Update file header copyrights for 2012.
[pub/USBasp.git] / Bootloaders / CDC / BootloaderCDC.c
1 /*
2 LUFA Library
3 Copyright (C) Dean Camera, 2012.
4
5 dean [at] fourwalledcubicle [dot] com
6 www.lufa-lib.org
7 */
8
9 /*
10 Copyright 2011 Dean Camera (dean [at] fourwalledcubicle [dot] com)
11
12 Permission to use, copy, modify, distribute, and sell this
13 software and its documentation for any purpose is hereby granted
14 without fee, provided that the above copyright notice appear in
15 all copies and that both that the copyright notice and this
16 permission notice and warranty disclaimer appear in supporting
17 documentation, and that the name of the author not be used in
18 advertising or publicity pertaining to distribution of the
19 software without specific, written prior permission.
20
21 The author disclaim all warranties with regard to this
22 software, including all implied warranties of merchantability
23 and fitness. In no event shall the author be liable for any
24 special, indirect or consequential damages or any damages
25 whatsoever resulting from loss of use, data or profits, whether
26 in an action of contract, negligence or other tortious action,
27 arising out of or in connection with the use or performance of
28 this software.
29 */
30
31 /** \file
32 *
33 * Main source file for the CDC class bootloader. This file contains the complete bootloader logic.
34 */
35
36 #define INCLUDE_FROM_BOOTLOADERCDC_C
37 #include "BootloaderCDC.h"
38
39 /** Contains the current baud rate and other settings of the first virtual serial port. This must be retained as some
40 * operating systems will not open the port unless the settings can be set successfully.
41 */
42 static CDC_LineEncoding_t LineEncoding = { .BaudRateBPS = 0,
43 .CharFormat = CDC_LINEENCODING_OneStopBit,
44 .ParityType = CDC_PARITY_None,
45 .DataBits = 8 };
46
47 /** Current address counter. This stores the current address of the FLASH or EEPROM as set by the host,
48 * and is used when reading or writing to the AVRs memory (either FLASH or EEPROM depending on the issued
49 * command.)
50 */
51 static uint32_t CurrAddress;
52
53 /** Flag to indicate if the bootloader should be running, or should exit and allow the application code to run
54 * via a watchdog reset. When cleared the bootloader will exit, starting the watchdog and entering an infinite
55 * loop until the AVR restarts and the application runs.
56 */
57 static bool RunBootloader = true;
58
59
60 /** Main program entry point. This routine configures the hardware required by the bootloader, then continuously
61 * runs the bootloader processing routine until instructed to soft-exit, or hard-reset via the watchdog to start
62 * the loaded application code.
63 */
64 int main(void)
65 {
66 /* Setup hardware required for the bootloader */
67 SetupHardware();
68
69 /* Turn on first LED on the board to indicate that the bootloader has started */
70 LEDs_SetAllLEDs(LEDS_LED1);
71
72 /* Enable global interrupts so that the USB stack can function */
73 sei();
74
75 while (RunBootloader)
76 {
77 CDC_Task();
78 USB_USBTask();
79 }
80
81 /* Disconnect from the host - USB interface will be reset later along with the AVR */
82 USB_Detach();
83
84 /* Enable the watchdog and force a timeout to reset the AVR */
85 wdt_enable(WDTO_250MS);
86
87 for (;;);
88 }
89
90 /** Configures all hardware required for the bootloader. */
91 static void SetupHardware(void)
92 {
93 /* Disable watchdog if enabled by bootloader/fuses */
94 MCUSR &= ~(1 << WDRF);
95 wdt_disable();
96
97 /* Disable clock division */
98 clock_prescale_set(clock_div_1);
99
100 /* Relocate the interrupt vector table to the bootloader section */
101 MCUCR = (1 << IVCE);
102 MCUCR = (1 << IVSEL);
103
104 /* Initialize the USB and other board hardware drivers */
105 USB_Init();
106 LEDs_Init();
107
108 /* Bootloader active LED toggle timer initialization */
109 TIMSK1 = (1 << TOIE1);
110 TCCR1B = ((1 << CS11) | (1 << CS10));
111 }
112
113 /** ISR to periodically toggle the LEDs on the board to indicate that the bootloader is active. */
114 ISR(TIMER1_OVF_vect, ISR_BLOCK)
115 {
116 LEDs_ToggleLEDs(LEDS_LED1 | LEDS_LED2);
117 }
118
119 /** Event handler for the USB_ConfigurationChanged event. This configures the device's endpoints ready
120 * to relay data to and from the attached USB host.
121 */
122 void EVENT_USB_Device_ConfigurationChanged(void)
123 {
124 /* Setup CDC Notification, Rx and Tx Endpoints */
125 Endpoint_ConfigureEndpoint(CDC_NOTIFICATION_EPNUM, EP_TYPE_INTERRUPT,
126 ENDPOINT_DIR_IN, CDC_NOTIFICATION_EPSIZE,
127 ENDPOINT_BANK_SINGLE);
128
129 Endpoint_ConfigureEndpoint(CDC_TX_EPNUM, EP_TYPE_BULK,
130 ENDPOINT_DIR_IN, CDC_TXRX_EPSIZE,
131 ENDPOINT_BANK_SINGLE);
132
133 Endpoint_ConfigureEndpoint(CDC_RX_EPNUM, EP_TYPE_BULK,
134 ENDPOINT_DIR_OUT, CDC_TXRX_EPSIZE,
135 ENDPOINT_BANK_SINGLE);
136 }
137
138 /** Event handler for the USB_ControlRequest event. This is used to catch and process control requests sent to
139 * the device from the USB host before passing along unhandled control requests to the library for processing
140 * internally.
141 */
142 void EVENT_USB_Device_ControlRequest(void)
143 {
144 /* Ignore any requests that aren't directed to the CDC interface */
145 if ((USB_ControlRequest.bmRequestType & (CONTROL_REQTYPE_TYPE | CONTROL_REQTYPE_RECIPIENT)) !=
146 (REQTYPE_CLASS | REQREC_INTERFACE))
147 {
148 return;
149 }
150
151 /* Activity - toggle indicator LEDs */
152 LEDs_ToggleLEDs(LEDS_LED1 | LEDS_LED2);
153
154 /* Process CDC specific control requests */
155 switch (USB_ControlRequest.bRequest)
156 {
157 case CDC_REQ_GetLineEncoding:
158 if (USB_ControlRequest.bmRequestType == (REQDIR_DEVICETOHOST | REQTYPE_CLASS | REQREC_INTERFACE))
159 {
160 Endpoint_ClearSETUP();
161
162 /* Write the line coding data to the control endpoint */
163 Endpoint_Write_Control_Stream_LE(&LineEncoding, sizeof(CDC_LineEncoding_t));
164 Endpoint_ClearOUT();
165 }
166
167 break;
168 case CDC_REQ_SetLineEncoding:
169 if (USB_ControlRequest.bmRequestType == (REQDIR_HOSTTODEVICE | REQTYPE_CLASS | REQREC_INTERFACE))
170 {
171 Endpoint_ClearSETUP();
172
173 /* Read the line coding data in from the host into the global struct */
174 Endpoint_Read_Control_Stream_LE(&LineEncoding, sizeof(CDC_LineEncoding_t));
175 Endpoint_ClearIN();
176 }
177
178 break;
179 }
180 }
181
182 #if !defined(NO_BLOCK_SUPPORT)
183 /** Reads or writes a block of EEPROM or FLASH memory to or from the appropriate CDC data endpoint, depending
184 * on the AVR910 protocol command issued.
185 *
186 * \param[in] Command Single character AVR910 protocol command indicating what memory operation to perform
187 */
188 static void ReadWriteMemoryBlock(const uint8_t Command)
189 {
190 uint16_t BlockSize;
191 char MemoryType;
192
193 bool HighByte = false;
194 uint8_t LowByte = 0;
195
196 BlockSize = (FetchNextCommandByte() << 8);
197 BlockSize |= FetchNextCommandByte();
198
199 MemoryType = FetchNextCommandByte();
200
201 if ((MemoryType != 'E') && (MemoryType != 'F'))
202 {
203 /* Send error byte back to the host */
204 WriteNextResponseByte('?');
205
206 return;
207 }
208
209 /* Check if command is to read memory */
210 if (Command == 'g')
211 {
212 /* Re-enable RWW section */
213 boot_rww_enable();
214
215 while (BlockSize--)
216 {
217 if (MemoryType == 'F')
218 {
219 /* Read the next FLASH byte from the current FLASH page */
220 #if (FLASHEND > 0xFFFF)
221 WriteNextResponseByte(pgm_read_byte_far(CurrAddress | HighByte));
222 #else
223 WriteNextResponseByte(pgm_read_byte(CurrAddress | HighByte));
224 #endif
225
226 /* If both bytes in current word have been read, increment the address counter */
227 if (HighByte)
228 CurrAddress += 2;
229
230 HighByte = !HighByte;
231 }
232 else
233 {
234 /* Read the next EEPROM byte into the endpoint */
235 WriteNextResponseByte(eeprom_read_byte((uint8_t*)(intptr_t)(CurrAddress >> 1)));
236
237 /* Increment the address counter after use */
238 CurrAddress += 2;
239 }
240 }
241 }
242 else
243 {
244 uint32_t PageStartAddress = CurrAddress;
245
246 if (MemoryType == 'F')
247 {
248 boot_page_erase(PageStartAddress);
249 boot_spm_busy_wait();
250 }
251
252 while (BlockSize--)
253 {
254 if (MemoryType == 'F')
255 {
256 /* If both bytes in current word have been written, increment the address counter */
257 if (HighByte)
258 {
259 /* Write the next FLASH word to the current FLASH page */
260 boot_page_fill(CurrAddress, ((FetchNextCommandByte() << 8) | LowByte));
261
262 /* Increment the address counter after use */
263 CurrAddress += 2;
264 }
265 else
266 {
267 LowByte = FetchNextCommandByte();
268 }
269
270 HighByte = !HighByte;
271 }
272 else
273 {
274 /* Write the next EEPROM byte from the endpoint */
275 eeprom_write_byte((uint8_t*)((intptr_t)(CurrAddress >> 1)), FetchNextCommandByte());
276
277 /* Increment the address counter after use */
278 CurrAddress += 2;
279 }
280 }
281
282 /* If in FLASH programming mode, commit the page after writing */
283 if (MemoryType == 'F')
284 {
285 /* Commit the flash page to memory */
286 boot_page_write(PageStartAddress);
287
288 /* Wait until write operation has completed */
289 boot_spm_busy_wait();
290 }
291
292 /* Send response byte back to the host */
293 WriteNextResponseByte('\r');
294 }
295 }
296 #endif
297
298 /** Retrieves the next byte from the host in the CDC data OUT endpoint, and clears the endpoint bank if needed
299 * to allow reception of the next data packet from the host.
300 *
301 * \return Next received byte from the host in the CDC data OUT endpoint
302 */
303 static uint8_t FetchNextCommandByte(void)
304 {
305 /* Select the OUT endpoint so that the next data byte can be read */
306 Endpoint_SelectEndpoint(CDC_RX_EPNUM);
307
308 /* If OUT endpoint empty, clear it and wait for the next packet from the host */
309 while (!(Endpoint_IsReadWriteAllowed()))
310 {
311 Endpoint_ClearOUT();
312
313 while (!(Endpoint_IsOUTReceived()))
314 {
315 if (USB_DeviceState == DEVICE_STATE_Unattached)
316 return 0;
317 }
318 }
319
320 /* Fetch the next byte from the OUT endpoint */
321 return Endpoint_Read_8();
322 }
323
324 /** Writes the next response byte to the CDC data IN endpoint, and sends the endpoint back if needed to free up the
325 * bank when full ready for the next byte in the packet to the host.
326 *
327 * \param[in] Response Next response byte to send to the host
328 */
329 static void WriteNextResponseByte(const uint8_t Response)
330 {
331 /* Select the IN endpoint so that the next data byte can be written */
332 Endpoint_SelectEndpoint(CDC_TX_EPNUM);
333
334 /* If IN endpoint full, clear it and wait until ready for the next packet to the host */
335 if (!(Endpoint_IsReadWriteAllowed()))
336 {
337 Endpoint_ClearIN();
338
339 while (!(Endpoint_IsINReady()))
340 {
341 if (USB_DeviceState == DEVICE_STATE_Unattached)
342 return;
343 }
344 }
345
346 /* Write the next byte to the IN endpoint */
347 Endpoint_Write_8(Response);
348 }
349
350 /** Task to read in AVR910 commands from the CDC data OUT endpoint, process them, perform the required actions
351 * and send the appropriate response back to the host.
352 */
353 static void CDC_Task(void)
354 {
355 /* Select the OUT endpoint */
356 Endpoint_SelectEndpoint(CDC_RX_EPNUM);
357
358 /* Check if endpoint has a command in it sent from the host */
359 if (!(Endpoint_IsOUTReceived()))
360 return;
361
362 /* Read in the bootloader command (first byte sent from host) */
363 uint8_t Command = FetchNextCommandByte();
364
365 if (Command == 'E')
366 {
367 RunBootloader = false;
368
369 /* Send confirmation byte back to the host */
370 WriteNextResponseByte('\r');
371 }
372 else if (Command == 'T')
373 {
374 FetchNextCommandByte();
375
376 /* Send confirmation byte back to the host */
377 WriteNextResponseByte('\r');
378 }
379 else if ((Command == 'L') || (Command == 'P'))
380 {
381 /* Send confirmation byte back to the host */
382 WriteNextResponseByte('\r');
383 }
384 else if (Command == 't')
385 {
386 /* Return ATMEGA128 part code - this is only to allow AVRProg to use the bootloader */
387 WriteNextResponseByte(0x44);
388 WriteNextResponseByte(0x00);
389 }
390 else if (Command == 'a')
391 {
392 /* Indicate auto-address increment is supported */
393 WriteNextResponseByte('Y');
394 }
395 else if (Command == 'A')
396 {
397 /* Set the current address to that given by the host */
398 CurrAddress = (FetchNextCommandByte() << 9);
399 CurrAddress |= (FetchNextCommandByte() << 1);
400
401 /* Send confirmation byte back to the host */
402 WriteNextResponseByte('\r');
403 }
404 else if (Command == 'p')
405 {
406 /* Indicate serial programmer back to the host */
407 WriteNextResponseByte('S');
408 }
409 else if (Command == 'S')
410 {
411 /* Write the 7-byte software identifier to the endpoint */
412 for (uint8_t CurrByte = 0; CurrByte < 7; CurrByte++)
413 WriteNextResponseByte(SOFTWARE_IDENTIFIER[CurrByte]);
414 }
415 else if (Command == 'V')
416 {
417 WriteNextResponseByte('0' + BOOTLOADER_VERSION_MAJOR);
418 WriteNextResponseByte('0' + BOOTLOADER_VERSION_MINOR);
419 }
420 else if (Command == 's')
421 {
422 WriteNextResponseByte(AVR_SIGNATURE_3);
423 WriteNextResponseByte(AVR_SIGNATURE_2);
424 WriteNextResponseByte(AVR_SIGNATURE_1);
425 }
426 else if (Command == 'e')
427 {
428 /* Clear the application section of flash */
429 for (uint32_t CurrFlashAddress = 0; CurrFlashAddress < BOOT_START_ADDR; CurrFlashAddress += SPM_PAGESIZE)
430 {
431 boot_page_erase(CurrFlashAddress);
432 boot_spm_busy_wait();
433 boot_page_write(CurrFlashAddress);
434 boot_spm_busy_wait();
435 }
436
437 /* Send confirmation byte back to the host */
438 WriteNextResponseByte('\r');
439 }
440 #if !defined(NO_LOCK_BYTE_WRITE_SUPPORT)
441 else if (Command == 'l')
442 {
443 /* Set the lock bits to those given by the host */
444 boot_lock_bits_set(FetchNextCommandByte());
445
446 /* Send confirmation byte back to the host */
447 WriteNextResponseByte('\r');
448 }
449 #endif
450 else if (Command == 'r')
451 {
452 WriteNextResponseByte(boot_lock_fuse_bits_get(GET_LOCK_BITS));
453 }
454 else if (Command == 'F')
455 {
456 WriteNextResponseByte(boot_lock_fuse_bits_get(GET_LOW_FUSE_BITS));
457 }
458 else if (Command == 'N')
459 {
460 WriteNextResponseByte(boot_lock_fuse_bits_get(GET_HIGH_FUSE_BITS));
461 }
462 else if (Command == 'Q')
463 {
464 WriteNextResponseByte(boot_lock_fuse_bits_get(GET_EXTENDED_FUSE_BITS));
465 }
466 #if !defined(NO_BLOCK_SUPPORT)
467 else if (Command == 'b')
468 {
469 WriteNextResponseByte('Y');
470
471 /* Send block size to the host */
472 WriteNextResponseByte(SPM_PAGESIZE >> 8);
473 WriteNextResponseByte(SPM_PAGESIZE & 0xFF);
474 }
475 else if ((Command == 'B') || (Command == 'g'))
476 {
477 /* Delegate the block write/read to a separate function for clarity */
478 ReadWriteMemoryBlock(Command);
479 }
480 #endif
481 #if !defined(NO_FLASH_BYTE_SUPPORT)
482 else if (Command == 'C')
483 {
484 /* Write the high byte to the current flash page */
485 boot_page_fill(CurrAddress, FetchNextCommandByte());
486
487 /* Send confirmation byte back to the host */
488 WriteNextResponseByte('\r');
489 }
490 else if (Command == 'c')
491 {
492 /* Write the low byte to the current flash page */
493 boot_page_fill(CurrAddress | 0x01, FetchNextCommandByte());
494
495 /* Increment the address */
496 CurrAddress += 2;
497
498 /* Send confirmation byte back to the host */
499 WriteNextResponseByte('\r');
500 }
501 else if (Command == 'm')
502 {
503 /* Commit the flash page to memory */
504 boot_page_write(CurrAddress);
505
506 /* Wait until write operation has completed */
507 boot_spm_busy_wait();
508
509 /* Send confirmation byte back to the host */
510 WriteNextResponseByte('\r');
511 }
512 else if (Command == 'R')
513 {
514 #if (FLASHEND > 0xFFFF)
515 uint16_t ProgramWord = pgm_read_word_far(CurrAddress);
516 #else
517 uint16_t ProgramWord = pgm_read_word(CurrAddress);
518 #endif
519
520 WriteNextResponseByte(ProgramWord >> 8);
521 WriteNextResponseByte(ProgramWord & 0xFF);
522 }
523 #endif
524 #if !defined(NO_EEPROM_BYTE_SUPPORT)
525 else if (Command == 'D')
526 {
527 /* Read the byte from the endpoint and write it to the EEPROM */
528 eeprom_write_byte((uint8_t*)((intptr_t)(CurrAddress >> 1)), FetchNextCommandByte());
529
530 /* Increment the address after use */
531 CurrAddress += 2;
532
533 /* Send confirmation byte back to the host */
534 WriteNextResponseByte('\r');
535 }
536 else if (Command == 'd')
537 {
538 /* Read the EEPROM byte and write it to the endpoint */
539 WriteNextResponseByte(eeprom_read_byte((uint8_t*)((intptr_t)(CurrAddress >> 1))));
540
541 /* Increment the address after use */
542 CurrAddress += 2;
543 }
544 #endif
545 else if (Command != 27)
546 {
547 /* Unknown (non-sync) command, return fail code */
548 WriteNextResponseByte('?');
549 }
550
551 /* Select the IN endpoint */
552 Endpoint_SelectEndpoint(CDC_TX_EPNUM);
553
554 /* Remember if the endpoint is completely full before clearing it */
555 bool IsEndpointFull = !(Endpoint_IsReadWriteAllowed());
556
557 /* Send the endpoint data to the host */
558 Endpoint_ClearIN();
559
560 /* If a full endpoint's worth of data was sent, we need to send an empty packet afterwards to signal end of transfer */
561 if (IsEndpointFull)
562 {
563 while (!(Endpoint_IsINReady()))
564 {
565 if (USB_DeviceState == DEVICE_STATE_Unattached)
566 return;
567 }
568
569 Endpoint_ClearIN();
570 }
571
572 /* Wait until the data has been sent to the host */
573 while (!(Endpoint_IsINReady()))
574 {
575 if (USB_DeviceState == DEVICE_STATE_Unattached)
576 return;
577 }
578
579 /* Select the OUT endpoint */
580 Endpoint_SelectEndpoint(CDC_RX_EPNUM);
581
582 /* Acknowledge the command from the host */
583 Endpoint_ClearOUT();
584 }
585