Update copyright year on all source files.
[pub/USBasp.git] / Projects / AVRISP-MKII / Lib / ISP / ISPTarget.c
1 /*
2 LUFA Library
3 Copyright (C) Dean Camera, 2011.
4
5 dean [at] fourwalledcubicle [dot] com
6 www.lufa-lib.org
7 */
8
9 /*
10 Copyright 2011 Dean Camera (dean [at] fourwalledcubicle [dot] com)
11
12 Permission to use, copy, modify, distribute, and sell this
13 software and its documentation for any purpose is hereby granted
14 without fee, provided that the above copyright notice appear in
15 all copies and that both that the copyright notice and this
16 permission notice and warranty disclaimer appear in supporting
17 documentation, and that the name of the author not be used in
18 advertising or publicity pertaining to distribution of the
19 software without specific, written prior permission.
20
21 The author disclaim all warranties with regard to this
22 software, including all implied warranties of merchantability
23 and fitness. In no event shall the author be liable for any
24 special, indirect or consequential damages or any damages
25 whatsoever resulting from loss of use, data or profits, whether
26 in an action of contract, negligence or other tortious action,
27 arising out of or in connection with the use or performance of
28 this software.
29 */
30
31 /** \file
32 *
33 * Target-related functions for the ISP Protocol decoder.
34 */
35
36 #include "ISPTarget.h"
37
38 #if defined(ENABLE_ISP_PROTOCOL) || defined(__DOXYGEN__)
39
40 /** List of hardware SPI prescaler masks for possible AVRStudio ISP programming speeds.
41 *
42 * \hideinitializer
43 */
44 static uint8_t SPIMaskFromSCKDuration[] PROGMEM =
45 {
46 #if (F_CPU == 8000000)
47 SPI_SPEED_FCPU_DIV_2, // AVRStudio = 8MHz SPI, Actual = 4MHz SPI
48 SPI_SPEED_FCPU_DIV_2, // AVRStudio = 4MHz SPI, Actual = 4MHz SPI
49 SPI_SPEED_FCPU_DIV_4, // AVRStudio = 2MHz SPI, Actual = 2MHz SPI
50 SPI_SPEED_FCPU_DIV_8, // AVRStudio = 1MHz SPI, Actual = 1MHz SPI
51 SPI_SPEED_FCPU_DIV_16, // AVRStudio = 500KHz SPI, Actual = 500KHz SPI
52 SPI_SPEED_FCPU_DIV_32, // AVRStudio = 250KHz SPI, Actual = 250KHz SPI
53 SPI_SPEED_FCPU_DIV_64, // AVRStudio = 125KHz SPI, Actual = 125KHz SPI
54 #elif (F_CPU == 16000000)
55 SPI_SPEED_FCPU_DIV_2, // AVRStudio = 8MHz SPI, Actual = 8MHz SPI
56 SPI_SPEED_FCPU_DIV_4, // AVRStudio = 4MHz SPI, Actual = 4MHz SPI
57 SPI_SPEED_FCPU_DIV_8, // AVRStudio = 2MHz SPI, Actual = 2MHz SPI
58 SPI_SPEED_FCPU_DIV_16, // AVRStudio = 1MHz SPI, Actual = 1MHz SPI
59 SPI_SPEED_FCPU_DIV_32, // AVRStudio = 500KHz SPI, Actual = 500KHz SPI
60 SPI_SPEED_FCPU_DIV_64, // AVRStudio = 250KHz SPI, Actual = 250KHz SPI
61 SPI_SPEED_FCPU_DIV_128 // AVRStudio = 125KHz SPI, Actual = 125KHz SPI
62 #else
63 #error No SPI prescaler masks for chosen F_CPU speed.
64 #endif
65 };
66
67 /** Lookup table to convert the slower ISP speeds into a compare value for the software SPI driver.
68 *
69 * \hideinitializer
70 */
71 static uint16_t TimerCompareFromSCKDuration[] PROGMEM =
72 {
73 TIMER_COMP(96386), TIMER_COMP(89888), TIMER_COMP(84211), TIMER_COMP(79208), TIMER_COMP(74767),
74 TIMER_COMP(70797), TIMER_COMP(67227), TIMER_COMP(64000), TIMER_COMP(61069), TIMER_COMP(58395),
75 TIMER_COMP(55945), TIMER_COMP(51613), TIMER_COMP(49690), TIMER_COMP(47905), TIMER_COMP(46243),
76 TIMER_COMP(43244), TIMER_COMP(41885), TIMER_COMP(39409), TIMER_COMP(38278), TIMER_COMP(36200),
77 TIMER_COMP(34335), TIMER_COMP(32654), TIMER_COMP(31129), TIMER_COMP(29740), TIMER_COMP(28470),
78 TIMER_COMP(27304), TIMER_COMP(25724), TIMER_COMP(24768), TIMER_COMP(23461), TIMER_COMP(22285),
79 TIMER_COMP(21221), TIMER_COMP(20254), TIMER_COMP(19371), TIMER_COMP(18562), TIMER_COMP(17583),
80 TIMER_COMP(16914), TIMER_COMP(16097), TIMER_COMP(15356), TIMER_COMP(14520), TIMER_COMP(13914),
81 TIMER_COMP(13224), TIMER_COMP(12599), TIMER_COMP(12031), TIMER_COMP(11511), TIMER_COMP(10944),
82 TIMER_COMP(10431), TIMER_COMP(9963), TIMER_COMP(9468), TIMER_COMP(9081), TIMER_COMP(8612),
83 TIMER_COMP(8239), TIMER_COMP(7851), TIMER_COMP(7498), TIMER_COMP(7137), TIMER_COMP(6809),
84 TIMER_COMP(6478), TIMER_COMP(6178), TIMER_COMP(5879), TIMER_COMP(5607), TIMER_COMP(5359),
85 TIMER_COMP(5093), TIMER_COMP(4870), TIMER_COMP(4633), TIMER_COMP(4418), TIMER_COMP(4209),
86 TIMER_COMP(4019), TIMER_COMP(3823), TIMER_COMP(3645), TIMER_COMP(3474), TIMER_COMP(3310),
87 TIMER_COMP(3161), TIMER_COMP(3011), TIMER_COMP(2869), TIMER_COMP(2734), TIMER_COMP(2611),
88 TIMER_COMP(2484), TIMER_COMP(2369), TIMER_COMP(2257), TIMER_COMP(2152), TIMER_COMP(2052),
89 TIMER_COMP(1956), TIMER_COMP(1866), TIMER_COMP(1779), TIMER_COMP(1695), TIMER_COMP(1615),
90 TIMER_COMP(1539), TIMER_COMP(1468), TIMER_COMP(1398), TIMER_COMP(1333), TIMER_COMP(1271),
91 TIMER_COMP(1212), TIMER_COMP(1155), TIMER_COMP(1101), TIMER_COMP(1049), TIMER_COMP(1000),
92 TIMER_COMP(953), TIMER_COMP(909), TIMER_COMP(866), TIMER_COMP(826), TIMER_COMP(787),
93 TIMER_COMP(750), TIMER_COMP(715), TIMER_COMP(682), TIMER_COMP(650), TIMER_COMP(619),
94 TIMER_COMP(590), TIMER_COMP(563), TIMER_COMP(536), TIMER_COMP(511), TIMER_COMP(487),
95 TIMER_COMP(465), TIMER_COMP(443), TIMER_COMP(422), TIMER_COMP(402), TIMER_COMP(384),
96 TIMER_COMP(366), TIMER_COMP(349), TIMER_COMP(332), TIMER_COMP(317), TIMER_COMP(302),
97 TIMER_COMP(288), TIMER_COMP(274), TIMER_COMP(261), TIMER_COMP(249), TIMER_COMP(238),
98 TIMER_COMP(226), TIMER_COMP(216), TIMER_COMP(206), TIMER_COMP(196), TIMER_COMP(187),
99 TIMER_COMP(178), TIMER_COMP(170), TIMER_COMP(162), TIMER_COMP(154), TIMER_COMP(147),
100 TIMER_COMP(140), TIMER_COMP(134), TIMER_COMP(128), TIMER_COMP(122), TIMER_COMP(116),
101 TIMER_COMP(111), TIMER_COMP(105), TIMER_COMP(100), TIMER_COMP(95.4), TIMER_COMP(90.9),
102 TIMER_COMP(86.6), TIMER_COMP(82.6), TIMER_COMP(78.7), TIMER_COMP(75.0), TIMER_COMP(71.5),
103 TIMER_COMP(68.2), TIMER_COMP(65.0), TIMER_COMP(61.9), TIMER_COMP(59.0), TIMER_COMP(56.3),
104 TIMER_COMP(53.6), TIMER_COMP(51.1)
105 };
106
107 /** Currently selected SPI driver, either hardware (for fast ISP speeds) or software (for slower ISP speeds). */
108 bool HardwareSPIMode = true;
109
110 /** Software SPI data register for sending and receiving */
111 volatile uint8_t SoftSPI_Data;
112
113 /** Number of bits left to transfer in the software SPI driver */
114 volatile uint8_t SoftSPI_BitsRemaining;
115
116
117 /** ISR to handle software SPI transmission and reception */
118 ISR(TIMER1_COMPA_vect, ISR_BLOCK)
119 {
120 /* Check if rising edge (output next bit) or falling edge (read in next bit) */
121 if (!(PINB & (1 << 1)))
122 {
123 if (SoftSPI_Data & (1 << 7))
124 PORTB |= (1 << 2);
125 else
126 PORTB &= ~(1 << 2);
127 }
128 else
129 {
130 SoftSPI_Data <<= 1;
131
132 if (!(SoftSPI_BitsRemaining--))
133 TCCR1B = 0;
134
135 if (PINB & (1 << 3))
136 SoftSPI_Data |= (1 << 0);
137 }
138
139 /* Fast toggle of PORTB.1 via the PIN register (see datasheet) */
140 PINB |= (1 << 1);
141 }
142
143 /** Initialises the appropriate SPI driver (hardware or software, depending on the selected ISP speed) ready for
144 * communication with the attached target.
145 */
146 void ISPTarget_EnableTargetISP(void)
147 {
148 uint8_t SCKDuration = V2Params_GetParameterValue(PARAM_SCK_DURATION);
149
150 if (SCKDuration < sizeof(SPIMaskFromSCKDuration))
151 {
152 HardwareSPIMode = true;
153
154 SPI_Init(pgm_read_byte(&SPIMaskFromSCKDuration[SCKDuration]) | SPI_ORDER_MSB_FIRST |
155 SPI_SCK_LEAD_RISING | SPI_SAMPLE_LEADING | SPI_MODE_MASTER);
156 }
157 else
158 {
159 HardwareSPIMode = false;
160
161 DDRB |= ((1 << 1) | (1 << 2));
162 PORTB |= ((1 << 0) | (1 << 3));
163
164 ISPTarget_ConfigureSoftwareISP(SCKDuration);
165 }
166 }
167
168 /** Shuts down the current selected SPI driver (hardware or software, depending on the selected ISP speed) so that no
169 * further communications can occur until the driver is re-initialized.
170 */
171 void ISPTarget_DisableTargetISP(void)
172 {
173 if (HardwareSPIMode)
174 {
175 SPI_ShutDown();
176 }
177 else
178 {
179 DDRB &= ~((1 << 1) | (1 << 2));
180 PORTB &= ~((1 << 0) | (1 << 3));
181
182 /* Must re-enable rescue clock once software ISP has exited, as the timer for the rescue clock is
183 * re-purposed for software SPI */
184 ISPTarget_ConfigureRescueClock();
185 }
186 }
187
188 /** Configures the AVR to produce a .5MHz rescue clock out of the OCR1A pin of the AVR, so
189 * that it can be fed into the XTAL1 pin of an AVR whose fuses have been misconfigured for
190 * an external clock rather than a crystal. When used, the ISP speed must be 125KHz for this
191 * functionality to work correctly.
192 */
193 void ISPTarget_ConfigureRescueClock(void)
194 {
195 #if defined(XCK_RESCUE_CLOCK_ENABLE)
196 /* Configure XCK as an output for the specified AVR model */
197 DDRD |= (1 << 5);
198
199 /* Start USART to generate a 4MHz clock on the XCK pin */
200 UBRR1 = ((F_CPU / 2 / ISP_RESCUE_CLOCK_SPEED) - 1);
201 UCSR1B = (1 << TXEN1);
202 UCSR1C = (1 << UMSEL10) | (1 << UPM11) | (1 << USBS1) | (1 << UCSZ11) | (1 << UCSZ10) | (1 << UCPOL1);
203 #else
204 /* Configure OCR1A as an output for the specified AVR model */
205 #if defined(USB_SERIES_2_AVR)
206 DDRC |= (1 << 6);
207 #else
208 DDRB |= (1 << 5);
209 #endif
210
211 /* Start Timer 1 to generate a 4MHz clock on the OCR1A pin */
212 TIMSK1 = 0;
213 TCNT1 = 0;
214 OCR1A = ((F_CPU / 2 / ISP_RESCUE_CLOCK_SPEED) - 1);
215 TCCR1A = (1 << COM1A0);
216 TCCR1B = ((1 << WGM12) | (1 << CS10));
217 #endif
218 }
219
220 /** Configures the AVR's timer ready to produce software ISP for the slower ISP speeds that
221 * cannot be obtained when using the AVR's hardware SPI module.
222 *
223 * \param[in] SCKDuration Duration of the desired software ISP SCK clock
224 */
225 void ISPTarget_ConfigureSoftwareISP(const uint8_t SCKDuration)
226 {
227 /* Configure Timer 1 for software ISP using the specified SCK duration */
228 TIMSK1 = (1 << OCIE1A);
229 TCNT1 = 0;
230 OCR1A = pgm_read_word(&TimerCompareFromSCKDuration[SCKDuration - sizeof(SPIMaskFromSCKDuration)]);
231 TCCR1A = 0;
232 TCCR1B = 0;
233 }
234
235 /** Sends and receives a single byte of data to and from the attached target via software SPI.
236 *
237 * \param[in] Byte Byte of data to send to the attached target
238 *
239 * \return Received byte of data from the attached target
240 */
241 uint8_t ISPTarget_TransferSoftSPIByte(const uint8_t Byte)
242 {
243 SoftSPI_Data = Byte;
244 SoftSPI_BitsRemaining = 8;
245
246 if (SoftSPI_Data & 0x01)
247 PORTB |= (1 << 2);
248 else
249 PORTB &= ~(1 << 2);
250
251 TCNT1 = 0;
252 TCCR1B = ((1 << WGM12) | (1 << CS11));
253 while (SoftSPI_BitsRemaining && TimeoutTicksRemaining);
254 TCCR1B = 0;
255
256 return SoftSPI_Data;
257 }
258
259 /** Asserts or deasserts the target's reset line, using the correct polarity as set by the host using a SET PARAM command.
260 * When not asserted, the line is tristated so as not to interfere with normal device operation.
261 *
262 * \param[in] ResetTarget Boolean true when the target should be held in reset, false otherwise
263 */
264 void ISPTarget_ChangeTargetResetLine(const bool ResetTarget)
265 {
266 if (ResetTarget)
267 {
268 AUX_LINE_DDR |= AUX_LINE_MASK;
269
270 if (!(V2Params_GetParameterValue(PARAM_RESET_POLARITY)))
271 AUX_LINE_PORT |= AUX_LINE_MASK;
272 else
273 AUX_LINE_PORT &= ~AUX_LINE_MASK;
274 }
275 else
276 {
277 AUX_LINE_DDR &= ~AUX_LINE_MASK;
278 AUX_LINE_PORT &= ~AUX_LINE_MASK;
279 }
280 }
281
282 /** Waits until the target has completed the last operation, by continuously polling the device's
283 * BUSY flag until it is cleared, or until the command timeout period has expired.
284 *
285 * \return V2 Protocol status \ref STATUS_CMD_OK if the no timeout occurred, \ref STATUS_RDY_BSY_TOUT otherwise
286 */
287 uint8_t ISPTarget_WaitWhileTargetBusy(void)
288 {
289 do
290 {
291 ISPTarget_SendByte(0xF0);
292 ISPTarget_SendByte(0x00);
293 ISPTarget_SendByte(0x00);
294 }
295 while ((ISPTarget_ReceiveByte() & 0x01) && TimeoutTicksRemaining);
296
297 return TimeoutTicksRemaining ? STATUS_CMD_OK : STATUS_RDY_BSY_TOUT;
298 }
299
300 /** Sends a low-level LOAD EXTENDED ADDRESS command to the target, for addressing of memory beyond the
301 * 64KB boundary. This sends the command with the correct address as indicated by the current address
302 * pointer variable set by the host when a SET ADDRESS command is issued.
303 */
304 void ISPTarget_LoadExtendedAddress(void)
305 {
306 ISPTarget_SendByte(LOAD_EXTENDED_ADDRESS_CMD);
307 ISPTarget_SendByte(0x00);
308 ISPTarget_SendByte((CurrentAddress & 0x00FF0000) >> 16);
309 ISPTarget_SendByte(0x00);
310 }
311
312 /** Waits until the last issued target memory programming command has completed, via the check mode given and using
313 * the given parameters.
314 *
315 * \param[in] ProgrammingMode Programming mode used and completion check to use, a mask of PROG_MODE_* constants
316 * \param[in] PollAddress Memory address to poll for completion if polling check mode used
317 * \param[in] PollValue Poll value to check against if polling check mode used
318 * \param[in] DelayMS Milliseconds to delay before returning if delay check mode used
319 * \param[in] ReadMemCommand Device low-level READ MEMORY command to send if value check mode used
320 *
321 * \return V2 Protocol status \ref STATUS_CMD_OK if the no timeout occurred, \ref STATUS_RDY_BSY_TOUT or
322 * \ref STATUS_CMD_TOUT otherwise
323 */
324 uint8_t ISPTarget_WaitForProgComplete(const uint8_t ProgrammingMode,
325 const uint16_t PollAddress,
326 const uint8_t PollValue,
327 const uint8_t DelayMS,
328 const uint8_t ReadMemCommand)
329 {
330 uint8_t ProgrammingStatus = STATUS_CMD_OK;
331
332 /* Determine method of Programming Complete check */
333 switch (ProgrammingMode & ~(PROG_MODE_PAGED_WRITES_MASK | PROG_MODE_COMMIT_PAGE_MASK))
334 {
335 case PROG_MODE_WORD_TIMEDELAY_MASK:
336 case PROG_MODE_PAGED_TIMEDELAY_MASK:
337 ISPProtocol_DelayMS(DelayMS);
338 break;
339 case PROG_MODE_WORD_VALUE_MASK:
340 case PROG_MODE_PAGED_VALUE_MASK:
341 do
342 {
343 ISPTarget_SendByte(ReadMemCommand);
344 ISPTarget_SendByte(PollAddress >> 8);
345 ISPTarget_SendByte(PollAddress & 0xFF);
346 }
347 while ((ISPTarget_TransferByte(0x00) == PollValue) && TimeoutTicksRemaining);
348
349 if (!(TimeoutTicksRemaining))
350 ProgrammingStatus = STATUS_CMD_TOUT;
351
352 break;
353 case PROG_MODE_WORD_READYBUSY_MASK:
354 case PROG_MODE_PAGED_READYBUSY_MASK:
355 ProgrammingStatus = ISPTarget_WaitWhileTargetBusy();
356 break;
357 }
358
359 return ProgrammingStatus;
360 }
361
362 #endif
363