Minor updates to the Benito programmer - remove redundant PORT register manipulations.
[pub/USBasp.git] / Bootloaders / DFU / BootloaderDFU.c
1 /*
2 LUFA Library
3 Copyright (C) Dean Camera, 2009.
4
5 dean [at] fourwalledcubicle [dot] com
6 www.fourwalledcubicle.com
7 */
8
9 /*
10 Copyright 2009 Dean Camera (dean [at] fourwalledcubicle [dot] com)
11
12 Permission to use, copy, modify, and distribute this software
13 and its documentation for any purpose and without fee is hereby
14 granted, provided that the above copyright notice appear in all
15 copies and that both that the copyright notice and this
16 permission notice and warranty disclaimer appear in supporting
17 documentation, and that the name of the author not be used in
18 advertising or publicity pertaining to distribution of the
19 software without specific, written prior permission.
20
21 The author disclaim all warranties with regard to this
22 software, including all implied warranties of merchantability
23 and fitness. In no event shall the author be liable for any
24 special, indirect or consequential damages or any damages
25 whatsoever resulting from loss of use, data or profits, whether
26 in an action of contract, negligence or other tortious action,
27 arising out of or in connection with the use or performance of
28 this software.
29 */
30
31 /** \file
32 *
33 * Main source file for the DFU class bootloader. This file contains the complete bootloader logic.
34 */
35
36 #define INCLUDE_FROM_BOOTLOADER_C
37 #include "BootloaderDFU.h"
38
39 /** Flag to indicate if the bootloader is currently running in secure mode, disallowing memory operations
40 * other than erase. This is initially set to the value set by SECURE_MODE, and cleared by the bootloader
41 * once a memory erase has completed.
42 */
43 bool IsSecure = SECURE_MODE;
44
45 /** Flag to indicate if the bootloader should be running, or should exit and allow the application code to run
46 * via a soft reset. When cleared, the bootloader will abort, the USB interface will shut down and the application
47 * jumped to via an indirect jump to location 0x0000 (or other location specified by the host).
48 */
49 bool RunBootloader = true;
50
51 /** Flag to indicate if the bootloader is waiting to exit. When the host requests the bootloader to exit and
52 * jump to the application address it specifies, it sends two sequential commands which must be properly
53 * acknowledged. Upon reception of the first the RunBootloader flag is cleared and the WaitForExit flag is set,
54 * causing the bootloader to wait for the final exit command before shutting down.
55 */
56 bool WaitForExit = false;
57
58 /** Current DFU state machine state, one of the values in the DFU_State_t enum. */
59 uint8_t DFU_State = dfuIDLE;
60
61 /** Status code of the last executed DFU command. This is set to one of the values in the DFU_Status_t enum after
62 * each operation, and returned to the host when a Get Status DFU request is issued.
63 */
64 uint8_t DFU_Status = OK;
65
66 /** Data containing the DFU command sent from the host. */
67 DFU_Command_t SentCommand;
68
69 /** Response to the last issued Read Data DFU command. Unlike other DFU commands, the read command
70 * requires a single byte response from the bootloader containing the read data when the next DFU_UPLOAD command
71 * is issued by the host.
72 */
73 uint8_t ResponseByte;
74
75 /** Pointer to the start of the user application. By default this is 0x0000 (the reset vector), however the host
76 * may specify an alternate address when issuing the application soft-start command.
77 */
78 AppPtr_t AppStartPtr = (AppPtr_t)0x0000;
79
80 /** 64-bit flash page number. This is concatenated with the current 16-bit address on USB AVRs containing more than
81 * 64KB of flash memory.
82 */
83 uint8_t Flash64KBPage = 0;
84
85 /** Memory start address, indicating the current address in the memory being addressed (either FLASH or EEPROM
86 * depending on the issued command from the host).
87 */
88 uint16_t StartAddr = 0x0000;
89
90 /** Memory end address, indicating the end address to read to/write from in the memory being addressed (either FLASH
91 * of EEPROM depending on the issued command from the host).
92 */
93 uint16_t EndAddr = 0x0000;
94
95 /** Main program entry point. This routine configures the hardware required by the bootloader, then continuously
96 * runs the bootloader processing routine until instructed to soft-exit, or hard-reset via the watchdog to start
97 * the loaded application code.
98 */
99 int main(void)
100 {
101 /* Configure hardware required by the bootloader */
102 SetupHardware();
103
104 /* Run the USB management task while the bootloader is supposed to be running */
105 while (RunBootloader || WaitForExit)
106 USB_USBTask();
107
108 /* Reset configured hardware back to their original states for the user application */
109 ResetHardware();
110
111 /* Start the user application */
112 AppStartPtr();
113 }
114
115 /** Configures all hardware required for the bootloader. */
116 void SetupHardware(void)
117 {
118 /* Disable watchdog if enabled by bootloader/fuses */
119 MCUSR &= ~(1 << WDRF);
120 wdt_disable();
121
122 /* Disable clock division */
123 clock_prescale_set(clock_div_1);
124
125 /* Relocate the interrupt vector table to the bootloader section */
126 MCUCR = (1 << IVCE);
127 MCUCR = (1 << IVSEL);
128
129 /* Initialize the USB subsystem */
130 USB_Init();
131 }
132
133 /** Resets all configured hardware required for the bootloader back to their original states. */
134 void ResetHardware(void)
135 {
136 /* Shut down the USB subsystem */
137 USB_ShutDown();
138
139 /* Relocate the interrupt vector table back to the application section */
140 MCUCR = (1 << IVCE);
141 MCUCR = 0;
142 }
143
144 /** Event handler for the USB_Disconnect event. This indicates that the bootloader should exit and the user
145 * application started.
146 */
147 void EVENT_USB_Disconnect(void)
148 {
149 /* Upon disconnection, run user application */
150 RunBootloader = false;
151 }
152
153 /** Event handler for the USB_UnhandledControlPacket event. This is used to catch standard and class specific
154 * control requests that are not handled internally by the USB library (including the DFU commands, which are
155 * all issued via the control endpoint), so that they can be handled appropriately for the application.
156 */
157 void EVENT_USB_UnhandledControlPacket(void)
158 {
159 /* Get the size of the command and data from the wLength value */
160 SentCommand.DataSize = USB_ControlRequest.wLength;
161
162 switch (USB_ControlRequest.bRequest)
163 {
164 case DFU_DNLOAD:
165 Endpoint_ClearSETUP();
166
167 /* Check if bootloader is waiting to terminate */
168 if (WaitForExit)
169 {
170 /* Bootloader is terminating - process last received command */
171 ProcessBootloaderCommand();
172
173 /* Indicate that the last command has now been processed - free to exit bootloader */
174 WaitForExit = false;
175 }
176
177 /* If the request has a data stage, load it into the command struct */
178 if (SentCommand.DataSize)
179 {
180 while (!(Endpoint_IsOUTReceived()))
181 {
182 if (USB_DeviceState == DEVICE_STATE_Unattached)
183 return;
184 }
185
186 /* First byte of the data stage is the DNLOAD request's command */
187 SentCommand.Command = Endpoint_Read_Byte();
188
189 /* One byte of the data stage is the command, so subtract it from the total data bytes */
190 SentCommand.DataSize--;
191
192 /* Load in the rest of the data stage as command parameters */
193 for (uint8_t DataByte = 0; (DataByte < sizeof(SentCommand.Data)) &&
194 Endpoint_BytesInEndpoint(); DataByte++)
195 {
196 SentCommand.Data[DataByte] = Endpoint_Read_Byte();
197 SentCommand.DataSize--;
198 }
199
200 /* Process the command */
201 ProcessBootloaderCommand();
202 }
203
204 /* Check if currently downloading firmware */
205 if (DFU_State == dfuDNLOAD_IDLE)
206 {
207 if (!(SentCommand.DataSize))
208 {
209 DFU_State = dfuIDLE;
210 }
211 else
212 {
213 /* Throw away the filler bytes before the start of the firmware */
214 DiscardFillerBytes(DFU_FILLER_BYTES_SIZE);
215
216 /* Throw away the page alignment filler bytes before the start of the firmware */
217 DiscardFillerBytes(StartAddr % SPM_PAGESIZE);
218
219 /* Calculate the number of bytes remaining to be written */
220 uint16_t BytesRemaining = ((EndAddr - StartAddr) + 1);
221
222 if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x00)) // Write flash
223 {
224 /* Calculate the number of words to be written from the number of bytes to be written */
225 uint16_t WordsRemaining = (BytesRemaining >> 1);
226
227 union
228 {
229 uint16_t Words[2];
230 uint32_t Long;
231 } CurrFlashAddress = {.Words = {StartAddr, Flash64KBPage}};
232
233 uint32_t CurrFlashPageStartAddress = CurrFlashAddress.Long;
234 uint8_t WordsInFlashPage = 0;
235
236 while (WordsRemaining--)
237 {
238 /* Check if endpoint is empty - if so clear it and wait until ready for next packet */
239 if (!(Endpoint_BytesInEndpoint()))
240 {
241 Endpoint_ClearOUT();
242
243 while (!(Endpoint_IsOUTReceived()))
244 {
245 if (USB_DeviceState == DEVICE_STATE_Unattached)
246 return;
247 }
248 }
249
250 /* Write the next word into the current flash page */
251 boot_page_fill(CurrFlashAddress.Long, Endpoint_Read_Word_LE());
252
253 /* Adjust counters */
254 WordsInFlashPage += 1;
255 CurrFlashAddress.Long += 2;
256
257 /* See if an entire page has been written to the flash page buffer */
258 if ((WordsInFlashPage == (SPM_PAGESIZE >> 1)) || !(WordsRemaining))
259 {
260 /* Commit the flash page to memory */
261 boot_page_write(CurrFlashPageStartAddress);
262 boot_spm_busy_wait();
263
264 /* Check if programming incomplete */
265 if (WordsRemaining)
266 {
267 CurrFlashPageStartAddress = CurrFlashAddress.Long;
268 WordsInFlashPage = 0;
269
270 /* Erase next page's temp buffer */
271 boot_page_erase(CurrFlashAddress.Long);
272 boot_spm_busy_wait();
273 }
274 }
275 }
276
277 /* Once programming complete, start address equals the end address */
278 StartAddr = EndAddr;
279
280 /* Re-enable the RWW section of flash */
281 boot_rww_enable();
282 }
283 else // Write EEPROM
284 {
285 while (BytesRemaining--)
286 {
287 /* Check if endpoint is empty - if so clear it and wait until ready for next packet */
288 if (!(Endpoint_BytesInEndpoint()))
289 {
290 Endpoint_ClearOUT();
291
292 while (!(Endpoint_IsOUTReceived()))
293 {
294 if (USB_DeviceState == DEVICE_STATE_Unattached)
295 return;
296 }
297 }
298
299 /* Read the byte from the USB interface and write to to the EEPROM */
300 eeprom_write_byte((uint8_t*)StartAddr, Endpoint_Read_Byte());
301
302 /* Adjust counters */
303 StartAddr++;
304 }
305 }
306
307 /* Throw away the currently unused DFU file suffix */
308 DiscardFillerBytes(DFU_FILE_SUFFIX_SIZE);
309 }
310 }
311
312 Endpoint_ClearOUT();
313
314 Endpoint_ClearStatusStage();
315
316 break;
317 case DFU_UPLOAD:
318 Endpoint_ClearSETUP();
319
320 while (!(Endpoint_IsINReady()))
321 {
322 if (USB_DeviceState == DEVICE_STATE_Unattached)
323 return;
324 }
325
326 if (DFU_State != dfuUPLOAD_IDLE)
327 {
328 if ((DFU_State == dfuERROR) && IS_ONEBYTE_COMMAND(SentCommand.Data, 0x01)) // Blank Check
329 {
330 /* Blank checking is performed in the DFU_DNLOAD request - if we get here we've told the host
331 that the memory isn't blank, and the host is requesting the first non-blank address */
332 Endpoint_Write_Word_LE(StartAddr);
333 }
334 else
335 {
336 /* Idle state upload - send response to last issued command */
337 Endpoint_Write_Byte(ResponseByte);
338 }
339 }
340 else
341 {
342 /* Determine the number of bytes remaining in the current block */
343 uint16_t BytesRemaining = ((EndAddr - StartAddr) + 1);
344
345 if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x00)) // Read FLASH
346 {
347 /* Calculate the number of words to be written from the number of bytes to be written */
348 uint16_t WordsRemaining = (BytesRemaining >> 1);
349
350 union
351 {
352 uint16_t Words[2];
353 uint32_t Long;
354 } CurrFlashAddress = {.Words = {StartAddr, Flash64KBPage}};
355
356 while (WordsRemaining--)
357 {
358 /* Check if endpoint is full - if so clear it and wait until ready for next packet */
359 if (Endpoint_BytesInEndpoint() == FIXED_CONTROL_ENDPOINT_SIZE)
360 {
361 Endpoint_ClearIN();
362
363 while (!(Endpoint_IsINReady()))
364 {
365 if (USB_DeviceState == DEVICE_STATE_Unattached)
366 return;
367 }
368 }
369
370 /* Read the flash word and send it via USB to the host */
371 #if (FLASHEND > 0xFFFF)
372 Endpoint_Write_Word_LE(pgm_read_word_far(CurrFlashAddress.Long));
373 #else
374 Endpoint_Write_Word_LE(pgm_read_word(CurrFlashAddress.Long));
375 #endif
376
377 /* Adjust counters */
378 CurrFlashAddress.Long += 2;
379 }
380
381 /* Once reading is complete, start address equals the end address */
382 StartAddr = EndAddr;
383 }
384 else if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x02)) // Read EEPROM
385 {
386 while (BytesRemaining--)
387 {
388 /* Check if endpoint is full - if so clear it and wait until ready for next packet */
389 if (Endpoint_BytesInEndpoint() == FIXED_CONTROL_ENDPOINT_SIZE)
390 {
391 Endpoint_ClearIN();
392
393 while (!(Endpoint_IsINReady()))
394 {
395 if (USB_DeviceState == DEVICE_STATE_Unattached)
396 return;
397 }
398 }
399
400 /* Read the EEPROM byte and send it via USB to the host */
401 Endpoint_Write_Byte(eeprom_read_byte((uint8_t*)StartAddr));
402
403 /* Adjust counters */
404 StartAddr++;
405 }
406 }
407
408 /* Return to idle state */
409 DFU_State = dfuIDLE;
410 }
411
412 Endpoint_ClearIN();
413
414 Endpoint_ClearStatusStage();
415 break;
416 case DFU_GETSTATUS:
417 Endpoint_ClearSETUP();
418
419 /* Write 8-bit status value */
420 Endpoint_Write_Byte(DFU_Status);
421
422 /* Write 24-bit poll timeout value */
423 Endpoint_Write_Byte(0);
424 Endpoint_Write_Word_LE(0);
425
426 /* Write 8-bit state value */
427 Endpoint_Write_Byte(DFU_State);
428
429 /* Write 8-bit state string ID number */
430 Endpoint_Write_Byte(0);
431
432 Endpoint_ClearIN();
433
434 Endpoint_ClearStatusStage();
435 break;
436 case DFU_CLRSTATUS:
437 Endpoint_ClearSETUP();
438
439 /* Reset the status value variable to the default OK status */
440 DFU_Status = OK;
441
442 Endpoint_ClearStatusStage();
443 break;
444 case DFU_GETSTATE:
445 Endpoint_ClearSETUP();
446
447 /* Write the current device state to the endpoint */
448 Endpoint_Write_Byte(DFU_State);
449
450 Endpoint_ClearIN();
451
452 Endpoint_ClearStatusStage();
453 break;
454 case DFU_ABORT:
455 Endpoint_ClearSETUP();
456
457 /* Reset the current state variable to the default idle state */
458 DFU_State = dfuIDLE;
459
460 Endpoint_ClearStatusStage();
461 break;
462 }
463 }
464
465 /** Routine to discard the specified number of bytes from the control endpoint stream. This is used to
466 * discard unused bytes in the stream from the host, including the memory program block suffix.
467 *
468 * \param[in] NumberOfBytes Number of bytes to discard from the host from the control endpoint
469 */
470 static void DiscardFillerBytes(uint8_t NumberOfBytes)
471 {
472 while (NumberOfBytes--)
473 {
474 if (!(Endpoint_BytesInEndpoint()))
475 {
476 Endpoint_ClearOUT();
477
478 /* Wait until next data packet received */
479 while (!(Endpoint_IsOUTReceived()))
480 {
481 if (USB_DeviceState == DEVICE_STATE_Unattached)
482 return;
483 }
484 }
485 else
486 {
487 Endpoint_Discard_Byte();
488 }
489 }
490 }
491
492 /** Routine to process an issued command from the host, via a DFU_DNLOAD request wrapper. This routine ensures
493 * that the command is allowed based on the current secure mode flag value, and passes the command off to the
494 * appropriate handler function.
495 */
496 static void ProcessBootloaderCommand(void)
497 {
498 /* Check if device is in secure mode */
499 if (IsSecure)
500 {
501 /* Don't process command unless it is a READ or chip erase command */
502 if (!(((SentCommand.Command == COMMAND_WRITE) &&
503 IS_TWOBYTE_COMMAND(SentCommand.Data, 0x00, 0xFF)) ||
504 (SentCommand.Command == COMMAND_READ)))
505 {
506 /* Set the state and status variables to indicate the error */
507 DFU_State = dfuERROR;
508 DFU_Status = errWRITE;
509
510 /* Stall command */
511 Endpoint_StallTransaction();
512
513 /* Don't process the command */
514 return;
515 }
516 }
517
518 /* Dispatch the required command processing routine based on the command type */
519 switch (SentCommand.Command)
520 {
521 case COMMAND_PROG_START:
522 ProcessMemProgCommand();
523 break;
524 case COMMAND_DISP_DATA:
525 ProcessMemReadCommand();
526 break;
527 case COMMAND_WRITE:
528 ProcessWriteCommand();
529 break;
530 case COMMAND_READ:
531 ProcessReadCommand();
532 break;
533 case COMMAND_CHANGE_BASE_ADDR:
534 if (IS_TWOBYTE_COMMAND(SentCommand.Data, 0x03, 0x00)) // Set 64KB flash page command
535 Flash64KBPage = SentCommand.Data[2];
536
537 break;
538 }
539 }
540
541 /** Routine to concatenate the given pair of 16-bit memory start and end addresses from the host, and store them
542 * in the StartAddr and EndAddr global variables.
543 */
544 static void LoadStartEndAddresses(void)
545 {
546 union
547 {
548 uint8_t Bytes[2];
549 uint16_t Word;
550 } Address[2] = {{.Bytes = {SentCommand.Data[2], SentCommand.Data[1]}},
551 {.Bytes = {SentCommand.Data[4], SentCommand.Data[3]}}};
552
553 /* Load in the start and ending read addresses from the sent data packet */
554 StartAddr = Address[0].Word;
555 EndAddr = Address[1].Word;
556 }
557
558 /** Handler for a Memory Program command issued by the host. This routine handles the preparations needed
559 * to write subsequent data from the host into the specified memory.
560 */
561 static void ProcessMemProgCommand(void)
562 {
563 if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x00) || // Write FLASH command
564 IS_ONEBYTE_COMMAND(SentCommand.Data, 0x01)) // Write EEPROM command
565 {
566 /* Load in the start and ending read addresses */
567 LoadStartEndAddresses();
568
569 /* If FLASH is being written to, we need to pre-erase the first page to write to */
570 if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x00))
571 {
572 union
573 {
574 uint16_t Words[2];
575 uint32_t Long;
576 } CurrFlashAddress = {.Words = {StartAddr, Flash64KBPage}};
577
578 /* Erase the current page's temp buffer */
579 boot_page_erase(CurrFlashAddress.Long);
580 boot_spm_busy_wait();
581 }
582
583 /* Set the state so that the next DNLOAD requests reads in the firmware */
584 DFU_State = dfuDNLOAD_IDLE;
585 }
586 }
587
588 /** Handler for a Memory Read command issued by the host. This routine handles the preparations needed
589 * to read subsequent data from the specified memory out to the host, as well as implementing the memory
590 * blank check command.
591 */
592 static void ProcessMemReadCommand(void)
593 {
594 if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x00) || // Read FLASH command
595 IS_ONEBYTE_COMMAND(SentCommand.Data, 0x02)) // Read EEPROM command
596 {
597 /* Load in the start and ending read addresses */
598 LoadStartEndAddresses();
599
600 /* Set the state so that the next UPLOAD requests read out the firmware */
601 DFU_State = dfuUPLOAD_IDLE;
602 }
603 else if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x01)) // Blank check FLASH command
604 {
605 uint32_t CurrFlashAddress = 0;
606
607 while (CurrFlashAddress < BOOT_START_ADDR)
608 {
609 /* Check if the current byte is not blank */
610 #if (FLASHEND > 0xFFFF)
611 if (pgm_read_byte_far(CurrFlashAddress) != 0xFF)
612 #else
613 if (pgm_read_byte(CurrFlashAddress) != 0xFF)
614 #endif
615 {
616 /* Save the location of the first non-blank byte for response back to the host */
617 Flash64KBPage = (CurrFlashAddress >> 16);
618 StartAddr = CurrFlashAddress;
619
620 /* Set state and status variables to the appropriate error values */
621 DFU_State = dfuERROR;
622 DFU_Status = errCHECK_ERASED;
623
624 break;
625 }
626
627 CurrFlashAddress++;
628 }
629 }
630 }
631
632 /** Handler for a Data Write command issued by the host. This routine handles non-programming commands such as
633 * bootloader exit (both via software jumps and hardware watchdog resets) and flash memory erasure.
634 */
635 static void ProcessWriteCommand(void)
636 {
637 if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x03)) // Start application
638 {
639 /* Indicate that the bootloader is terminating */
640 WaitForExit = true;
641
642 /* Check if empty request data array - an empty request after a filled request retains the
643 previous valid request data, but initializes the reset */
644 if (!(SentCommand.DataSize))
645 {
646 if (SentCommand.Data[1] == 0x00) // Start via watchdog
647 {
648 /* Start the watchdog to reset the AVR once the communications are finalized */
649 wdt_enable(WDTO_250MS);
650 }
651 else // Start via jump
652 {
653 /* Load in the jump address into the application start address pointer */
654 union
655 {
656 uint8_t Bytes[2];
657 AppPtr_t FuncPtr;
658 } Address = {.Bytes = {SentCommand.Data[4], SentCommand.Data[3]}};
659
660 AppStartPtr = Address.FuncPtr;
661
662 /* Set the flag to terminate the bootloader at next opportunity */
663 RunBootloader = false;
664 }
665 }
666 }
667 else if (IS_TWOBYTE_COMMAND(SentCommand.Data, 0x00, 0xFF)) // Erase flash
668 {
669 uint32_t CurrFlashAddress = 0;
670
671 /* Clear the application section of flash */
672 while (CurrFlashAddress < BOOT_START_ADDR)
673 {
674 boot_page_erase(CurrFlashAddress);
675 boot_spm_busy_wait();
676 boot_page_write(CurrFlashAddress);
677 boot_spm_busy_wait();
678
679 CurrFlashAddress += SPM_PAGESIZE;
680 }
681
682 /* Re-enable the RWW section of flash as writing to the flash locks it out */
683 boot_rww_enable();
684
685 /* Memory has been erased, reset the security bit so that programming/reading is allowed */
686 IsSecure = false;
687 }
688 }
689
690 /** Handler for a Data Read command issued by the host. This routine handles bootloader information retrieval
691 * commands such as device signature and bootloader version retrieval.
692 */
693 static void ProcessReadCommand(void)
694 {
695 const uint8_t BootloaderInfo[3] = {BOOTLOADER_VERSION, BOOTLOADER_ID_BYTE1, BOOTLOADER_ID_BYTE2};
696 const uint8_t SignatureInfo[3] = {AVR_SIGNATURE_1, AVR_SIGNATURE_2, AVR_SIGNATURE_3};
697
698 uint8_t DataIndexToRead = SentCommand.Data[1];
699
700 if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x00)) // Read bootloader info
701 {
702 ResponseByte = BootloaderInfo[DataIndexToRead];
703 }
704 else if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x01)) // Read signature byte
705 {
706 ResponseByte = SignatureInfo[DataIndexToRead - 0x30];
707 }
708 }