Update Studio Integration DLL, to include package logging.
[pub/USBasp.git] / Bootloaders / DFU / BootloaderDFU.c
1 /*
2 LUFA Library
3 Copyright (C) Dean Camera, 2015.
4
5 dean [at] fourwalledcubicle [dot] com
6 www.lufa-lib.org
7 */
8
9 /*
10 Copyright 2015 Dean Camera (dean [at] fourwalledcubicle [dot] com)
11
12 Permission to use, copy, modify, distribute, and sell this
13 software and its documentation for any purpose is hereby granted
14 without fee, provided that the above copyright notice appear in
15 all copies and that both that the copyright notice and this
16 permission notice and warranty disclaimer appear in supporting
17 documentation, and that the name of the author not be used in
18 advertising or publicity pertaining to distribution of the
19 software without specific, written prior permission.
20
21 The author disclaims all warranties with regard to this
22 software, including all implied warranties of merchantability
23 and fitness. In no event shall the author be liable for any
24 special, indirect or consequential damages or any damages
25 whatsoever resulting from loss of use, data or profits, whether
26 in an action of contract, negligence or other tortious action,
27 arising out of or in connection with the use or performance of
28 this software.
29 */
30
31 /** \file
32 *
33 * Main source file for the DFU class bootloader. This file contains the complete bootloader logic.
34 */
35
36 #define INCLUDE_FROM_BOOTLOADER_C
37 #include "BootloaderDFU.h"
38
39 /** Flag to indicate if the bootloader is currently running in secure mode, disallowing memory operations
40 * other than erase. This is initially set to the value set by SECURE_MODE, and cleared by the bootloader
41 * once a memory erase has completed in a bootloader session.
42 */
43 static bool IsSecure = SECURE_MODE;
44
45 /** Flag to indicate if the bootloader should be running, or should exit and allow the application code to run
46 * via a soft reset. When cleared, the bootloader will abort, the USB interface will shut down and the application
47 * jumped to via an indirect jump to location 0x0000 (or other location specified by the host).
48 */
49 static bool RunBootloader = true;
50
51 /** Flag to indicate if the bootloader is waiting to exit. When the host requests the bootloader to exit and
52 * jump to the application address it specifies, it sends two sequential commands which must be properly
53 * acknowledged. Upon reception of the first the RunBootloader flag is cleared and the WaitForExit flag is set,
54 * causing the bootloader to wait for the final exit command before shutting down.
55 */
56 static bool WaitForExit = false;
57
58 /** Current DFU state machine state, one of the values in the DFU_State_t enum. */
59 static uint8_t DFU_State = dfuIDLE;
60
61 /** Status code of the last executed DFU command. This is set to one of the values in the DFU_Status_t enum after
62 * each operation, and returned to the host when a Get Status DFU request is issued.
63 */
64 static uint8_t DFU_Status = OK;
65
66 /** Data containing the DFU command sent from the host. */
67 static DFU_Command_t SentCommand;
68
69 /** Response to the last issued Read Data DFU command. Unlike other DFU commands, the read command
70 * requires a single byte response from the bootloader containing the read data when the next DFU_UPLOAD command
71 * is issued by the host.
72 */
73 static uint8_t ResponseByte;
74
75 /** Pointer to the start of the user application. By default this is 0x0000 (the reset vector), however the host
76 * may specify an alternate address when issuing the application soft-start command.
77 */
78 static AppPtr_t AppStartPtr = (AppPtr_t)0x0000;
79
80 /** 64-bit flash page number. This is concatenated with the current 16-bit address on USB AVRs containing more than
81 * 64KB of flash memory.
82 */
83 static uint8_t Flash64KBPage = 0;
84
85 /** Memory start address, indicating the current address in the memory being addressed (either FLASH or EEPROM
86 * depending on the issued command from the host).
87 */
88 static uint16_t StartAddr = 0x0000;
89
90 /** Memory end address, indicating the end address to read from/write to in the memory being addressed (either FLASH
91 * of EEPROM depending on the issued command from the host).
92 */
93 static uint16_t EndAddr = 0x0000;
94
95 /** Magic lock for forced application start. If the HWBE fuse is programmed and BOOTRST is unprogrammed, the bootloader
96 * will start if the /HWB line of the AVR is held low and the system is reset. However, if the /HWB line is still held
97 * low when the application attempts to start via a watchdog reset, the bootloader will re-start. If set to the value
98 * \ref MAGIC_BOOT_KEY the special init function \ref Application_Jump_Check() will force the application to start.
99 */
100 uint16_t MagicBootKey ATTR_NO_INIT;
101
102
103 /** Special startup routine to check if the bootloader was started via a watchdog reset, and if the magic application
104 * start key has been loaded into \ref MagicBootKey. If the bootloader started via the watchdog and the key is valid,
105 * this will force the user application to start via a software jump.
106 */
107 void Application_Jump_Check(void)
108 {
109 bool JumpToApplication = false;
110
111 #if (BOARD == BOARD_LEONARDO)
112 /* Enable pull-up on the IO13 pin so we can use it to select the mode */
113 PORTC |= (1 << 7);
114 Delay_MS(10);
115
116 /* If IO13 is not jumpered to ground, start the user application instead */
117 JumpToApplication = ((PINC & (1 << 7)) != 0);
118
119 /* Disable pull-up after the check has completed */
120 PORTC &= ~(1 << 7);
121 #elif ((BOARD == BOARD_XPLAIN) || (BOARD == BOARD_XPLAIN_REV1))
122 /* Disable JTAG debugging */
123 JTAG_DISABLE();
124
125 /* Enable pull-up on the JTAG TCK pin so we can use it to select the mode */
126 PORTF |= (1 << 4);
127 Delay_MS(10);
128
129 /* If the TCK pin is not jumpered to ground, start the user application instead */
130 JumpToApplication = ((PINF & (1 << 4)) != 0);
131
132 /* Re-enable JTAG debugging */
133 JTAG_ENABLE();
134 #else
135 /* Check if the device's BOOTRST fuse is set */
136 if (boot_lock_fuse_bits_get(GET_HIGH_FUSE_BITS) & FUSE_BOOTRST)
137 {
138 /* If the reset source was not an external reset or the key is correct, clear it and jump to the application */
139 if (!(MCUSR & (1 << EXTRF)) || (MagicBootKey == MAGIC_BOOT_KEY))
140 JumpToApplication = true;
141
142 /* Clear reset source */
143 MCUSR &= ~(1 << EXTRF);
144 }
145 else
146 {
147 /* If the reset source was the bootloader and the key is correct, clear it and jump to the application;
148 * this can happen in the HWBE fuse is set, and the HBE pin is low during the watchdog reset */
149 if ((MCUSR & (1 << WDRF)) && (MagicBootKey == MAGIC_BOOT_KEY))
150 JumpToApplication = true;
151
152 /* Clear reset source */
153 MCUSR &= ~(1 << WDRF);
154 }
155 #endif
156
157 /* Don't run the user application if the reset vector is blank (no app loaded) */
158 bool ApplicationValid = (pgm_read_word_near(0) != 0xFFFF);
159
160 /* If a request has been made to jump to the user application, honor it */
161 if (JumpToApplication && ApplicationValid)
162 {
163 /* Turn off the watchdog */
164 MCUSR &= ~(1 << WDRF);
165 wdt_disable();
166
167 /* Clear the boot key and jump to the user application */
168 MagicBootKey = 0;
169
170 // cppcheck-suppress constStatement
171 ((void (*)(void))0x0000)();
172 }
173 }
174
175 /** Main program entry point. This routine configures the hardware required by the bootloader, then continuously
176 * runs the bootloader processing routine until instructed to soft-exit, or hard-reset via the watchdog to start
177 * the loaded application code.
178 */
179 int main(void)
180 {
181 /* Configure hardware required by the bootloader */
182 SetupHardware();
183
184 /* Turn on first LED on the board to indicate that the bootloader has started */
185 LEDs_SetAllLEDs(LEDS_LED1);
186
187 /* Enable global interrupts so that the USB stack can function */
188 GlobalInterruptEnable();
189
190 /* Run the USB management task while the bootloader is supposed to be running */
191 while (RunBootloader || WaitForExit)
192 USB_USBTask();
193
194 /* Reset configured hardware back to their original states for the user application */
195 ResetHardware();
196
197 /* Start the user application */
198 AppStartPtr();
199 }
200
201 /** Configures all hardware required for the bootloader. */
202 static void SetupHardware(void)
203 {
204 /* Disable watchdog if enabled by bootloader/fuses */
205 MCUSR &= ~(1 << WDRF);
206 wdt_disable();
207
208 /* Disable clock division */
209 clock_prescale_set(clock_div_1);
210
211 /* Relocate the interrupt vector table to the bootloader section */
212 MCUCR = (1 << IVCE);
213 MCUCR = (1 << IVSEL);
214
215 /* Initialize the USB and other board hardware drivers */
216 USB_Init();
217 LEDs_Init();
218
219 /* Bootloader active LED toggle timer initialization */
220 TIMSK1 = (1 << TOIE1);
221 TCCR1B = ((1 << CS11) | (1 << CS10));
222 }
223
224 /** Resets all configured hardware required for the bootloader back to their original states. */
225 static void ResetHardware(void)
226 {
227 /* Shut down the USB and other board hardware drivers */
228 USB_Disable();
229 LEDs_Disable();
230
231 /* Disable Bootloader active LED toggle timer */
232 TIMSK1 = 0;
233 TCCR1B = 0;
234
235 /* Relocate the interrupt vector table back to the application section */
236 MCUCR = (1 << IVCE);
237 MCUCR = 0;
238 }
239
240 /** ISR to periodically toggle the LEDs on the board to indicate that the bootloader is active. */
241 ISR(TIMER1_OVF_vect, ISR_BLOCK)
242 {
243 LEDs_ToggleLEDs(LEDS_LED1 | LEDS_LED2);
244 }
245
246 /** Event handler for the USB_ControlRequest event. This is used to catch and process control requests sent to
247 * the device from the USB host before passing along unhandled control requests to the library for processing
248 * internally.
249 */
250 void EVENT_USB_Device_ControlRequest(void)
251 {
252 /* Ignore any requests that aren't directed to the DFU interface */
253 if ((USB_ControlRequest.bmRequestType & (CONTROL_REQTYPE_TYPE | CONTROL_REQTYPE_RECIPIENT)) !=
254 (REQTYPE_CLASS | REQREC_INTERFACE))
255 {
256 return;
257 }
258
259 /* Activity - toggle indicator LEDs */
260 LEDs_ToggleLEDs(LEDS_LED1 | LEDS_LED2);
261
262 /* Get the size of the command and data from the wLength value */
263 SentCommand.DataSize = USB_ControlRequest.wLength;
264
265 switch (USB_ControlRequest.bRequest)
266 {
267 case DFU_REQ_DNLOAD:
268 Endpoint_ClearSETUP();
269
270 /* Check if bootloader is waiting to terminate */
271 if (WaitForExit)
272 {
273 /* Bootloader is terminating - process last received command */
274 ProcessBootloaderCommand();
275
276 /* Indicate that the last command has now been processed - free to exit bootloader */
277 WaitForExit = false;
278 }
279
280 /* If the request has a data stage, load it into the command struct */
281 if (SentCommand.DataSize)
282 {
283 while (!(Endpoint_IsOUTReceived()))
284 {
285 if (USB_DeviceState == DEVICE_STATE_Unattached)
286 return;
287 }
288
289 /* First byte of the data stage is the DNLOAD request's command */
290 SentCommand.Command = Endpoint_Read_8();
291
292 /* One byte of the data stage is the command, so subtract it from the total data bytes */
293 SentCommand.DataSize--;
294
295 /* Load in the rest of the data stage as command parameters */
296 for (uint8_t DataByte = 0; (DataByte < sizeof(SentCommand.Data)) &&
297 Endpoint_BytesInEndpoint(); DataByte++)
298 {
299 SentCommand.Data[DataByte] = Endpoint_Read_8();
300 SentCommand.DataSize--;
301 }
302
303 /* Process the command */
304 ProcessBootloaderCommand();
305 }
306
307 /* Check if currently downloading firmware */
308 if (DFU_State == dfuDNLOAD_IDLE)
309 {
310 if (!(SentCommand.DataSize))
311 {
312 DFU_State = dfuIDLE;
313 }
314 else
315 {
316 /* Throw away the filler bytes before the start of the firmware */
317 DiscardFillerBytes(DFU_FILLER_BYTES_SIZE);
318
319 /* Throw away the packet alignment filler bytes before the start of the firmware */
320 DiscardFillerBytes(StartAddr % FIXED_CONTROL_ENDPOINT_SIZE);
321
322 /* Calculate the number of bytes remaining to be written */
323 uint16_t BytesRemaining = ((EndAddr - StartAddr) + 1);
324
325 if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x00)) // Write flash
326 {
327 /* Calculate the number of words to be written from the number of bytes to be written */
328 uint16_t WordsRemaining = (BytesRemaining >> 1);
329
330 union
331 {
332 uint16_t Words[2];
333 uint32_t Long;
334 } CurrFlashAddress = {.Words = {StartAddr, Flash64KBPage}};
335
336 uint32_t CurrFlashPageStartAddress = CurrFlashAddress.Long;
337 uint8_t WordsInFlashPage = 0;
338
339 while (WordsRemaining--)
340 {
341 /* Check if endpoint is empty - if so clear it and wait until ready for next packet */
342 if (!(Endpoint_BytesInEndpoint()))
343 {
344 Endpoint_ClearOUT();
345
346 while (!(Endpoint_IsOUTReceived()))
347 {
348 if (USB_DeviceState == DEVICE_STATE_Unattached)
349 return;
350 }
351 }
352
353 /* Write the next word into the current flash page */
354 boot_page_fill(CurrFlashAddress.Long, Endpoint_Read_16_LE());
355
356 /* Adjust counters */
357 WordsInFlashPage += 1;
358 CurrFlashAddress.Long += 2;
359
360 /* See if an entire page has been written to the flash page buffer */
361 if ((WordsInFlashPage == (SPM_PAGESIZE >> 1)) || !(WordsRemaining))
362 {
363 /* Commit the flash page to memory */
364 boot_page_write(CurrFlashPageStartAddress);
365 boot_spm_busy_wait();
366
367 /* Check if programming incomplete */
368 if (WordsRemaining)
369 {
370 CurrFlashPageStartAddress = CurrFlashAddress.Long;
371 WordsInFlashPage = 0;
372
373 /* Erase next page's temp buffer */
374 boot_page_erase(CurrFlashAddress.Long);
375 boot_spm_busy_wait();
376 }
377 }
378 }
379
380 /* Once programming complete, start address equals the end address */
381 StartAddr = EndAddr;
382
383 /* Re-enable the RWW section of flash */
384 boot_rww_enable();
385 }
386 else // Write EEPROM
387 {
388 while (BytesRemaining--)
389 {
390 /* Check if endpoint is empty - if so clear it and wait until ready for next packet */
391 if (!(Endpoint_BytesInEndpoint()))
392 {
393 Endpoint_ClearOUT();
394
395 while (!(Endpoint_IsOUTReceived()))
396 {
397 if (USB_DeviceState == DEVICE_STATE_Unattached)
398 return;
399 }
400 }
401
402 /* Read the byte from the USB interface and write to to the EEPROM */
403 eeprom_write_byte((uint8_t*)StartAddr, Endpoint_Read_8());
404
405 /* Adjust counters */
406 StartAddr++;
407 }
408 }
409
410 /* Throw away the currently unused DFU file suffix */
411 DiscardFillerBytes(DFU_FILE_SUFFIX_SIZE);
412 }
413 }
414
415 Endpoint_ClearOUT();
416
417 Endpoint_ClearStatusStage();
418
419 break;
420 case DFU_REQ_UPLOAD:
421 Endpoint_ClearSETUP();
422
423 while (!(Endpoint_IsINReady()))
424 {
425 if (USB_DeviceState == DEVICE_STATE_Unattached)
426 return;
427 }
428
429 if (DFU_State != dfuUPLOAD_IDLE)
430 {
431 if ((DFU_State == dfuERROR) && IS_ONEBYTE_COMMAND(SentCommand.Data, 0x01)) // Blank Check
432 {
433 /* Blank checking is performed in the DFU_DNLOAD request - if we get here we've told the host
434 that the memory isn't blank, and the host is requesting the first non-blank address */
435 Endpoint_Write_16_LE(StartAddr);
436 }
437 else
438 {
439 /* Idle state upload - send response to last issued command */
440 Endpoint_Write_8(ResponseByte);
441 }
442 }
443 else
444 {
445 /* Determine the number of bytes remaining in the current block */
446 uint16_t BytesRemaining = ((EndAddr - StartAddr) + 1);
447
448 if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x00)) // Read FLASH
449 {
450 /* Calculate the number of words to be written from the number of bytes to be written */
451 uint16_t WordsRemaining = (BytesRemaining >> 1);
452
453 union
454 {
455 uint16_t Words[2];
456 uint32_t Long;
457 } CurrFlashAddress = {.Words = {StartAddr, Flash64KBPage}};
458
459 while (WordsRemaining--)
460 {
461 /* Check if endpoint is full - if so clear it and wait until ready for next packet */
462 if (Endpoint_BytesInEndpoint() == FIXED_CONTROL_ENDPOINT_SIZE)
463 {
464 Endpoint_ClearIN();
465
466 while (!(Endpoint_IsINReady()))
467 {
468 if (USB_DeviceState == DEVICE_STATE_Unattached)
469 return;
470 }
471 }
472
473 /* Read the flash word and send it via USB to the host */
474 #if (FLASHEND > 0xFFFF)
475 Endpoint_Write_16_LE(pgm_read_word_far(CurrFlashAddress.Long));
476 #else
477 Endpoint_Write_16_LE(pgm_read_word(CurrFlashAddress.Long));
478 #endif
479
480 /* Adjust counters */
481 CurrFlashAddress.Long += 2;
482 }
483
484 /* Once reading is complete, start address equals the end address */
485 StartAddr = EndAddr;
486 }
487 else if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x02)) // Read EEPROM
488 {
489 while (BytesRemaining--)
490 {
491 /* Check if endpoint is full - if so clear it and wait until ready for next packet */
492 if (Endpoint_BytesInEndpoint() == FIXED_CONTROL_ENDPOINT_SIZE)
493 {
494 Endpoint_ClearIN();
495
496 while (!(Endpoint_IsINReady()))
497 {
498 if (USB_DeviceState == DEVICE_STATE_Unattached)
499 return;
500 }
501 }
502
503 /* Read the EEPROM byte and send it via USB to the host */
504 Endpoint_Write_8(eeprom_read_byte((uint8_t*)StartAddr));
505
506 /* Adjust counters */
507 StartAddr++;
508 }
509 }
510
511 /* Return to idle state */
512 DFU_State = dfuIDLE;
513 }
514
515 Endpoint_ClearIN();
516
517 Endpoint_ClearStatusStage();
518 break;
519 case DFU_REQ_GETSTATUS:
520 Endpoint_ClearSETUP();
521
522 while (!(Endpoint_IsINReady()))
523 {
524 if (USB_DeviceState == DEVICE_STATE_Unattached)
525 return;
526 }
527
528 /* Write 8-bit status value */
529 Endpoint_Write_8(DFU_Status);
530
531 /* Write 24-bit poll timeout value */
532 Endpoint_Write_8(0);
533 Endpoint_Write_16_LE(0);
534
535 /* Write 8-bit state value */
536 Endpoint_Write_8(DFU_State);
537
538 /* Write 8-bit state string ID number */
539 Endpoint_Write_8(0);
540
541 Endpoint_ClearIN();
542
543 Endpoint_ClearStatusStage();
544 break;
545 case DFU_REQ_CLRSTATUS:
546 Endpoint_ClearSETUP();
547
548 /* Reset the status value variable to the default OK status */
549 DFU_Status = OK;
550
551 Endpoint_ClearStatusStage();
552 break;
553 case DFU_REQ_GETSTATE:
554 Endpoint_ClearSETUP();
555
556 while (!(Endpoint_IsINReady()))
557 {
558 if (USB_DeviceState == DEVICE_STATE_Unattached)
559 return;
560 }
561
562 /* Write the current device state to the endpoint */
563 Endpoint_Write_8(DFU_State);
564
565 Endpoint_ClearIN();
566
567 Endpoint_ClearStatusStage();
568 break;
569 case DFU_REQ_ABORT:
570 Endpoint_ClearSETUP();
571
572 /* Reset the current state variable to the default idle state */
573 DFU_State = dfuIDLE;
574
575 Endpoint_ClearStatusStage();
576 break;
577 }
578 }
579
580 /** Routine to discard the specified number of bytes from the control endpoint stream. This is used to
581 * discard unused bytes in the stream from the host, including the memory program block suffix.
582 *
583 * \param[in] NumberOfBytes Number of bytes to discard from the host from the control endpoint
584 */
585 static void DiscardFillerBytes(uint8_t NumberOfBytes)
586 {
587 while (NumberOfBytes--)
588 {
589 if (!(Endpoint_BytesInEndpoint()))
590 {
591 Endpoint_ClearOUT();
592
593 /* Wait until next data packet received */
594 while (!(Endpoint_IsOUTReceived()))
595 {
596 if (USB_DeviceState == DEVICE_STATE_Unattached)
597 return;
598 }
599 }
600 else
601 {
602 Endpoint_Discard_8();
603 }
604 }
605 }
606
607 /** Routine to process an issued command from the host, via a DFU_DNLOAD request wrapper. This routine ensures
608 * that the command is allowed based on the current secure mode flag value, and passes the command off to the
609 * appropriate handler function.
610 */
611 static void ProcessBootloaderCommand(void)
612 {
613 /* Check if device is in secure mode */
614 if (IsSecure)
615 {
616 /* Don't process command unless it is a READ or chip erase command */
617 if (!(((SentCommand.Command == COMMAND_WRITE) &&
618 IS_TWOBYTE_COMMAND(SentCommand.Data, 0x00, 0xFF)) ||
619 (SentCommand.Command == COMMAND_READ)))
620 {
621 /* Set the state and status variables to indicate the error */
622 DFU_State = dfuERROR;
623 DFU_Status = errWRITE;
624
625 /* Stall command */
626 Endpoint_StallTransaction();
627
628 /* Don't process the command */
629 return;
630 }
631 }
632
633 /* Dispatch the required command processing routine based on the command type */
634 switch (SentCommand.Command)
635 {
636 case COMMAND_PROG_START:
637 ProcessMemProgCommand();
638 break;
639 case COMMAND_DISP_DATA:
640 ProcessMemReadCommand();
641 break;
642 case COMMAND_WRITE:
643 ProcessWriteCommand();
644 break;
645 case COMMAND_READ:
646 ProcessReadCommand();
647 break;
648 case COMMAND_CHANGE_BASE_ADDR:
649 if (IS_TWOBYTE_COMMAND(SentCommand.Data, 0x03, 0x00)) // Set 64KB flash page command
650 Flash64KBPage = SentCommand.Data[2];
651
652 break;
653 }
654 }
655
656 /** Routine to concatenate the given pair of 16-bit memory start and end addresses from the host, and store them
657 * in the StartAddr and EndAddr global variables.
658 */
659 static void LoadStartEndAddresses(void)
660 {
661 union
662 {
663 uint8_t Bytes[2];
664 uint16_t Word;
665 } Address[2] = {{.Bytes = {SentCommand.Data[2], SentCommand.Data[1]}},
666 {.Bytes = {SentCommand.Data[4], SentCommand.Data[3]}}};
667
668 /* Load in the start and ending read addresses from the sent data packet */
669 StartAddr = Address[0].Word;
670 EndAddr = Address[1].Word;
671 }
672
673 /** Handler for a Memory Program command issued by the host. This routine handles the preparations needed
674 * to write subsequent data from the host into the specified memory.
675 */
676 static void ProcessMemProgCommand(void)
677 {
678 if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x00) || // Write FLASH command
679 IS_ONEBYTE_COMMAND(SentCommand.Data, 0x01)) // Write EEPROM command
680 {
681 /* Load in the start and ending read addresses */
682 LoadStartEndAddresses();
683
684 /* If FLASH is being written to, we need to pre-erase the first page to write to */
685 if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x00))
686 {
687 union
688 {
689 uint16_t Words[2];
690 uint32_t Long;
691 } CurrFlashAddress = {.Words = {StartAddr, Flash64KBPage}};
692
693 /* Erase the current page's temp buffer */
694 boot_page_erase(CurrFlashAddress.Long);
695 boot_spm_busy_wait();
696 }
697
698 /* Set the state so that the next DNLOAD requests reads in the firmware */
699 DFU_State = dfuDNLOAD_IDLE;
700 }
701 }
702
703 /** Handler for a Memory Read command issued by the host. This routine handles the preparations needed
704 * to read subsequent data from the specified memory out to the host, as well as implementing the memory
705 * blank check command.
706 */
707 static void ProcessMemReadCommand(void)
708 {
709 if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x00) || // Read FLASH command
710 IS_ONEBYTE_COMMAND(SentCommand.Data, 0x02)) // Read EEPROM command
711 {
712 /* Load in the start and ending read addresses */
713 LoadStartEndAddresses();
714
715 /* Set the state so that the next UPLOAD requests read out the firmware */
716 DFU_State = dfuUPLOAD_IDLE;
717 }
718 else if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x01)) // Blank check FLASH command
719 {
720 uint32_t CurrFlashAddress = 0;
721
722 while (CurrFlashAddress < (uint32_t)BOOT_START_ADDR)
723 {
724 /* Check if the current byte is not blank */
725 #if (FLASHEND > 0xFFFF)
726 if (pgm_read_byte_far(CurrFlashAddress) != 0xFF)
727 #else
728 if (pgm_read_byte(CurrFlashAddress) != 0xFF)
729 #endif
730 {
731 /* Save the location of the first non-blank byte for response back to the host */
732 Flash64KBPage = (CurrFlashAddress >> 16);
733 StartAddr = CurrFlashAddress;
734
735 /* Set state and status variables to the appropriate error values */
736 DFU_State = dfuERROR;
737 DFU_Status = errCHECK_ERASED;
738
739 break;
740 }
741
742 CurrFlashAddress++;
743 }
744 }
745 }
746
747 /** Handler for a Data Write command issued by the host. This routine handles non-programming commands such as
748 * bootloader exit (both via software jumps and hardware watchdog resets) and flash memory erasure.
749 */
750 static void ProcessWriteCommand(void)
751 {
752 if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x03)) // Start application
753 {
754 /* Indicate that the bootloader is terminating */
755 WaitForExit = true;
756
757 /* Check if data supplied for the Start Program command - no data executes the program */
758 if (SentCommand.DataSize)
759 {
760 if (SentCommand.Data[1] == 0x01) // Start via jump
761 {
762 union
763 {
764 uint8_t Bytes[2];
765 AppPtr_t FuncPtr;
766 } Address = {.Bytes = {SentCommand.Data[4], SentCommand.Data[3]}};
767
768 /* Load in the jump address into the application start address pointer */
769 AppStartPtr = Address.FuncPtr;
770 }
771 }
772 else
773 {
774 if (SentCommand.Data[1] == 0x00) // Start via watchdog
775 {
776 /* Unlock the forced application start mode of the bootloader if it is restarted */
777 MagicBootKey = MAGIC_BOOT_KEY;
778
779 /* Start the watchdog to reset the AVR once the communications are finalized */
780 wdt_enable(WDTO_250MS);
781 }
782 else // Start via jump
783 {
784 /* Set the flag to terminate the bootloader at next opportunity if a valid application has been loaded */
785 if (pgm_read_word_near(0) == 0xFFFF)
786 RunBootloader = false;
787 }
788 }
789 }
790 else if (IS_TWOBYTE_COMMAND(SentCommand.Data, 0x00, 0xFF)) // Erase flash
791 {
792 uint32_t CurrFlashAddress = 0;
793
794 /* Clear the application section of flash */
795 while (CurrFlashAddress < (uint32_t)BOOT_START_ADDR)
796 {
797 boot_page_erase(CurrFlashAddress);
798 boot_spm_busy_wait();
799 boot_page_write(CurrFlashAddress);
800 boot_spm_busy_wait();
801
802 CurrFlashAddress += SPM_PAGESIZE;
803 }
804
805 /* Re-enable the RWW section of flash as writing to the flash locks it out */
806 boot_rww_enable();
807
808 /* Memory has been erased, reset the security bit so that programming/reading is allowed */
809 IsSecure = false;
810 }
811 }
812
813 /** Handler for a Data Read command issued by the host. This routine handles bootloader information retrieval
814 * commands such as device signature and bootloader version retrieval.
815 */
816 static void ProcessReadCommand(void)
817 {
818 const uint8_t BootloaderInfo[3] = {BOOTLOADER_VERSION, BOOTLOADER_ID_BYTE1, BOOTLOADER_ID_BYTE2};
819 const uint8_t SignatureInfo[4] = {0x58, AVR_SIGNATURE_1, AVR_SIGNATURE_2, AVR_SIGNATURE_3};
820
821 uint8_t DataIndexToRead = SentCommand.Data[1];
822 bool ReadAddressInvalid = false;
823
824 if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x00)) // Read bootloader info
825 {
826 if (DataIndexToRead < 3)
827 ResponseByte = BootloaderInfo[DataIndexToRead];
828 else
829 ReadAddressInvalid = true;
830 }
831 else if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x01)) // Read signature byte
832 {
833 switch (DataIndexToRead)
834 {
835 case 0x30:
836 ResponseByte = SignatureInfo[0];
837 break;
838 case 0x31:
839 ResponseByte = SignatureInfo[1];
840 break;
841 case 0x60:
842 ResponseByte = SignatureInfo[2];
843 break;
844 case 0x61:
845 ResponseByte = SignatureInfo[3];
846 break;
847 default:
848 ReadAddressInvalid = true;
849 break;
850 }
851 }
852
853 if (ReadAddressInvalid)
854 {
855 /* Set the state and status variables to indicate the error */
856 DFU_State = dfuERROR;
857 DFU_Status = errADDRESS;
858 }
859 }
860