(CurrFlashAddress);
676 boot_spm_busy_wait();
677
678 CurrFlashAddress += SPM_PAGESIZE;
679 }
680
681 /* Re-enable the RWW section of flash as writing to the flash locks it out */
682 boot_rww_enable();
683
684 /* Memory has been erased, reset the security bit so that programming/reading is allowed */
685 IsSecure = false;
686 }
687 }
688
689 /** Handler for a Data Read command issued by the host. This routine handles bootloader information retrieval
690 * commands such as device signature and bootloader version retrieval.
691 */
692 static void ProcessReadCommand(void)
693 {
694 const uint8_t BootloaderInfo[3] = {BOOTLOADER_VERSION, BOOTLOADER_ID_BYTE1, BOOTLOADER_ID_BYTE2};
695 const uint8_t SignatureInfo[3] = {AVR_SIGNATURE_1, AVR_SIGNATURE_2, AVR_SIGNATURE_3};
696
697 uint8_t DataIndexToRead = SentCommand.Data[1];
698
699 if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x00)) // Read bootloader info
700 ResponseByte = BootloaderInfo[DataIndexToRead];
701 else if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x01)) // Read signature byte
702 ResponseByte = SignatureInfo[DataIndexToRead - 0x30];
703 }