Initial restructuring of the core USB driver module to support multiple architectures...
[pub/USBasp.git] / LUFA / Drivers / USB / Core / AVR8 / Pipe.h
1 /*
2 LUFA Library
3 Copyright (C) Dean Camera, 2011.
4
5 dean [at] fourwalledcubicle [dot] com
6 www.lufa-lib.org
7 */
8
9 /*
10 Copyright 2011 Dean Camera (dean [at] fourwalledcubicle [dot] com)
11
12 Permission to use, copy, modify, distribute, and sell this
13 software and its documentation for any purpose is hereby granted
14 without fee, provided that the above copyright notice appear in
15 all copies and that both that the copyright notice and this
16 permission notice and warranty disclaimer appear in supporting
17 documentation, and that the name of the author not be used in
18 advertising or publicity pertaining to distribution of the
19 software without specific, written prior permission.
20
21 The author disclaim all warranties with regard to this
22 software, including all implied warranties of merchantability
23 and fitness. In no event shall the author be liable for any
24 special, indirect or consequential damages or any damages
25 whatsoever resulting from loss of use, data or profits, whether
26 in an action of contract, negligence or other tortious action,
27 arising out of or in connection with the use or performance of
28 this software.
29 */
30
31 /** \file
32 * \brief USB host pipe management definitions.
33 *
34 * This file contains structures, function prototypes and macros related to the management of the device's
35 * data pipes when the library is initialized in USB host mode.
36 *
37 * \note This file should not be included directly. It is automatically included as needed by the USB driver
38 * dispatch header located in LUFA/Drivers/USB/USB.h.
39 */
40
41 /** \ingroup Group_PipeRW
42 * \defgroup Group_PipeRW_AVR8 Pipe Data Reading and Writing (AVR8)
43 *
44 * Functions, macros, variables, enums and types related to data reading and writing from and to pipes.
45 */
46
47 /** \ingroup Group_PipePrimitiveRW
48 * \defgroup Group_PipePrimitiveRW_AVR8 Read/Write of Primitive Data Types (AVR8)
49 *
50 * Functions, macros, variables, enums and types related to data reading and writing of primitive data types
51 * from and to pipes.
52 */
53
54 /** \ingroup Group_PipePacketManagement
55 * \defgroup Group_PipePacketManagement_AVR8 Pipe Packet Management (AVR8)
56 *
57 * Functions, macros, variables, enums and types related to packet management of pipes.
58 */
59
60 /** \ingroup Group_PipeControlReq
61 * \defgroup Group_PipeControlReq_AVR8 Pipe Control Request Management (AVR8)
62 *
63 * Module for host mode request processing. This module allows for the transmission of standard, class and
64 * vendor control requests to the default control endpoint of an attached device while in host mode.
65 *
66 * \see Chapter 9 of the USB 2.0 specification.
67 */
68
69 /** \ingroup Group_PipeManagement
70 * \defgroup Group_PipeManagement_AVR8 Pipe Management (AVR8)
71 *
72 * This module contains functions, macros and enums related to pipe management when in USB Host mode. This
73 * module contains the pipe management macros, as well as pipe interrupt and data send/receive functions
74 * for various data types.
75 *
76 * @{
77 */
78
79 #ifndef __PIPE_AVR8_H__
80 #define __PIPE_AVR8_H__
81
82 /* Includes: */
83 #include "../../../../Common/Common.h"
84 #include "../USBTask.h"
85
86 /* Enable C linkage for C++ Compilers: */
87 #if defined(__cplusplus)
88 extern "C" {
89 #endif
90
91 /* Preprocessor Checks: */
92 #if !defined(__INCLUDE_FROM_USB_DRIVER)
93 #error Do not include this file directly. Include LUFA/Drivers/USB/USB.h instead.
94 #endif
95
96 /* Public Interface - May be used in end-application: */
97 /* Macros: */
98 /** \name Pipe Error Flag Masks */
99 //@{
100 /** Mask for \ref Pipe_GetErrorFlags(), indicating that an overflow error occurred in the pipe on the received data. */
101 #define PIPE_ERRORFLAG_OVERFLOW (1 << 6)
102
103 /** Mask for \ref Pipe_GetErrorFlags(), indicating that an underflow error occurred in the pipe on the received data. */
104 #define PIPE_ERRORFLAG_UNDERFLOW (1 << 5)
105
106 /** Mask for \ref Pipe_GetErrorFlags(), indicating that a CRC error occurred in the pipe on the received data. */
107 #define PIPE_ERRORFLAG_CRC16 (1 << 4)
108
109 /** Mask for \ref Pipe_GetErrorFlags(), indicating that a hardware timeout error occurred in the pipe. */
110 #define PIPE_ERRORFLAG_TIMEOUT (1 << 3)
111
112 /** Mask for \ref Pipe_GetErrorFlags(), indicating that a hardware PID error occurred in the pipe. */
113 #define PIPE_ERRORFLAG_PID (1 << 2)
114
115 /** Mask for \ref Pipe_GetErrorFlags(), indicating that a hardware data PID error occurred in the pipe. */
116 #define PIPE_ERRORFLAG_DATAPID (1 << 1)
117
118 /** Mask for \ref Pipe_GetErrorFlags(), indicating that a hardware data toggle error occurred in the pipe. */
119 #define PIPE_ERRORFLAG_DATATGL (1 << 0)
120 //@}
121
122 /** \name Pipe Token Masks */
123 //@{
124 /** Token mask for \ref Pipe_ConfigurePipe(). This sets the pipe as a SETUP token (for CONTROL type pipes),
125 * which will trigger a control request on the attached device when data is written to the pipe.
126 */
127 #define PIPE_TOKEN_SETUP (0 << PTOKEN0)
128
129 /** Token mask for \ref Pipe_ConfigurePipe(). This sets the pipe as a IN token (for non-CONTROL type pipes),
130 * indicating that the pipe data will flow from device to host.
131 */
132 #define PIPE_TOKEN_IN (1 << PTOKEN0)
133
134 /** Token mask for \ref Pipe_ConfigurePipe(). This sets the pipe as a OUT token (for non-CONTROL type pipes),
135 * indicating that the pipe data will flow from host to device.
136 */
137 #define PIPE_TOKEN_OUT (2 << PTOKEN0)
138 //@}
139
140 /** \name Pipe Bank Mode Masks */
141 //@{
142 /** Mask for the bank mode selection for the \ref Pipe_ConfigurePipe() macro. This indicates that the pipe
143 * should have one single bank, which requires less USB FIFO memory but results in slower transfers as
144 * only one USB device (the AVR or the attached device) can access the pipe's bank at the one time.
145 */
146 #define PIPE_BANK_SINGLE (0 << EPBK0)
147
148 /** Mask for the bank mode selection for the \ref Pipe_ConfigurePipe() macro. This indicates that the pipe
149 * should have two banks, which requires more USB FIFO memory but results in faster transfers as one
150 * USB device (the AVR or the attached device) can access one bank while the other accesses the second
151 * bank.
152 */
153 #define PIPE_BANK_DOUBLE (1 << EPBK0)
154 //@}
155
156 /** Pipe address for the default control pipe, which always resides in address 0. This is
157 * defined for convenience to give more readable code when used with the pipe macros.
158 */
159 #define PIPE_CONTROLPIPE 0
160
161 /** Default size of the default control pipe's bank, until altered by the Endpoint0Size value
162 * in the device descriptor of the attached device.
163 */
164 #define PIPE_CONTROLPIPE_DEFAULT_SIZE 64
165
166 /** Pipe number mask, for masking against pipe addresses to retrieve the pipe's numerical address
167 * in the device.
168 */
169 #define PIPE_PIPENUM_MASK 0x07
170
171 /** Total number of pipes (including the default control pipe at address 0) which may be used in
172 * the device. Different USB AVR models support different amounts of pipes, this value reflects
173 * the maximum number of pipes for the currently selected AVR model.
174 */
175 #define PIPE_TOTAL_PIPES 7
176
177 /** Size in bytes of the largest pipe bank size possible in the device. Not all banks on each AVR
178 * model supports the largest bank size possible on the device; different pipe numbers support
179 * different maximum bank sizes. This value reflects the largest possible bank of any pipe on the
180 * currently selected USB AVR model.
181 */
182 #define PIPE_MAX_SIZE 256
183
184 /** Endpoint number mask, for masking against endpoint addresses to retrieve the endpoint's
185 * numerical address in the attached device.
186 */
187 #define PIPE_EPNUM_MASK 0x0F
188
189 /** Endpoint direction mask, for masking against endpoint addresses to retrieve the endpoint's
190 * direction for comparing with the \c ENDPOINT_DESCRIPTOR_DIR_* masks.
191 */
192 #define PIPE_EPDIR_MASK 0x80
193
194 /* Enums: */
195 /** Enum for the possible error return codes of the \ref Pipe_WaitUntilReady() function.
196 *
197 * \ingroup Group_PipeRW_AVR8
198 */
199 enum Pipe_WaitUntilReady_ErrorCodes_t
200 {
201 PIPE_READYWAIT_NoError = 0, /**< Pipe ready for next packet, no error. */
202 PIPE_READYWAIT_PipeStalled = 1, /**< The device stalled the pipe while waiting. */
203 PIPE_READYWAIT_DeviceDisconnected = 2, /**< Device was disconnected from the host while waiting. */
204 PIPE_READYWAIT_Timeout = 3, /**< The device failed to accept or send the next packet
205 * within the software timeout period set by the
206 * \ref USB_STREAM_TIMEOUT_MS macro.
207 */
208 };
209
210 /* Inline Functions: */
211 /** Indicates the number of bytes currently stored in the current pipes's selected bank.
212 *
213 * \note The return width of this function may differ, depending on the maximum pipe bank size
214 * of the selected AVR model.
215 *
216 * \ingroup Group_PipeRW_AVR8
217 *
218 * \return Total number of bytes in the currently selected pipe's FIFO buffer.
219 */
220 static inline uint16_t Pipe_BytesInPipe(void) ATTR_WARN_UNUSED_RESULT ATTR_ALWAYS_INLINE;
221 static inline uint16_t Pipe_BytesInPipe(void)
222 {
223 return UPBCX;
224 }
225
226 /** Returns the pipe address of the currently selected pipe. This is typically used to save the
227 * currently selected pipe number so that it can be restored after another pipe has been manipulated.
228 *
229 * \return Index of the currently selected pipe.
230 */
231 static inline uint8_t Pipe_GetCurrentPipe(void) ATTR_WARN_UNUSED_RESULT ATTR_ALWAYS_INLINE;
232 static inline uint8_t Pipe_GetCurrentPipe(void)
233 {
234 return (UPNUM & PIPE_PIPENUM_MASK);
235 }
236
237 /** Selects the given pipe number. Any pipe operations which do not require the pipe number to be
238 * indicated will operate on the currently selected pipe.
239 *
240 * \param[in] PipeNumber Index of the pipe to select.
241 */
242 static inline void Pipe_SelectPipe(const uint8_t PipeNumber) ATTR_ALWAYS_INLINE;
243 static inline void Pipe_SelectPipe(const uint8_t PipeNumber)
244 {
245 UPNUM = PipeNumber;
246 }
247
248 /** Resets the desired pipe, including the pipe banks and flags.
249 *
250 * \param[in] PipeNumber Index of the pipe to reset.
251 */
252 static inline void Pipe_ResetPipe(const uint8_t PipeNumber) ATTR_ALWAYS_INLINE;
253 static inline void Pipe_ResetPipe(const uint8_t PipeNumber)
254 {
255 UPRST = (1 << PipeNumber);
256 UPRST = 0;
257 }
258
259 /** Enables the currently selected pipe so that data can be sent and received through it to and from
260 * an attached device.
261 *
262 * \pre The currently selected pipe must first be configured properly via \ref Pipe_ConfigurePipe().
263 */
264 static inline void Pipe_EnablePipe(void) ATTR_ALWAYS_INLINE;
265 static inline void Pipe_EnablePipe(void)
266 {
267 UPCONX |= (1 << PEN);
268 }
269
270 /** Disables the currently selected pipe so that data cannot be sent and received through it to and
271 * from an attached device.
272 */
273 static inline void Pipe_DisablePipe(void) ATTR_ALWAYS_INLINE;
274 static inline void Pipe_DisablePipe(void)
275 {
276 UPCONX &= ~(1 << PEN);
277 }
278
279 /** Determines if the currently selected pipe is enabled, but not necessarily configured.
280 *
281 * \return Boolean \c true if the currently selected pipe is enabled, \c false otherwise.
282 */
283 static inline bool Pipe_IsEnabled(void) ATTR_WARN_UNUSED_RESULT ATTR_ALWAYS_INLINE;
284 static inline bool Pipe_IsEnabled(void)
285 {
286 return ((UPCONX & (1 << PEN)) ? true : false);
287 }
288
289 /** Gets the current pipe token, indicating the pipe's data direction and type.
290 *
291 * \return The current pipe token, as a \c PIPE_TOKEN_* mask.
292 */
293 static inline uint8_t Pipe_GetPipeToken(void) ATTR_ALWAYS_INLINE;
294 static inline uint8_t Pipe_GetPipeToken(void)
295 {
296 return (UPCFG0X & (0x03 << PTOKEN0));
297 }
298
299 /** Sets the token for the currently selected pipe to one of the tokens specified by the \c PIPE_TOKEN_*
300 * masks. This can be used on CONTROL type pipes, to allow for bidirectional transfer of data during
301 * control requests, or on regular pipes to allow for half-duplex bidirectional data transfer to devices
302 * which have two endpoints of opposite direction sharing the same endpoint address within the device.
303 *
304 * \param[in] Token New pipe token to set the selected pipe to, as a \c PIPE_TOKEN_* mask.
305 */
306 static inline void Pipe_SetPipeToken(const uint8_t Token) ATTR_ALWAYS_INLINE;
307 static inline void Pipe_SetPipeToken(const uint8_t Token)
308 {
309 UPCFG0X = ((UPCFG0X & ~(0x03 << PTOKEN0)) | Token);
310 }
311
312 /** Configures the currently selected pipe to allow for an unlimited number of IN requests. */
313 static inline void Pipe_SetInfiniteINRequests(void) ATTR_ALWAYS_INLINE;
314 static inline void Pipe_SetInfiniteINRequests(void)
315 {
316 UPCONX |= (1 << INMODE);
317 }
318
319 /** Configures the currently selected pipe to only allow the specified number of IN requests to be
320 * accepted by the pipe before it is automatically frozen.
321 *
322 * \param[in] TotalINRequests Total number of IN requests that the pipe may receive before freezing.
323 */
324 static inline void Pipe_SetFiniteINRequests(const uint8_t TotalINRequests) ATTR_ALWAYS_INLINE;
325 static inline void Pipe_SetFiniteINRequests(const uint8_t TotalINRequests)
326 {
327 UPCONX &= ~(1 << INMODE);
328 UPINRQX = TotalINRequests;
329 }
330
331 /** Determines if the currently selected pipe is configured.
332 *
333 * \return Boolean \c true if the selected pipe is configured, \c false otherwise.
334 */
335 static inline bool Pipe_IsConfigured(void) ATTR_WARN_UNUSED_RESULT ATTR_ALWAYS_INLINE;
336 static inline bool Pipe_IsConfigured(void)
337 {
338 return ((UPSTAX & (1 << CFGOK)) ? true : false);
339 }
340
341 /** Retrieves the endpoint number of the endpoint within the attached device that the currently selected
342 * pipe is bound to.
343 *
344 * \return Endpoint number the currently selected pipe is bound to.
345 */
346 static inline uint8_t Pipe_BoundEndpointNumber(void) ATTR_WARN_UNUSED_RESULT ATTR_ALWAYS_INLINE;
347 static inline uint8_t Pipe_BoundEndpointNumber(void)
348 {
349 return ((UPCFG0X >> PEPNUM0) & PIPE_EPNUM_MASK);
350 }
351
352 /** Sets the period between interrupts for an INTERRUPT type pipe to a specified number of milliseconds.
353 *
354 * \param[in] Milliseconds Number of milliseconds between each pipe poll.
355 */
356 static inline void Pipe_SetInterruptPeriod(const uint8_t Milliseconds) ATTR_ALWAYS_INLINE;
357 static inline void Pipe_SetInterruptPeriod(const uint8_t Milliseconds)
358 {
359 UPCFG2X = Milliseconds;
360 }
361
362 /** Returns a mask indicating which pipe's interrupt periods have elapsed, indicating that the pipe should
363 * be serviced.
364 *
365 * \return Mask whose bits indicate which pipes have interrupted.
366 */
367 static inline uint8_t Pipe_GetPipeInterrupts(void) ATTR_WARN_UNUSED_RESULT ATTR_ALWAYS_INLINE;
368 static inline uint8_t Pipe_GetPipeInterrupts(void)
369 {
370 return UPINT;
371 }
372
373 /** Determines if the specified pipe number has interrupted (valid only for INTERRUPT type
374 * pipes).
375 *
376 * \param[in] PipeNumber Index of the pipe whose interrupt flag should be tested.
377 *
378 * \return Boolean \c true if the specified pipe has interrupted, \c false otherwise.
379 */
380 static inline bool Pipe_HasPipeInterrupted(const uint8_t PipeNumber) ATTR_WARN_UNUSED_RESULT ATTR_ALWAYS_INLINE;
381 static inline bool Pipe_HasPipeInterrupted(const uint8_t PipeNumber)
382 {
383 return ((UPINT & (1 << PipeNumber)) ? true : false);
384 }
385
386 /** Unfreezes the selected pipe, allowing it to communicate with an attached device. */
387 static inline void Pipe_Unfreeze(void) ATTR_ALWAYS_INLINE;
388 static inline void Pipe_Unfreeze(void)
389 {
390 UPCONX &= ~(1 << PFREEZE);
391 }
392
393 /** Freezes the selected pipe, preventing it from communicating with an attached device. */
394 static inline void Pipe_Freeze(void) ATTR_ALWAYS_INLINE;
395 static inline void Pipe_Freeze(void)
396 {
397 UPCONX |= (1 << PFREEZE);
398 }
399
400 /** Determines if the currently selected pipe is frozen, and not able to accept data.
401 *
402 * \return Boolean \c true if the currently selected pipe is frozen, \c false otherwise.
403 */
404 static inline bool Pipe_IsFrozen(void) ATTR_WARN_UNUSED_RESULT ATTR_ALWAYS_INLINE;
405 static inline bool Pipe_IsFrozen(void)
406 {
407 return ((UPCONX & (1 << PFREEZE)) ? true : false);
408 }
409
410 /** Clears the master pipe error flag. */
411 static inline void Pipe_ClearError(void) ATTR_ALWAYS_INLINE;
412 static inline void Pipe_ClearError(void)
413 {
414 UPINTX &= ~(1 << PERRI);
415 }
416
417 /** Determines if the master pipe error flag is set for the currently selected pipe, indicating that
418 * some sort of hardware error has occurred on the pipe.
419 *
420 * \see \ref Pipe_GetErrorFlags() macro for information on retrieving the exact error flag.
421 *
422 * \return Boolean \c true if an error has occurred on the selected pipe, \c false otherwise.
423 */
424 static inline bool Pipe_IsError(void) ATTR_WARN_UNUSED_RESULT ATTR_ALWAYS_INLINE;
425 static inline bool Pipe_IsError(void)
426 {
427 return ((UPINTX & (1 << PERRI)) ? true : false);
428 }
429
430 /** Clears all the currently selected pipe's hardware error flags, but does not clear the master error
431 * flag for the pipe.
432 */
433 static inline void Pipe_ClearErrorFlags(void) ATTR_ALWAYS_INLINE;
434 static inline void Pipe_ClearErrorFlags(void)
435 {
436 UPERRX = 0;
437 }
438
439 /** Gets a mask of the hardware error flags which have occurred on the currently selected pipe. This
440 * value can then be masked against the \c PIPE_ERRORFLAG_* masks to determine what error has occurred.
441 *
442 * \return Mask comprising of \c PIPE_ERRORFLAG_* bits indicating what error has occurred on the selected pipe.
443 */
444 static inline uint8_t Pipe_GetErrorFlags(void) ATTR_WARN_UNUSED_RESULT ATTR_ALWAYS_INLINE;
445 static inline uint8_t Pipe_GetErrorFlags(void)
446 {
447 return ((UPERRX & (PIPE_ERRORFLAG_CRC16 | PIPE_ERRORFLAG_TIMEOUT |
448 PIPE_ERRORFLAG_PID | PIPE_ERRORFLAG_DATAPID |
449 PIPE_ERRORFLAG_DATATGL)) |
450 (UPSTAX & (PIPE_ERRORFLAG_OVERFLOW | PIPE_ERRORFLAG_UNDERFLOW)));
451 }
452
453 /** Retrieves the number of busy banks in the currently selected pipe, which have been queued for
454 * transmission via the \ref Pipe_ClearOUT() command, or are awaiting acknowledgement via the
455 * \ref Pipe_ClearIN() command.
456 *
457 * \ingroup Group_PipePacketManagement_AVR8
458 *
459 * \return Total number of busy banks in the selected pipe.
460 */
461 static inline uint8_t Pipe_GetBusyBanks(void)
462 {
463 return (UPSTAX & (0x03 << NBUSYBK0));
464 }
465
466 /** Determines if the currently selected pipe may be read from (if data is waiting in the pipe
467 * bank and the pipe is an IN direction, or if the bank is not yet full if the pipe is an OUT
468 * direction). This function will return false if an error has occurred in the pipe, or if the pipe
469 * is an IN direction and no packet (or an empty packet) has been received, or if the pipe is an OUT
470 * direction and the pipe bank is full.
471 *
472 * \note This function is not valid on CONTROL type pipes.
473 *
474 * \ingroup Group_PipePacketManagement_AVR8
475 *
476 * \return Boolean \c true if the currently selected pipe may be read from or written to, depending
477 * on its direction.
478 */
479 static inline bool Pipe_IsReadWriteAllowed(void) ATTR_WARN_UNUSED_RESULT ATTR_ALWAYS_INLINE;
480 static inline bool Pipe_IsReadWriteAllowed(void)
481 {
482 return ((UPINTX & (1 << RWAL)) ? true : false);
483 }
484
485 /** Determines if a packet has been received on the currently selected IN pipe from the attached device.
486 *
487 * \ingroup Group_PipePacketManagement_AVR8
488 *
489 * \return Boolean \c true if the current pipe has received an IN packet, \c false otherwise.
490 */
491 static inline bool Pipe_IsINReceived(void) ATTR_WARN_UNUSED_RESULT ATTR_ALWAYS_INLINE;
492 static inline bool Pipe_IsINReceived(void)
493 {
494 return ((UPINTX & (1 << RXINI)) ? true : false);
495 }
496
497 /** Determines if the currently selected OUT pipe is ready to send an OUT packet to the attached device.
498 *
499 * \ingroup Group_PipePacketManagement_AVR8
500 *
501 * \return Boolean \c true if the current pipe is ready for an OUT packet, \c false otherwise.
502 */
503 static inline bool Pipe_IsOUTReady(void) ATTR_WARN_UNUSED_RESULT ATTR_ALWAYS_INLINE;
504 static inline bool Pipe_IsOUTReady(void)
505 {
506 return ((UPINTX & (1 << TXOUTI)) ? true : false);
507 }
508
509 /** Determines if no SETUP request is currently being sent to the attached device on the selected
510 * CONTROL type pipe.
511 *
512 * \ingroup Group_PipePacketManagement_AVR8
513 *
514 * \return Boolean \c true if the current pipe is ready for a SETUP packet, \c false otherwise.
515 */
516 static inline bool Pipe_IsSETUPSent(void) ATTR_WARN_UNUSED_RESULT ATTR_ALWAYS_INLINE;
517 static inline bool Pipe_IsSETUPSent(void)
518 {
519 return ((UPINTX & (1 << TXSTPI)) ? true : false);
520 }
521
522 /** Sends the currently selected CONTROL type pipe's contents to the device as a SETUP packet.
523 *
524 * \ingroup Group_PipePacketManagement_AVR8
525 */
526 static inline void Pipe_ClearSETUP(void) ATTR_ALWAYS_INLINE;
527 static inline void Pipe_ClearSETUP(void)
528 {
529 UPINTX &= ~((1 << TXSTPI) | (1 << FIFOCON));
530 }
531
532 /** Acknowledges the reception of a setup IN request from the attached device on the currently selected
533 * pipe, freeing the bank ready for the next packet.
534 *
535 * \ingroup Group_PipePacketManagement_AVR8
536 */
537 static inline void Pipe_ClearIN(void) ATTR_ALWAYS_INLINE;
538 static inline void Pipe_ClearIN(void)
539 {
540 UPINTX &= ~((1 << RXINI) | (1 << FIFOCON));
541 }
542
543 /** Sends the currently selected pipe's contents to the device as an OUT packet on the selected pipe, freeing
544 * the bank ready for the next packet.
545 *
546 * \ingroup Group_PipePacketManagement_AVR8
547 */
548 static inline void Pipe_ClearOUT(void) ATTR_ALWAYS_INLINE;
549 static inline void Pipe_ClearOUT(void)
550 {
551 UPINTX &= ~((1 << TXOUTI) | (1 << FIFOCON));
552 }
553
554 /** Determines if the device sent a NAK (Negative Acknowledge) in response to the last sent packet on
555 * the currently selected pipe. This occurs when the host sends a packet to the device, but the device
556 * is not currently ready to handle the packet (i.e. its endpoint banks are full). Once a NAK has been
557 * received, it must be cleared using \ref Pipe_ClearNAKReceived() before the previous (or any other) packet
558 * can be re-sent.
559 *
560 * \ingroup Group_PipePacketManagement_AVR8
561 *
562 * \return Boolean \c true if an NAK has been received on the current pipe, \c false otherwise.
563 */
564 static inline bool Pipe_IsNAKReceived(void) ATTR_WARN_UNUSED_RESULT ATTR_ALWAYS_INLINE;
565 static inline bool Pipe_IsNAKReceived(void)
566 {
567 return ((UPINTX & (1 << NAKEDI)) ? true : false);
568 }
569
570 /** Clears the NAK condition on the currently selected pipe.
571 *
572 * \ingroup Group_PipePacketManagement_AVR8
573 *
574 * \see \ref Pipe_IsNAKReceived() for more details.
575 */
576 static inline void Pipe_ClearNAKReceived(void) ATTR_ALWAYS_INLINE;
577 static inline void Pipe_ClearNAKReceived(void)
578 {
579 UPINTX &= ~(1 << NAKEDI);
580 }
581
582 /** Determines if the currently selected pipe has had the STALL condition set by the attached device.
583 *
584 * \ingroup Group_PipePacketManagement_AVR8
585 *
586 * \return Boolean \c true if the current pipe has been stalled by the attached device, \c false otherwise.
587 */
588 static inline bool Pipe_IsStalled(void) ATTR_WARN_UNUSED_RESULT ATTR_ALWAYS_INLINE;
589 static inline bool Pipe_IsStalled(void)
590 {
591 return ((UPINTX & (1 << RXSTALLI)) ? true : false);
592 }
593
594 /** Clears the STALL condition detection flag on the currently selected pipe, but does not clear the
595 * STALL condition itself (this must be done via a ClearFeature control request to the device).
596 *
597 * \ingroup Group_PipePacketManagement_AVR8
598 */
599 static inline void Pipe_ClearStall(void) ATTR_ALWAYS_INLINE;
600 static inline void Pipe_ClearStall(void)
601 {
602 UPINTX &= ~(1 << RXSTALLI);
603 }
604
605 /** Reads one byte from the currently selected pipe's bank, for OUT direction pipes.
606 *
607 * \ingroup Group_PipePrimitiveRW_AVR8
608 *
609 * \return Next byte in the currently selected pipe's FIFO buffer.
610 */
611 static inline uint8_t Pipe_Read_Byte(void) ATTR_WARN_UNUSED_RESULT ATTR_ALWAYS_INLINE;
612 static inline uint8_t Pipe_Read_Byte(void)
613 {
614 return UPDATX;
615 }
616
617 /** Writes one byte from the currently selected pipe's bank, for IN direction pipes.
618 *
619 * \ingroup Group_PipePrimitiveRW_AVR8
620 *
621 * \param[in] Byte Next byte to write into the the currently selected pipe's FIFO buffer.
622 */
623 static inline void Pipe_Write_Byte(const uint8_t Byte) ATTR_ALWAYS_INLINE;
624 static inline void Pipe_Write_Byte(const uint8_t Byte)
625 {
626 UPDATX = Byte;
627 }
628
629 /** Discards one byte from the currently selected pipe's bank, for OUT direction pipes.
630 *
631 * \ingroup Group_PipePrimitiveRW_AVR8
632 */
633 static inline void Pipe_Discard_Byte(void) ATTR_ALWAYS_INLINE;
634 static inline void Pipe_Discard_Byte(void)
635 {
636 uint8_t Dummy;
637
638 Dummy = UPDATX;
639 }
640
641 /** Reads two bytes from the currently selected pipe's bank in little endian format, for OUT
642 * direction pipes.
643 *
644 * \ingroup Group_PipePrimitiveRW_AVR8
645 *
646 * \return Next word in the currently selected pipe's FIFO buffer.
647 */
648 static inline uint16_t Pipe_Read_Word_LE(void) ATTR_WARN_UNUSED_RESULT ATTR_ALWAYS_INLINE;
649 static inline uint16_t Pipe_Read_Word_LE(void)
650 {
651 union
652 {
653 uint16_t Word;
654 uint8_t Bytes[2];
655 } Data;
656
657 Data.Bytes[0] = UPDATX;
658 Data.Bytes[1] = UPDATX;
659
660 return Data.Word;
661 }
662
663 /** Reads two bytes from the currently selected pipe's bank in big endian format, for OUT
664 * direction pipes.
665 *
666 * \ingroup Group_PipePrimitiveRW_AVR8
667 *
668 * \return Next word in the currently selected pipe's FIFO buffer.
669 */
670 static inline uint16_t Pipe_Read_Word_BE(void) ATTR_WARN_UNUSED_RESULT ATTR_ALWAYS_INLINE;
671 static inline uint16_t Pipe_Read_Word_BE(void)
672 {
673 union
674 {
675 uint16_t Word;
676 uint8_t Bytes[2];
677 } Data;
678
679 Data.Bytes[1] = UPDATX;
680 Data.Bytes[0] = UPDATX;
681
682 return Data.Word;
683 }
684
685 /** Writes two bytes to the currently selected pipe's bank in little endian format, for IN
686 * direction pipes.
687 *
688 * \ingroup Group_PipePrimitiveRW_AVR8
689 *
690 * \param[in] Word Next word to write to the currently selected pipe's FIFO buffer.
691 */
692 static inline void Pipe_Write_Word_LE(const uint16_t Word) ATTR_ALWAYS_INLINE;
693 static inline void Pipe_Write_Word_LE(const uint16_t Word)
694 {
695 UPDATX = (Word & 0xFF);
696 UPDATX = (Word >> 8);
697 }
698
699 /** Writes two bytes to the currently selected pipe's bank in big endian format, for IN
700 * direction pipes.
701 *
702 * \ingroup Group_PipePrimitiveRW_AVR8
703 *
704 * \param[in] Word Next word to write to the currently selected pipe's FIFO buffer.
705 */
706 static inline void Pipe_Write_Word_BE(const uint16_t Word) ATTR_ALWAYS_INLINE;
707 static inline void Pipe_Write_Word_BE(const uint16_t Word)
708 {
709 UPDATX = (Word >> 8);
710 UPDATX = (Word & 0xFF);
711 }
712
713 /** Discards two bytes from the currently selected pipe's bank, for OUT direction pipes.
714 *
715 * \ingroup Group_PipePrimitiveRW_AVR8
716 */
717 static inline void Pipe_Discard_Word(void) ATTR_ALWAYS_INLINE;
718 static inline void Pipe_Discard_Word(void)
719 {
720 uint8_t Dummy;
721
722 Dummy = UPDATX;
723 Dummy = UPDATX;
724 }
725
726 /** Reads four bytes from the currently selected pipe's bank in little endian format, for OUT
727 * direction pipes.
728 *
729 * \ingroup Group_PipePrimitiveRW_AVR8
730 *
731 * \return Next double word in the currently selected pipe's FIFO buffer.
732 */
733 static inline uint32_t Pipe_Read_DWord_LE(void) ATTR_WARN_UNUSED_RESULT ATTR_ALWAYS_INLINE;
734 static inline uint32_t Pipe_Read_DWord_LE(void)
735 {
736 union
737 {
738 uint32_t DWord;
739 uint8_t Bytes[4];
740 } Data;
741
742 Data.Bytes[0] = UPDATX;
743 Data.Bytes[1] = UPDATX;
744 Data.Bytes[2] = UPDATX;
745 Data.Bytes[3] = UPDATX;
746
747 return Data.DWord;
748 }
749
750 /** Reads four bytes from the currently selected pipe's bank in big endian format, for OUT
751 * direction pipes.
752 *
753 * \ingroup Group_PipePrimitiveRW_AVR8
754 *
755 * \return Next double word in the currently selected pipe's FIFO buffer.
756 */
757 static inline uint32_t Pipe_Read_DWord_BE(void) ATTR_WARN_UNUSED_RESULT ATTR_ALWAYS_INLINE;
758 static inline uint32_t Pipe_Read_DWord_BE(void)
759 {
760 union
761 {
762 uint32_t DWord;
763 uint8_t Bytes[4];
764 } Data;
765
766 Data.Bytes[3] = UPDATX;
767 Data.Bytes[2] = UPDATX;
768 Data.Bytes[1] = UPDATX;
769 Data.Bytes[0] = UPDATX;
770
771 return Data.DWord;
772 }
773
774 /** Writes four bytes to the currently selected pipe's bank in little endian format, for IN
775 * direction pipes.
776 *
777 * \ingroup Group_PipePrimitiveRW_AVR8
778 *
779 * \param[in] DWord Next double word to write to the currently selected pipe's FIFO buffer.
780 */
781 static inline void Pipe_Write_DWord_LE(const uint32_t DWord) ATTR_ALWAYS_INLINE;
782 static inline void Pipe_Write_DWord_LE(const uint32_t DWord)
783 {
784 UPDATX = (DWord & 0xFF);
785 UPDATX = (DWord >> 8);
786 UPDATX = (DWord >> 16);
787 UPDATX = (DWord >> 24);
788 }
789
790 /** Writes four bytes to the currently selected pipe's bank in big endian format, for IN
791 * direction pipes.
792 *
793 * \ingroup Group_PipePrimitiveRW_AVR8
794 *
795 * \param[in] DWord Next double word to write to the currently selected pipe's FIFO buffer.
796 */
797 static inline void Pipe_Write_DWord_BE(const uint32_t DWord) ATTR_ALWAYS_INLINE;
798 static inline void Pipe_Write_DWord_BE(const uint32_t DWord)
799 {
800 UPDATX = (DWord >> 24);
801 UPDATX = (DWord >> 16);
802 UPDATX = (DWord >> 8);
803 UPDATX = (DWord & 0xFF);
804 }
805
806 /** Discards four bytes from the currently selected pipe's bank, for OUT direction pipes.
807 *
808 * \ingroup Group_PipePrimitiveRW_AVR8
809 */
810 static inline void Pipe_Discard_DWord(void) ATTR_ALWAYS_INLINE;
811 static inline void Pipe_Discard_DWord(void)
812 {
813 uint8_t Dummy;
814
815 Dummy = UPDATX;
816 Dummy = UPDATX;
817 Dummy = UPDATX;
818 Dummy = UPDATX;
819 }
820
821 /* External Variables: */
822 /** Global indicating the maximum packet size of the default control pipe located at address
823 * 0 in the device. This value is set to the value indicated in the attached device's device
824 * descriptor once the USB interface is initialized into host mode and a device is attached
825 * to the USB bus.
826 *
827 * \note This variable should be treated as read-only in the user application, and never manually
828 * changed in value.
829 */
830 extern uint8_t USB_ControlPipeSize;
831
832 /* Function Prototypes: */
833 /** Configures the specified pipe number with the given pipe type, token, target endpoint number in the
834 * attached device, bank size and banking mode.
835 *
836 * A newly configured pipe is frozen by default, and must be unfrozen before use via the \ref Pipe_Unfreeze()
837 * before being used. Pipes should be kept frozen unless waiting for data from a device while in IN mode, or
838 * sending data to the device in OUT mode. IN type pipes are also automatically configured to accept infinite
839 * numbers of IN requests without automatic freezing - this can be overridden by a call to
840 * \ref Pipe_SetFiniteINRequests().
841 *
842 * \param[in] Number Pipe number to configure. This must be more than 0 and less than \ref PIPE_TOTAL_PIPES.
843 *
844 * \param[in] Type Type of pipe to configure, an \c EP_TYPE_* mask. Not all pipe types are available on Low
845 * Speed USB devices - refer to the USB 2.0 specification.
846 *
847 * \param[in] Token Pipe data token, either \ref PIPE_TOKEN_SETUP, \ref PIPE_TOKEN_OUT or \ref PIPE_TOKEN_IN.
848 * All pipes (except Control type) are unidirectional - data may only be read from or
849 * written to the pipe bank based on its direction, not both.
850 *
851 * \param[in] EndpointNumber Endpoint index within the attached device that the pipe should interface to.
852 *
853 * \param[in] Size Size of the pipe's bank, where packets are stored before they are transmitted to
854 * the USB device, or after they have been received from the USB device (depending on
855 * the pipe's data direction). The bank size must indicate the maximum packet size that
856 * the pipe can handle.
857 *
858 * \param[in] Banks Number of banks to use for the pipe being configured, a \c PIPE_BANK_* mask. More banks
859 * uses more USB DPRAM, but offers better performance. Isochronous type pipes <b>must</b>
860 * have at least two banks.
861 *
862 * \note When the \c ORDERED_EP_CONFIG compile time option is used, Pipes <b>must</b> be configured in ascending order,
863 * or bank corruption will occur.
864 * \n\n
865 *
866 * \note Certain models of USB AVR's pipes may have different maximum packet sizes based on the pipe's
867 * index - refer to the chosen USB AVR's datasheet to determine the maximum bank size for each pipe.
868 * \n\n
869 *
870 * \note The default control pipe should not be manually configured by the user application, as it is
871 * automatically configured by the library internally.
872 * \n\n
873 *
874 * \note This routine will automatically select the specified pipe upon success. Upon failure, the pipe which
875 * failed to reconfigure correctly will be selected.
876 *
877 * \return Boolean \c true if the configuration succeeded, \c false otherwise.
878 */
879 bool Pipe_ConfigurePipe(const uint8_t Number,
880 const uint8_t Type,
881 const uint8_t Token,
882 const uint8_t EndpointNumber,
883 const uint16_t Size,
884 const uint8_t Banks);
885
886 /** Spin-loops until the currently selected non-control pipe is ready for the next packed of data to be read
887 * or written to it, aborting in the case of an error condition (such as a timeout or device disconnect).
888 *
889 * \ingroup Group_PipeRW_AVR8
890 *
891 * \return A value from the \ref Pipe_WaitUntilReady_ErrorCodes_t enum.
892 */
893 uint8_t Pipe_WaitUntilReady(void);
894
895 /** Determines if a pipe has been bound to the given device endpoint address. If a pipe which is bound to the given
896 * endpoint is found, it is automatically selected.
897 *
898 * \param[in] EndpointAddress Address and direction mask of the endpoint within the attached device to check.
899 *
900 * \return Boolean \c true if a pipe bound to the given endpoint address of the specified direction is found,
901 * \c false otherwise.
902 */
903 bool Pipe_IsEndpointBound(const uint8_t EndpointAddress);
904
905 /* Private Interface - For use in library only: */
906 #if !defined(__DOXYGEN__)
907 /* Macros: */
908 #if !defined(ENDPOINT_CONTROLEP)
909 #define ENDPOINT_CONTROLEP 0
910 #endif
911
912 /* Inline Functions: */
913 static inline uint8_t Pipe_BytesToEPSizeMask(const uint16_t Bytes) ATTR_WARN_UNUSED_RESULT ATTR_CONST ATTR_ALWAYS_INLINE;
914 static inline uint8_t Pipe_BytesToEPSizeMask(const uint16_t Bytes)
915 {
916 uint8_t MaskVal = 0;
917 uint16_t CheckBytes = 8;
918
919 while ((CheckBytes < Bytes) && (CheckBytes < PIPE_MAX_SIZE))
920 {
921 MaskVal++;
922 CheckBytes <<= 1;
923 }
924
925 return (MaskVal << EPSIZE0);
926 }
927
928 /* Function Prototypes: */
929 void Pipe_ClearPipes(void);
930 #endif
931
932 /* Disable C linkage for C++ Compilers: */
933 #if defined(__cplusplus)
934 }
935 #endif
936
937 #endif
938
939 /** @} */
940