Fix LowLevel Keyboard demo -- accidentally trying to dereference a uint8_t type in...
[pub/USBasp.git] / Projects / AVRISP-MKII / Lib / ISP / ISPProtocol.c
1 /*
2 LUFA Library
3 Copyright (C) Dean Camera, 2010.
4
5 dean [at] fourwalledcubicle [dot] com
6 www.fourwalledcubicle.com
7 */
8
9 /*
10 Copyright 2010 Dean Camera (dean [at] fourwalledcubicle [dot] com)
11
12 Permission to use, copy, modify, distribute, and sell this
13 software and its documentation for any purpose is hereby granted
14 without fee, provided that the above copyright notice appear in
15 all copies and that both that the copyright notice and this
16 permission notice and warranty disclaimer appear in supporting
17 documentation, and that the name of the author not be used in
18 advertising or publicity pertaining to distribution of the
19 software without specific, written prior permission.
20
21 The author disclaim all warranties with regard to this
22 software, including all implied warranties of merchantability
23 and fitness. In no event shall the author be liable for any
24 special, indirect or consequential damages or any damages
25 whatsoever resulting from loss of use, data or profits, whether
26 in an action of contract, negligence or other tortious action,
27 arising out of or in connection with the use or performance of
28 this software.
29 */
30
31 /** \file
32 *
33 * ISP Protocol handler, to process V2 Protocol wrapped ISP commands used in Atmel programmer devices.
34 */
35
36 #include "ISPProtocol.h"
37
38 #if defined(ENABLE_ISP_PROTOCOL) || defined(__DOXYGEN__)
39
40 /** Handler for the CMD_ENTER_PROGMODE_ISP command, which attempts to enter programming mode on
41 * the attached device, returning success or failure back to the host.
42 */
43 void ISPProtocol_EnterISPMode(void)
44 {
45 struct
46 {
47 uint8_t TimeoutMS;
48 uint8_t PinStabDelayMS;
49 uint8_t ExecutionDelayMS;
50 uint8_t SynchLoops;
51 uint8_t ByteDelay;
52 uint8_t PollValue;
53 uint8_t PollIndex;
54 uint8_t EnterProgBytes[4];
55 } Enter_ISP_Params;
56
57 Endpoint_Read_Stream_LE(&Enter_ISP_Params, sizeof(Enter_ISP_Params), NO_STREAM_CALLBACK);
58
59 Endpoint_ClearOUT();
60 Endpoint_SetEndpointDirection(ENDPOINT_DIR_IN);
61
62 uint8_t ResponseStatus = STATUS_CMD_FAILED;
63
64 CurrentAddress = 0;
65
66 ISPProtocol_DelayMS(Enter_ISP_Params.ExecutionDelayMS);
67 SPI_Init(ISPTarget_GetSPIPrescalerMask() | SPI_SCK_LEAD_RISING | SPI_SAMPLE_LEADING | SPI_MODE_MASTER);
68
69 /* Continuously attempt to synchronize with the target until either the number of attempts specified
70 * by the host has exceeded, or the the device sends back the expected response values */
71 while (Enter_ISP_Params.SynchLoops-- && (ResponseStatus == STATUS_CMD_FAILED))
72 {
73 uint8_t ResponseBytes[4];
74
75 ISPTarget_ChangeTargetResetLine(true);
76 ISPProtocol_DelayMS(Enter_ISP_Params.PinStabDelayMS);
77
78 for (uint8_t RByte = 0; RByte < sizeof(ResponseBytes); RByte++)
79 {
80 ISPProtocol_DelayMS(Enter_ISP_Params.ByteDelay);
81 ResponseBytes[RByte] = SPI_TransferByte(Enter_ISP_Params.EnterProgBytes[RByte]);
82 }
83
84 /* Check if polling disabled, or if the polled value matches the expected value */
85 if (!(Enter_ISP_Params.PollIndex) || (ResponseBytes[Enter_ISP_Params.PollIndex - 1] == Enter_ISP_Params.PollValue))
86 {
87 ResponseStatus = STATUS_CMD_OK;
88 }
89 else
90 {
91 ISPTarget_ChangeTargetResetLine(false);
92 ISPProtocol_DelayMS(Enter_ISP_Params.PinStabDelayMS);
93 }
94 }
95
96 Endpoint_Write_Byte(CMD_ENTER_PROGMODE_ISP);
97 Endpoint_Write_Byte(ResponseStatus);
98 Endpoint_ClearIN();
99 }
100
101 /** Handler for the CMD_LEAVE_ISP command, which releases the target from programming mode. */
102 void ISPProtocol_LeaveISPMode(void)
103 {
104 struct
105 {
106 uint8_t PreDelayMS;
107 uint8_t PostDelayMS;
108 } Leave_ISP_Params;
109
110 Endpoint_Read_Stream_LE(&Leave_ISP_Params, sizeof(Leave_ISP_Params), NO_STREAM_CALLBACK);
111
112 Endpoint_ClearOUT();
113 Endpoint_SetEndpointDirection(ENDPOINT_DIR_IN);
114
115 /* Perform pre-exit delay, release the target /RESET, disable the SPI bus and perform the post-exit delay */
116 ISPProtocol_DelayMS(Leave_ISP_Params.PreDelayMS);
117 ISPTarget_ChangeTargetResetLine(false);
118 SPI_ShutDown();
119 ISPProtocol_DelayMS(Leave_ISP_Params.PostDelayMS);
120
121 Endpoint_Write_Byte(CMD_LEAVE_PROGMODE_ISP);
122 Endpoint_Write_Byte(STATUS_CMD_OK);
123 Endpoint_ClearIN();
124 }
125
126 /** Handler for the CMD_PROGRAM_FLASH_ISP and CMD_PROGRAM_EEPROM_ISP commands, writing out bytes,
127 * words or pages of data to the attached device.
128 *
129 * \param[in] V2Command Issued V2 Protocol command byte from the host
130 */
131 void ISPProtocol_ProgramMemory(uint8_t V2Command)
132 {
133 struct
134 {
135 uint16_t BytesToWrite;
136 uint8_t ProgrammingMode;
137 uint8_t DelayMS;
138 uint8_t ProgrammingCommands[3];
139 uint8_t PollValue1;
140 uint8_t PollValue2;
141 uint8_t ProgData[256]; // Note, the Jungo driver has a very short ACK timeout period, need to buffer the
142 } Write_Memory_Params; // whole page and ACK the packet as fast as possible to prevent it from aborting
143
144 Endpoint_Read_Stream_LE(&Write_Memory_Params, (sizeof(Write_Memory_Params) -
145 sizeof(Write_Memory_Params.ProgData)), NO_STREAM_CALLBACK);
146
147
148 Write_Memory_Params.BytesToWrite = SwapEndian_16(Write_Memory_Params.BytesToWrite);
149
150 if (Write_Memory_Params.BytesToWrite > sizeof(Write_Memory_Params.ProgData))
151 {
152 Endpoint_ClearOUT();
153 Endpoint_SetEndpointDirection(ENDPOINT_DIR_IN);
154
155 Endpoint_Write_Byte(V2Command);
156 Endpoint_Write_Byte(STATUS_CMD_FAILED);
157 Endpoint_ClearIN();
158 return;
159 }
160
161 Endpoint_Read_Stream_LE(&Write_Memory_Params.ProgData, Write_Memory_Params.BytesToWrite, NO_STREAM_CALLBACK);
162
163 Endpoint_ClearOUT();
164 Endpoint_SetEndpointDirection(ENDPOINT_DIR_IN);
165
166 uint8_t ProgrammingStatus = STATUS_CMD_OK;
167 uint16_t PollAddress = 0;
168 uint8_t PollValue = (V2Command == CMD_PROGRAM_FLASH_ISP) ? Write_Memory_Params.PollValue1 :
169 Write_Memory_Params.PollValue2;
170 uint8_t* NextWriteByte = Write_Memory_Params.ProgData;
171
172 /* Check to see if the host has issued a SET ADDRESS command and we haven't sent a
173 * LOAD EXTENDED ADDRESS command (if needed, used when operating beyond the 128KB
174 * FLASH barrier) */
175 if (MustSetAddress)
176 {
177 if (CurrentAddress & (1UL << 31))
178 ISPTarget_LoadExtendedAddress();
179
180 MustSetAddress = false;
181 }
182
183 /* Check the programming mode desired by the host, either Paged or Word memory writes */
184 if (Write_Memory_Params.ProgrammingMode & PROG_MODE_PAGED_WRITES_MASK)
185 {
186 uint16_t StartAddress = (CurrentAddress & 0xFFFF);
187
188 /* Paged mode memory programming */
189 for (uint16_t CurrentByte = 0; CurrentByte < Write_Memory_Params.BytesToWrite; CurrentByte++)
190 {
191 bool IsOddByte = (CurrentByte & 0x01);
192 uint8_t ByteToWrite = *(NextWriteByte++);
193
194 SPI_SendByte(Write_Memory_Params.ProgrammingCommands[0]);
195 SPI_SendByte(CurrentAddress >> 8);
196 SPI_SendByte(CurrentAddress & 0xFF);
197 SPI_SendByte(ByteToWrite);
198
199 /* AVR FLASH addressing requires us to modify the write command based on if we are writing a high
200 * or low byte at the current word address */
201 if (V2Command == CMD_PROGRAM_FLASH_ISP)
202 Write_Memory_Params.ProgrammingCommands[0] ^= READ_WRITE_HIGH_BYTE_MASK;
203
204 /* Check to see the write completion method, to see if we have a valid polling address */
205 if (!(PollAddress) && (ByteToWrite != PollValue))
206 {
207 if (IsOddByte && (V2Command == CMD_PROGRAM_FLASH_ISP))
208 Write_Memory_Params.ProgrammingCommands[2] |= READ_WRITE_HIGH_BYTE_MASK;
209
210 PollAddress = (CurrentAddress & 0xFFFF);
211 }
212
213 if (IsOddByte || (V2Command == CMD_PROGRAM_EEPROM_ISP))
214 CurrentAddress++;
215 }
216
217 /* If the current page must be committed, send the PROGRAM PAGE command to the target */
218 if (Write_Memory_Params.ProgrammingMode & PROG_MODE_COMMIT_PAGE_MASK)
219 {
220 SPI_SendByte(Write_Memory_Params.ProgrammingCommands[1]);
221 SPI_SendByte(StartAddress >> 8);
222 SPI_SendByte(StartAddress & 0xFF);
223 SPI_SendByte(0x00);
224
225 /* Check if polling is possible, if not switch to timed delay mode */
226 if (!(PollAddress))
227 {
228 Write_Memory_Params.ProgrammingMode &= ~PROG_MODE_PAGED_VALUE_MASK;
229 Write_Memory_Params.ProgrammingMode |= PROG_MODE_PAGED_TIMEDELAY_MASK;
230 }
231
232 ProgrammingStatus = ISPTarget_WaitForProgComplete(Write_Memory_Params.ProgrammingMode, PollAddress, PollValue,
233 Write_Memory_Params.DelayMS, Write_Memory_Params.ProgrammingCommands[2]);
234 }
235 }
236 else
237 {
238 /* Word/byte mode memory programming */
239 for (uint16_t CurrentByte = 0; CurrentByte < Write_Memory_Params.BytesToWrite; CurrentByte++)
240 {
241 bool IsOddByte = (CurrentByte & 0x01);
242 uint8_t ByteToWrite = *(NextWriteByte++);
243
244 SPI_SendByte(Write_Memory_Params.ProgrammingCommands[0]);
245 SPI_SendByte(CurrentAddress >> 8);
246 SPI_SendByte(CurrentAddress & 0xFF);
247 SPI_SendByte(ByteToWrite);
248
249 /* AVR FLASH addressing requires us to modify the write command based on if we are writing a high
250 * or low byte at the current word address */
251 if (V2Command == CMD_PROGRAM_FLASH_ISP)
252 Write_Memory_Params.ProgrammingCommands[0] ^= READ_WRITE_HIGH_BYTE_MASK;
253
254 if (ByteToWrite != PollValue)
255 {
256 if (IsOddByte && (V2Command == CMD_PROGRAM_FLASH_ISP))
257 Write_Memory_Params.ProgrammingCommands[2] |= READ_WRITE_HIGH_BYTE_MASK;
258
259 PollAddress = (CurrentAddress & 0xFFFF);
260 }
261
262 if (IsOddByte || (V2Command == CMD_PROGRAM_EEPROM_ISP))
263 CurrentAddress++;
264
265 ProgrammingStatus = ISPTarget_WaitForProgComplete(Write_Memory_Params.ProgrammingMode, PollAddress, PollValue,
266 Write_Memory_Params.DelayMS, Write_Memory_Params.ProgrammingCommands[2]);
267
268 if (ProgrammingStatus != STATUS_CMD_OK)
269 break;
270 }
271 }
272
273 Endpoint_Write_Byte(V2Command);
274 Endpoint_Write_Byte(ProgrammingStatus);
275 Endpoint_ClearIN();
276 }
277
278 /** Handler for the CMD_READ_FLASH_ISP and CMD_READ_EEPROM_ISP commands, reading in bytes,
279 * words or pages of data from the attached device.
280 *
281 * \param[in] V2Command Issued V2 Protocol command byte from the host
282 */
283 void ISPProtocol_ReadMemory(uint8_t V2Command)
284 {
285 struct
286 {
287 uint16_t BytesToRead;
288 uint8_t ReadMemoryCommand;
289 } Read_Memory_Params;
290
291 Endpoint_Read_Stream_LE(&Read_Memory_Params, sizeof(Read_Memory_Params), NO_STREAM_CALLBACK);
292 Read_Memory_Params.BytesToRead = SwapEndian_16(Read_Memory_Params.BytesToRead);
293
294 Endpoint_ClearOUT();
295 Endpoint_SetEndpointDirection(ENDPOINT_DIR_IN);
296
297 Endpoint_Write_Byte(V2Command);
298 Endpoint_Write_Byte(STATUS_CMD_OK);
299
300 /* Check to see if the host has issued a SET ADDRESS command and we haven't sent a
301 * LOAD EXTENDED ADDRESS command (if needed, used when operating beyond the 128KB
302 * FLASH barrier) */
303 if (MustSetAddress)
304 {
305 if (CurrentAddress & (1UL << 31))
306 ISPTarget_LoadExtendedAddress();
307
308 MustSetAddress = false;
309 }
310
311 /* Read each byte from the device and write them to the packet for the host */
312 for (uint16_t CurrentByte = 0; CurrentByte < Read_Memory_Params.BytesToRead; CurrentByte++)
313 {
314 /* Read the next byte from the desired memory space in the device */
315 SPI_SendByte(Read_Memory_Params.ReadMemoryCommand);
316 SPI_SendByte(CurrentAddress >> 8);
317 SPI_SendByte(CurrentAddress & 0xFF);
318 Endpoint_Write_Byte(SPI_ReceiveByte());
319
320 /* Check if the endpoint bank is currently full, if so send the packet */
321 if (!(Endpoint_IsReadWriteAllowed()))
322 {
323 Endpoint_ClearIN();
324 Endpoint_WaitUntilReady();
325 }
326
327 /* AVR FLASH addressing requires us to modify the read command based on if we are reading a high
328 * or low byte at the current word address */
329 if (V2Command == CMD_READ_FLASH_ISP)
330 Read_Memory_Params.ReadMemoryCommand ^= READ_WRITE_HIGH_BYTE_MASK;
331
332 /* Only increment the current address if we have read both bytes in the current word when in FLASH
333 * read mode, or for each byte when in EEPROM read mode */
334 if (((CurrentByte & 0x01) && (V2Command == CMD_READ_FLASH_ISP)) || (V2Command == CMD_READ_EEPROM_ISP))
335 CurrentAddress++;
336 }
337
338 Endpoint_Write_Byte(STATUS_CMD_OK);
339
340 bool IsEndpointFull = !(Endpoint_IsReadWriteAllowed());
341 Endpoint_ClearIN();
342
343 /* Ensure last packet is a short packet to terminate the transfer */
344 if (IsEndpointFull)
345 {
346 Endpoint_WaitUntilReady();
347 Endpoint_ClearIN();
348 Endpoint_WaitUntilReady();
349 }
350 }
351
352 /** Handler for the CMD_CHI_ERASE_ISP command, clearing the target's FLASH memory. */
353 void ISPProtocol_ChipErase(void)
354 {
355 struct
356 {
357 uint8_t EraseDelayMS;
358 uint8_t PollMethod;
359 uint8_t EraseCommandBytes[4];
360 } Erase_Chip_Params;
361
362 Endpoint_Read_Stream_LE(&Erase_Chip_Params, sizeof(Erase_Chip_Params), NO_STREAM_CALLBACK);
363
364 Endpoint_ClearOUT();
365 Endpoint_SetEndpointDirection(ENDPOINT_DIR_IN);
366
367 uint8_t ResponseStatus = STATUS_CMD_OK;
368
369 /* Send the chip erase commands as given by the host to the device */
370 for (uint8_t SByte = 0; SByte < sizeof(Erase_Chip_Params.EraseCommandBytes); SByte++)
371 SPI_SendByte(Erase_Chip_Params.EraseCommandBytes[SByte]);
372
373 /* Use appropriate command completion check as given by the host (delay or busy polling) */
374 if (!(Erase_Chip_Params.PollMethod))
375 ISPProtocol_DelayMS(Erase_Chip_Params.EraseDelayMS);
376 else
377 ResponseStatus = ISPTarget_WaitWhileTargetBusy();
378
379 Endpoint_Write_Byte(CMD_CHIP_ERASE_ISP);
380 Endpoint_Write_Byte(ResponseStatus);
381 Endpoint_ClearIN();
382 }
383
384 /** Handler for the CMD_READ_FUSE_ISP, CMD_READ_LOCK_ISP, CMD_READ_SIGNATURE_ISP and CMD_READ_OSCCAL commands,
385 * reading the requested configuration byte from the device.
386 *
387 * \param[in] V2Command Issued V2 Protocol command byte from the host
388 */
389 void ISPProtocol_ReadFuseLockSigOSCCAL(uint8_t V2Command)
390 {
391 struct
392 {
393 uint8_t RetByte;
394 uint8_t ReadCommandBytes[4];
395 } Read_FuseLockSigOSCCAL_Params;
396
397 Endpoint_Read_Stream_LE(&Read_FuseLockSigOSCCAL_Params, sizeof(Read_FuseLockSigOSCCAL_Params), NO_STREAM_CALLBACK);
398
399 Endpoint_ClearOUT();
400 Endpoint_SetEndpointDirection(ENDPOINT_DIR_IN);
401
402 uint8_t ResponseBytes[4];
403
404 /* Send the Fuse or Lock byte read commands as given by the host to the device, store response */
405 for (uint8_t RByte = 0; RByte < sizeof(ResponseBytes); RByte++)
406 ResponseBytes[RByte] = SPI_TransferByte(Read_FuseLockSigOSCCAL_Params.ReadCommandBytes[RByte]);
407
408 Endpoint_Write_Byte(V2Command);
409 Endpoint_Write_Byte(STATUS_CMD_OK);
410 Endpoint_Write_Byte(ResponseBytes[Read_FuseLockSigOSCCAL_Params.RetByte - 1]);
411 Endpoint_Write_Byte(STATUS_CMD_OK);
412 Endpoint_ClearIN();
413 }
414
415 /** Handler for the CMD_WRITE_FUSE_ISP and CMD_WRITE_LOCK_ISP commands, writing the requested configuration
416 * byte to the device.
417 *
418 * \param[in] V2Command Issued V2 Protocol command byte from the host
419 */
420 void ISPProtocol_WriteFuseLock(uint8_t V2Command)
421 {
422 struct
423 {
424 uint8_t WriteCommandBytes[4];
425 } Write_FuseLockSig_Params;
426
427 Endpoint_Read_Stream_LE(&Write_FuseLockSig_Params, sizeof(Write_FuseLockSig_Params), NO_STREAM_CALLBACK);
428
429 Endpoint_ClearOUT();
430 Endpoint_SetEndpointDirection(ENDPOINT_DIR_IN);
431
432 /* Send the Fuse or Lock byte program commands as given by the host to the device */
433 for (uint8_t SByte = 0; SByte < sizeof(Write_FuseLockSig_Params.WriteCommandBytes); SByte++)
434 SPI_SendByte(Write_FuseLockSig_Params.WriteCommandBytes[SByte]);
435
436 Endpoint_Write_Byte(V2Command);
437 Endpoint_Write_Byte(STATUS_CMD_OK);
438 Endpoint_Write_Byte(STATUS_CMD_OK);
439 Endpoint_ClearIN();
440 }
441
442 /** Handler for the CMD_SPI_MULTI command, writing and reading arbitrary SPI data to and from the attached device. */
443 void ISPProtocol_SPIMulti(void)
444 {
445 struct
446 {
447 uint8_t TxBytes;
448 uint8_t RxBytes;
449 uint8_t RxStartAddr;
450 uint8_t TxData[255];
451 } SPI_Multi_Params;
452
453 Endpoint_Read_Stream_LE(&SPI_Multi_Params, (sizeof(SPI_Multi_Params) - sizeof(SPI_Multi_Params.TxData)), NO_STREAM_CALLBACK);
454 Endpoint_Read_Stream_LE(&SPI_Multi_Params.TxData, SPI_Multi_Params.TxBytes, NO_STREAM_CALLBACK);
455
456 Endpoint_ClearOUT();
457 Endpoint_SetEndpointDirection(ENDPOINT_DIR_IN);
458
459 Endpoint_Write_Byte(CMD_SPI_MULTI);
460 Endpoint_Write_Byte(STATUS_CMD_OK);
461
462 uint8_t CurrTxPos = 0;
463 uint8_t CurrRxPos = 0;
464
465 /* Write out bytes to transmit until the start of the bytes to receive is met */
466 while (CurrTxPos < SPI_Multi_Params.RxStartAddr)
467 {
468 if (CurrTxPos < SPI_Multi_Params.TxBytes)
469 SPI_SendByte(SPI_Multi_Params.TxData[CurrTxPos]);
470 else
471 SPI_SendByte(0);
472
473 CurrTxPos++;
474 }
475
476 /* Transmit remaining bytes with padding as needed, read in response bytes */
477 while (CurrRxPos < SPI_Multi_Params.RxBytes)
478 {
479 if (CurrTxPos < SPI_Multi_Params.TxBytes)
480 Endpoint_Write_Byte(SPI_TransferByte(SPI_Multi_Params.TxData[CurrTxPos++]));
481 else
482 Endpoint_Write_Byte(SPI_ReceiveByte());
483
484 /* Check to see if we have filled the endpoint bank and need to send the packet */
485 if (!(Endpoint_IsReadWriteAllowed()))
486 {
487 Endpoint_ClearIN();
488 Endpoint_WaitUntilReady();
489 }
490
491 CurrRxPos++;
492 }
493
494 Endpoint_Write_Byte(STATUS_CMD_OK);
495
496 bool IsEndpointFull = !(Endpoint_IsReadWriteAllowed());
497 Endpoint_ClearIN();
498
499 /* Ensure last packet is a short packet to terminate the transfer */
500 if (IsEndpointFull)
501 {
502 Endpoint_WaitUntilReady();
503 Endpoint_ClearIN();
504 Endpoint_WaitUntilReady();
505 }
506 }
507
508 #endif