Merge in AppConfigHeaders branch to trunk, altering all projects and demos to use...
[pub/USBasp.git] / Bootloaders / DFU / BootloaderDFU.c
1 /*
2 LUFA Library
3 Copyright (C) Dean Camera, 2012.
4
5 dean [at] fourwalledcubicle [dot] com
6 www.lufa-lib.org
7 */
8
9 /*
10 Copyright 2012 Dean Camera (dean [at] fourwalledcubicle [dot] com)
11
12 Permission to use, copy, modify, distribute, and sell this
13 software and its documentation for any purpose is hereby granted
14 without fee, provided that the above copyright notice appear in
15 all copies and that both that the copyright notice and this
16 permission notice and warranty disclaimer appear in supporting
17 documentation, and that the name of the author not be used in
18 advertising or publicity pertaining to distribution of the
19 software without specific, written prior permission.
20
21 The author disclaim all warranties with regard to this
22 software, including all implied warranties of merchantability
23 and fitness. In no event shall the author be liable for any
24 special, indirect or consequential damages or any damages
25 whatsoever resulting from loss of use, data or profits, whether
26 in an action of contract, negligence or other tortious action,
27 arising out of or in connection with the use or performance of
28 this software.
29 */
30
31 /** \file
32 *
33 * Main source file for the DFU class bootloader. This file contains the complete bootloader logic.
34 */
35
36 #define INCLUDE_FROM_BOOTLOADER_C
37 #include "BootloaderDFU.h"
38
39 /** Flag to indicate if the bootloader is currently running in secure mode, disallowing memory operations
40 * other than erase. This is initially set to the value set by SECURE_MODE, and cleared by the bootloader
41 * once a memory erase has completed in a bootloader session.
42 */
43 static bool IsSecure = SECURE_MODE;
44
45 /** Flag to indicate if the bootloader should be running, or should exit and allow the application code to run
46 * via a soft reset. When cleared, the bootloader will abort, the USB interface will shut down and the application
47 * jumped to via an indirect jump to location 0x0000 (or other location specified by the host).
48 */
49 static bool RunBootloader = true;
50
51 /** Flag to indicate if the bootloader is waiting to exit. When the host requests the bootloader to exit and
52 * jump to the application address it specifies, it sends two sequential commands which must be properly
53 * acknowledged. Upon reception of the first the RunBootloader flag is cleared and the WaitForExit flag is set,
54 * causing the bootloader to wait for the final exit command before shutting down.
55 */
56 static bool WaitForExit = false;
57
58 /** Current DFU state machine state, one of the values in the DFU_State_t enum. */
59 static uint8_t DFU_State = dfuIDLE;
60
61 /** Status code of the last executed DFU command. This is set to one of the values in the DFU_Status_t enum after
62 * each operation, and returned to the host when a Get Status DFU request is issued.
63 */
64 static uint8_t DFU_Status = OK;
65
66 /** Data containing the DFU command sent from the host. */
67 static DFU_Command_t SentCommand;
68
69 /** Response to the last issued Read Data DFU command. Unlike other DFU commands, the read command
70 * requires a single byte response from the bootloader containing the read data when the next DFU_UPLOAD command
71 * is issued by the host.
72 */
73 static uint8_t ResponseByte;
74
75 /** Pointer to the start of the user application. By default this is 0x0000 (the reset vector), however the host
76 * may specify an alternate address when issuing the application soft-start command.
77 */
78 static AppPtr_t AppStartPtr = (AppPtr_t)0x0000;
79
80 /** 64-bit flash page number. This is concatenated with the current 16-bit address on USB AVRs containing more than
81 * 64KB of flash memory.
82 */
83 static uint8_t Flash64KBPage = 0;
84
85 /** Memory start address, indicating the current address in the memory being addressed (either FLASH or EEPROM
86 * depending on the issued command from the host).
87 */
88 static uint16_t StartAddr = 0x0000;
89
90 /** Memory end address, indicating the end address to read from/write to in the memory being addressed (either FLASH
91 * of EEPROM depending on the issued command from the host).
92 */
93 static uint16_t EndAddr = 0x0000;
94
95 /** Magic lock for forced application start. If the HWBE fuse is programmed and BOOTRST is unprogrammed, the bootloader
96 * will start if the /HWB line of the AVR is held low and the system is reset. However, if the /HWB line is still held
97 * low when the application attempts to start via a watchdog reset, the bootloader will re-start. If set to the value
98 * \ref MAGIC_BOOT_KEY the special init function \ref Application_Jump_Check() will force the application to start.
99 */
100 uint32_t MagicBootKey ATTR_NO_INIT;
101
102
103 /** Special startup routine to check if the bootloader was started via a watchdog reset, and if the magic application
104 * start key has been loaded into \ref MagicBootKey. If the bootloader started via the watchdog and the key is valid,
105 * this will force the user application to start via a software jump.
106 */
107 void Application_Jump_Check(void)
108 {
109 /* If the reset source was the bootloader and the key is correct, clear it and jump to the application */
110 if ((MCUSR & (1 << WDRF)) && (MagicBootKey == MAGIC_BOOT_KEY))
111 {
112 /* Turn off the watchdog */
113 MCUSR &= ~(1<<WDRF);
114 wdt_disable();
115
116 /* Clear the boot key and jump to the user application */
117 MagicBootKey = 0;
118
119 // cppcheck-suppress constStatement
120 ((void (*)(void))0x0000)();
121 }
122 }
123
124 /** Main program entry point. This routine configures the hardware required by the bootloader, then continuously
125 * runs the bootloader processing routine until instructed to soft-exit, or hard-reset via the watchdog to start
126 * the loaded application code.
127 */
128 int main(void)
129 {
130 /* Configure hardware required by the bootloader */
131 SetupHardware();
132
133 #if ((BOARD == BOARD_XPLAIN) || (BOARD == BOARD_XPLAIN_REV1))
134 /* Disable JTAG debugging */
135 MCUCR |= (1 << JTD);
136 MCUCR |= (1 << JTD);
137
138 /* Enable pull-up on the JTAG TCK pin so we can use it to select the mode */
139 PORTF |= (1 << 4);
140 Delay_MS(10);
141
142 /* If the TCK pin is not jumpered to ground, start the user application instead */
143 RunBootloader = (!(PINF & (1 << 4)));
144
145 /* Re-enable JTAG debugging */
146 MCUCR &= ~(1 << JTD);
147 MCUCR &= ~(1 << JTD);
148 #endif
149
150 /* Turn on first LED on the board to indicate that the bootloader has started */
151 LEDs_SetAllLEDs(LEDS_LED1);
152
153 /* Enable global interrupts so that the USB stack can function */
154 sei();
155
156 /* Run the USB management task while the bootloader is supposed to be running */
157 while (RunBootloader || WaitForExit)
158 USB_USBTask();
159
160 /* Reset configured hardware back to their original states for the user application */
161 ResetHardware();
162
163 /* Start the user application */
164 AppStartPtr();
165 }
166
167 /** Configures all hardware required for the bootloader. */
168 static void SetupHardware(void)
169 {
170 /* Disable watchdog if enabled by bootloader/fuses */
171 MCUSR &= ~(1 << WDRF);
172 wdt_disable();
173
174 /* Disable clock division */
175 clock_prescale_set(clock_div_1);
176
177 /* Relocate the interrupt vector table to the bootloader section */
178 MCUCR = (1 << IVCE);
179 MCUCR = (1 << IVSEL);
180
181 /* Initialize the USB and other board hardware drivers */
182 USB_Init();
183 LEDs_Init();
184
185 /* Bootloader active LED toggle timer initialization */
186 TIMSK1 = (1 << TOIE1);
187 TCCR1B = ((1 << CS11) | (1 << CS10));
188 }
189
190 /** Resets all configured hardware required for the bootloader back to their original states. */
191 static void ResetHardware(void)
192 {
193 /* Shut down the USB and other board hardware drivers */
194 USB_Disable();
195 LEDs_Disable();
196
197 /* Relocate the interrupt vector table back to the application section */
198 MCUCR = (1 << IVCE);
199 MCUCR = 0;
200 }
201
202 /** ISR to periodically toggle the LEDs on the board to indicate that the bootloader is active. */
203 ISR(TIMER1_OVF_vect, ISR_BLOCK)
204 {
205 LEDs_ToggleLEDs(LEDS_LED1 | LEDS_LED2);
206 }
207
208 /** Event handler for the USB_ControlRequest event. This is used to catch and process control requests sent to
209 * the device from the USB host before passing along unhandled control requests to the library for processing
210 * internally.
211 */
212 void EVENT_USB_Device_ControlRequest(void)
213 {
214 /* Ignore any requests that aren't directed to the DFU interface */
215 if ((USB_ControlRequest.bmRequestType & (CONTROL_REQTYPE_TYPE | CONTROL_REQTYPE_RECIPIENT)) !=
216 (REQTYPE_CLASS | REQREC_INTERFACE))
217 {
218 return;
219 }
220
221 /* Activity - toggle indicator LEDs */
222 LEDs_ToggleLEDs(LEDS_LED1 | LEDS_LED2);
223
224 /* Get the size of the command and data from the wLength value */
225 SentCommand.DataSize = USB_ControlRequest.wLength;
226
227 switch (USB_ControlRequest.bRequest)
228 {
229 case DFU_REQ_DNLOAD:
230 Endpoint_ClearSETUP();
231
232 /* Check if bootloader is waiting to terminate */
233 if (WaitForExit)
234 {
235 /* Bootloader is terminating - process last received command */
236 ProcessBootloaderCommand();
237
238 /* Indicate that the last command has now been processed - free to exit bootloader */
239 WaitForExit = false;
240 }
241
242 /* If the request has a data stage, load it into the command struct */
243 if (SentCommand.DataSize)
244 {
245 while (!(Endpoint_IsOUTReceived()))
246 {
247 if (USB_DeviceState == DEVICE_STATE_Unattached)
248 return;
249 }
250
251 /* First byte of the data stage is the DNLOAD request's command */
252 SentCommand.Command = Endpoint_Read_8();
253
254 /* One byte of the data stage is the command, so subtract it from the total data bytes */
255 SentCommand.DataSize--;
256
257 /* Load in the rest of the data stage as command parameters */
258 for (uint8_t DataByte = 0; (DataByte < sizeof(SentCommand.Data)) &&
259 Endpoint_BytesInEndpoint(); DataByte++)
260 {
261 SentCommand.Data[DataByte] = Endpoint_Read_8();
262 SentCommand.DataSize--;
263 }
264
265 /* Process the command */
266 ProcessBootloaderCommand();
267 }
268
269 /* Check if currently downloading firmware */
270 if (DFU_State == dfuDNLOAD_IDLE)
271 {
272 if (!(SentCommand.DataSize))
273 {
274 DFU_State = dfuIDLE;
275 }
276 else
277 {
278 /* Throw away the filler bytes before the start of the firmware */
279 DiscardFillerBytes(DFU_FILLER_BYTES_SIZE);
280
281 /* Throw away the packet alignment filler bytes before the start of the firmware */
282 DiscardFillerBytes(StartAddr % FIXED_CONTROL_ENDPOINT_SIZE);
283
284 /* Calculate the number of bytes remaining to be written */
285 uint16_t BytesRemaining = ((EndAddr - StartAddr) + 1);
286
287 if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x00)) // Write flash
288 {
289 /* Calculate the number of words to be written from the number of bytes to be written */
290 uint16_t WordsRemaining = (BytesRemaining >> 1);
291
292 union
293 {
294 uint16_t Words[2];
295 uint32_t Long;
296 } CurrFlashAddress = {.Words = {StartAddr, Flash64KBPage}};
297
298 uint32_t CurrFlashPageStartAddress = CurrFlashAddress.Long;
299 uint8_t WordsInFlashPage = 0;
300
301 while (WordsRemaining--)
302 {
303 /* Check if endpoint is empty - if so clear it and wait until ready for next packet */
304 if (!(Endpoint_BytesInEndpoint()))
305 {
306 Endpoint_ClearOUT();
307
308 while (!(Endpoint_IsOUTReceived()))
309 {
310 if (USB_DeviceState == DEVICE_STATE_Unattached)
311 return;
312 }
313 }
314
315 /* Write the next word into the current flash page */
316 boot_page_fill(CurrFlashAddress.Long, Endpoint_Read_16_LE());
317
318 /* Adjust counters */
319 WordsInFlashPage += 1;
320 CurrFlashAddress.Long += 2;
321
322 /* See if an entire page has been written to the flash page buffer */
323 if ((WordsInFlashPage == (SPM_PAGESIZE >> 1)) || !(WordsRemaining))
324 {
325 /* Commit the flash page to memory */
326 boot_page_write(CurrFlashPageStartAddress);
327 boot_spm_busy_wait();
328
329 /* Check if programming incomplete */
330 if (WordsRemaining)
331 {
332 CurrFlashPageStartAddress = CurrFlashAddress.Long;
333 WordsInFlashPage = 0;
334
335 /* Erase next page's temp buffer */
336 boot_page_erase(CurrFlashAddress.Long);
337 boot_spm_busy_wait();
338 }
339 }
340 }
341
342 /* Once programming complete, start address equals the end address */
343 StartAddr = EndAddr;
344
345 /* Re-enable the RWW section of flash */
346 boot_rww_enable();
347 }
348 else // Write EEPROM
349 {
350 while (BytesRemaining--)
351 {
352 /* Check if endpoint is empty - if so clear it and wait until ready for next packet */
353 if (!(Endpoint_BytesInEndpoint()))
354 {
355 Endpoint_ClearOUT();
356
357 while (!(Endpoint_IsOUTReceived()))
358 {
359 if (USB_DeviceState == DEVICE_STATE_Unattached)
360 return;
361 }
362 }
363
364 /* Read the byte from the USB interface and write to to the EEPROM */
365 eeprom_write_byte((uint8_t*)StartAddr, Endpoint_Read_8());
366
367 /* Adjust counters */
368 StartAddr++;
369 }
370 }
371
372 /* Throw away the currently unused DFU file suffix */
373 DiscardFillerBytes(DFU_FILE_SUFFIX_SIZE);
374 }
375 }
376
377 Endpoint_ClearOUT();
378
379 Endpoint_ClearStatusStage();
380
381 break;
382 case DFU_REQ_UPLOAD:
383 Endpoint_ClearSETUP();
384
385 while (!(Endpoint_IsINReady()))
386 {
387 if (USB_DeviceState == DEVICE_STATE_Unattached)
388 return;
389 }
390
391 if (DFU_State != dfuUPLOAD_IDLE)
392 {
393 if ((DFU_State == dfuERROR) && IS_ONEBYTE_COMMAND(SentCommand.Data, 0x01)) // Blank Check
394 {
395 /* Blank checking is performed in the DFU_DNLOAD request - if we get here we've told the host
396 that the memory isn't blank, and the host is requesting the first non-blank address */
397 Endpoint_Write_16_LE(StartAddr);
398 }
399 else
400 {
401 /* Idle state upload - send response to last issued command */
402 Endpoint_Write_8(ResponseByte);
403 }
404 }
405 else
406 {
407 /* Determine the number of bytes remaining in the current block */
408 uint16_t BytesRemaining = ((EndAddr - StartAddr) + 1);
409
410 if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x00)) // Read FLASH
411 {
412 /* Calculate the number of words to be written from the number of bytes to be written */
413 uint16_t WordsRemaining = (BytesRemaining >> 1);
414
415 union
416 {
417 uint16_t Words[2];
418 uint32_t Long;
419 } CurrFlashAddress = {.Words = {StartAddr, Flash64KBPage}};
420
421 while (WordsRemaining--)
422 {
423 /* Check if endpoint is full - if so clear it and wait until ready for next packet */
424 if (Endpoint_BytesInEndpoint() == FIXED_CONTROL_ENDPOINT_SIZE)
425 {
426 Endpoint_ClearIN();
427
428 while (!(Endpoint_IsINReady()))
429 {
430 if (USB_DeviceState == DEVICE_STATE_Unattached)
431 return;
432 }
433 }
434
435 /* Read the flash word and send it via USB to the host */
436 #if (FLASHEND > 0xFFFF)
437 Endpoint_Write_16_LE(pgm_read_word_far(CurrFlashAddress.Long));
438 #else
439 Endpoint_Write_16_LE(pgm_read_word(CurrFlashAddress.Long));
440 #endif
441
442 /* Adjust counters */
443 CurrFlashAddress.Long += 2;
444 }
445
446 /* Once reading is complete, start address equals the end address */
447 StartAddr = EndAddr;
448 }
449 else if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x02)) // Read EEPROM
450 {
451 while (BytesRemaining--)
452 {
453 /* Check if endpoint is full - if so clear it and wait until ready for next packet */
454 if (Endpoint_BytesInEndpoint() == FIXED_CONTROL_ENDPOINT_SIZE)
455 {
456 Endpoint_ClearIN();
457
458 while (!(Endpoint_IsINReady()))
459 {
460 if (USB_DeviceState == DEVICE_STATE_Unattached)
461 return;
462 }
463 }
464
465 /* Read the EEPROM byte and send it via USB to the host */
466 Endpoint_Write_8(eeprom_read_byte((uint8_t*)StartAddr));
467
468 /* Adjust counters */
469 StartAddr++;
470 }
471 }
472
473 /* Return to idle state */
474 DFU_State = dfuIDLE;
475 }
476
477 Endpoint_ClearIN();
478
479 Endpoint_ClearStatusStage();
480 break;
481 case DFU_REQ_GETSTATUS:
482 Endpoint_ClearSETUP();
483
484 /* Write 8-bit status value */
485 Endpoint_Write_8(DFU_Status);
486
487 /* Write 24-bit poll timeout value */
488 Endpoint_Write_8(0);
489 Endpoint_Write_16_LE(0);
490
491 /* Write 8-bit state value */
492 Endpoint_Write_8(DFU_State);
493
494 /* Write 8-bit state string ID number */
495 Endpoint_Write_8(0);
496
497 Endpoint_ClearIN();
498
499 Endpoint_ClearStatusStage();
500 break;
501 case DFU_REQ_CLRSTATUS:
502 Endpoint_ClearSETUP();
503
504 /* Reset the status value variable to the default OK status */
505 DFU_Status = OK;
506
507 Endpoint_ClearStatusStage();
508 break;
509 case DFU_REQ_GETSTATE:
510 Endpoint_ClearSETUP();
511
512 /* Write the current device state to the endpoint */
513 Endpoint_Write_8(DFU_State);
514
515 Endpoint_ClearIN();
516
517 Endpoint_ClearStatusStage();
518 break;
519 case DFU_REQ_ABORT:
520 Endpoint_ClearSETUP();
521
522 /* Reset the current state variable to the default idle state */
523 DFU_State = dfuIDLE;
524
525 Endpoint_ClearStatusStage();
526 break;
527 }
528 }
529
530 /** Routine to discard the specified number of bytes from the control endpoint stream. This is used to
531 * discard unused bytes in the stream from the host, including the memory program block suffix.
532 *
533 * \param[in] NumberOfBytes Number of bytes to discard from the host from the control endpoint
534 */
535 static void DiscardFillerBytes(uint8_t NumberOfBytes)
536 {
537 while (NumberOfBytes--)
538 {
539 if (!(Endpoint_BytesInEndpoint()))
540 {
541 Endpoint_ClearOUT();
542
543 /* Wait until next data packet received */
544 while (!(Endpoint_IsOUTReceived()))
545 {
546 if (USB_DeviceState == DEVICE_STATE_Unattached)
547 return;
548 }
549 }
550 else
551 {
552 Endpoint_Discard_8();
553 }
554 }
555 }
556
557 /** Routine to process an issued command from the host, via a DFU_DNLOAD request wrapper. This routine ensures
558 * that the command is allowed based on the current secure mode flag value, and passes the command off to the
559 * appropriate handler function.
560 */
561 static void ProcessBootloaderCommand(void)
562 {
563 /* Check if device is in secure mode */
564 if (IsSecure)
565 {
566 /* Don't process command unless it is a READ or chip erase command */
567 if (!(((SentCommand.Command == COMMAND_WRITE) &&
568 IS_TWOBYTE_COMMAND(SentCommand.Data, 0x00, 0xFF)) ||
569 (SentCommand.Command == COMMAND_READ)))
570 {
571 /* Set the state and status variables to indicate the error */
572 DFU_State = dfuERROR;
573 DFU_Status = errWRITE;
574
575 /* Stall command */
576 Endpoint_StallTransaction();
577
578 /* Don't process the command */
579 return;
580 }
581 }
582
583 /* Dispatch the required command processing routine based on the command type */
584 switch (SentCommand.Command)
585 {
586 case COMMAND_PROG_START:
587 ProcessMemProgCommand();
588 break;
589 case COMMAND_DISP_DATA:
590 ProcessMemReadCommand();
591 break;
592 case COMMAND_WRITE:
593 ProcessWriteCommand();
594 break;
595 case COMMAND_READ:
596 ProcessReadCommand();
597 break;
598 case COMMAND_CHANGE_BASE_ADDR:
599 if (IS_TWOBYTE_COMMAND(SentCommand.Data, 0x03, 0x00)) // Set 64KB flash page command
600 Flash64KBPage = SentCommand.Data[2];
601
602 break;
603 }
604 }
605
606 /** Routine to concatenate the given pair of 16-bit memory start and end addresses from the host, and store them
607 * in the StartAddr and EndAddr global variables.
608 */
609 static void LoadStartEndAddresses(void)
610 {
611 union
612 {
613 uint8_t Bytes[2];
614 uint16_t Word;
615 } Address[2] = {{.Bytes = {SentCommand.Data[2], SentCommand.Data[1]}},
616 {.Bytes = {SentCommand.Data[4], SentCommand.Data[3]}}};
617
618 /* Load in the start and ending read addresses from the sent data packet */
619 StartAddr = Address[0].Word;
620 EndAddr = Address[1].Word;
621 }
622
623 /** Handler for a Memory Program command issued by the host. This routine handles the preparations needed
624 * to write subsequent data from the host into the specified memory.
625 */
626 static void ProcessMemProgCommand(void)
627 {
628 if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x00) || // Write FLASH command
629 IS_ONEBYTE_COMMAND(SentCommand.Data, 0x01)) // Write EEPROM command
630 {
631 /* Load in the start and ending read addresses */
632 LoadStartEndAddresses();
633
634 /* If FLASH is being written to, we need to pre-erase the first page to write to */
635 if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x00))
636 {
637 union
638 {
639 uint16_t Words[2];
640 uint32_t Long;
641 } CurrFlashAddress = {.Words = {StartAddr, Flash64KBPage}};
642
643 /* Erase the current page's temp buffer */
644 boot_page_erase(CurrFlashAddress.Long);
645 boot_spm_busy_wait();
646 }
647
648 /* Set the state so that the next DNLOAD requests reads in the firmware */
649 DFU_State = dfuDNLOAD_IDLE;
650 }
651 }
652
653 /** Handler for a Memory Read command issued by the host. This routine handles the preparations needed
654 * to read subsequent data from the specified memory out to the host, as well as implementing the memory
655 * blank check command.
656 */
657 static void ProcessMemReadCommand(void)
658 {
659 if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x00) || // Read FLASH command
660 IS_ONEBYTE_COMMAND(SentCommand.Data, 0x02)) // Read EEPROM command
661 {
662 /* Load in the start and ending read addresses */
663 LoadStartEndAddresses();
664
665 /* Set the state so that the next UPLOAD requests read out the firmware */
666 DFU_State = dfuUPLOAD_IDLE;
667 }
668 else if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x01)) // Blank check FLASH command
669 {
670 uint32_t CurrFlashAddress = 0;
671
672 while (CurrFlashAddress < BOOT_START_ADDR)
673 {
674 /* Check if the current byte is not blank */
675 #if (FLASHEND > 0xFFFF)
676 if (pgm_read_byte_far(CurrFlashAddress) != 0xFF)
677 #else
678 if (pgm_read_byte(CurrFlashAddress) != 0xFF)
679 #endif
680 {
681 /* Save the location of the first non-blank byte for response back to the host */
682 Flash64KBPage = (CurrFlashAddress >> 16);
683 StartAddr = CurrFlashAddress;
684
685 /* Set state and status variables to the appropriate error values */
686 DFU_State = dfuERROR;
687 DFU_Status = errCHECK_ERASED;
688
689 break;
690 }
691
692 CurrFlashAddress++;
693 }
694 }
695 }
696
697 /** Handler for a Data Write command issued by the host. This routine handles non-programming commands such as
698 * bootloader exit (both via software jumps and hardware watchdog resets) and flash memory erasure.
699 */
700 static void ProcessWriteCommand(void)
701 {
702 if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x03)) // Start application
703 {
704 /* Indicate that the bootloader is terminating */
705 WaitForExit = true;
706
707 /* Check if data supplied for the Start Program command - no data executes the program */
708 if (SentCommand.DataSize)
709 {
710 if (SentCommand.Data[1] == 0x01) // Start via jump
711 {
712 union
713 {
714 uint8_t Bytes[2];
715 AppPtr_t FuncPtr;
716 } Address = {.Bytes = {SentCommand.Data[4], SentCommand.Data[3]}};
717
718 /* Load in the jump address into the application start address pointer */
719 AppStartPtr = Address.FuncPtr;
720 }
721 }
722 else
723 {
724 if (SentCommand.Data[1] == 0x00) // Start via watchdog
725 {
726 /* Unlock the forced application start mode of the bootloader if it is restarted */
727 MagicBootKey = MAGIC_BOOT_KEY;
728
729 /* Start the watchdog to reset the AVR once the communications are finalized */
730 wdt_enable(WDTO_250MS);
731 }
732 else // Start via jump
733 {
734 /* Set the flag to terminate the bootloader at next opportunity */
735 RunBootloader = false;
736 }
737 }
738 }
739 else if (IS_TWOBYTE_COMMAND(SentCommand.Data, 0x00, 0xFF)) // Erase flash
740 {
741 uint32_t CurrFlashAddress = 0;
742
743 /* Clear the application section of flash */
744 while (CurrFlashAddress < BOOT_START_ADDR)
745 {
746 boot_page_erase(CurrFlashAddress);
747 boot_spm_busy_wait();
748 boot_page_write(CurrFlashAddress);
749 boot_spm_busy_wait();
750
751 CurrFlashAddress += SPM_PAGESIZE;
752 }
753
754 /* Re-enable the RWW section of flash as writing to the flash locks it out */
755 boot_rww_enable();
756
757 /* Memory has been erased, reset the security bit so that programming/reading is allowed */
758 IsSecure = false;
759 }
760 }
761
762 /** Handler for a Data Read command issued by the host. This routine handles bootloader information retrieval
763 * commands such as device signature and bootloader version retrieval.
764 */
765 static void ProcessReadCommand(void)
766 {
767 const uint8_t BootloaderInfo[3] = {BOOTLOADER_VERSION, BOOTLOADER_ID_BYTE1, BOOTLOADER_ID_BYTE2};
768 const uint8_t SignatureInfo[3] = {AVR_SIGNATURE_1, AVR_SIGNATURE_2, AVR_SIGNATURE_3};
769
770 uint8_t DataIndexToRead = SentCommand.Data[1];
771
772 if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x00)) // Read bootloader info
773 ResponseByte = BootloaderInfo[DataIndexToRead];
774 else if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x01)) // Read signature byte
775 ResponseByte = SignatureInfo[DataIndexToRead - 0x30];
776 }
777