Update copyright year on all source files.
[pub/USBasp.git] / Bootloaders / DFU / BootloaderDFU.c
1 /*
2 LUFA Library
3 Copyright (C) Dean Camera, 2011.
4
5 dean [at] fourwalledcubicle [dot] com
6 www.lufa-lib.org
7 */
8
9 /*
10 Copyright 2011 Dean Camera (dean [at] fourwalledcubicle [dot] com)
11
12 Permission to use, copy, modify, distribute, and sell this
13 software and its documentation for any purpose is hereby granted
14 without fee, provided that the above copyright notice appear in
15 all copies and that both that the copyright notice and this
16 permission notice and warranty disclaimer appear in supporting
17 documentation, and that the name of the author not be used in
18 advertising or publicity pertaining to distribution of the
19 software without specific, written prior permission.
20
21 The author disclaim all warranties with regard to this
22 software, including all implied warranties of merchantability
23 and fitness. In no event shall the author be liable for any
24 special, indirect or consequential damages or any damages
25 whatsoever resulting from loss of use, data or profits, whether
26 in an action of contract, negligence or other tortious action,
27 arising out of or in connection with the use or performance of
28 this software.
29 */
30
31 /** \file
32 *
33 * Main source file for the DFU class bootloader. This file contains the complete bootloader logic.
34 */
35
36 #define INCLUDE_FROM_BOOTLOADER_C
37 #include "BootloaderDFU.h"
38
39 /** Flag to indicate if the bootloader is currently running in secure mode, disallowing memory operations
40 * other than erase. This is initially set to the value set by SECURE_MODE, and cleared by the bootloader
41 * once a memory erase has completed.
42 */
43 bool IsSecure = SECURE_MODE;
44
45 /** Flag to indicate if the bootloader should be running, or should exit and allow the application code to run
46 * via a soft reset. When cleared, the bootloader will abort, the USB interface will shut down and the application
47 * jumped to via an indirect jump to location 0x0000 (or other location specified by the host).
48 */
49 bool RunBootloader = true;
50
51 /** Flag to indicate if the bootloader is waiting to exit. When the host requests the bootloader to exit and
52 * jump to the application address it specifies, it sends two sequential commands which must be properly
53 * acknowledged. Upon reception of the first the RunBootloader flag is cleared and the WaitForExit flag is set,
54 * causing the bootloader to wait for the final exit command before shutting down.
55 */
56 bool WaitForExit = false;
57
58 /** Current DFU state machine state, one of the values in the DFU_State_t enum. */
59 uint8_t DFU_State = dfuIDLE;
60
61 /** Status code of the last executed DFU command. This is set to one of the values in the DFU_Status_t enum after
62 * each operation, and returned to the host when a Get Status DFU request is issued.
63 */
64 uint8_t DFU_Status = OK;
65
66 /** Data containing the DFU command sent from the host. */
67 DFU_Command_t SentCommand;
68
69 /** Response to the last issued Read Data DFU command. Unlike other DFU commands, the read command
70 * requires a single byte response from the bootloader containing the read data when the next DFU_UPLOAD command
71 * is issued by the host.
72 */
73 uint8_t ResponseByte;
74
75 /** Pointer to the start of the user application. By default this is 0x0000 (the reset vector), however the host
76 * may specify an alternate address when issuing the application soft-start command.
77 */
78 AppPtr_t AppStartPtr = (AppPtr_t)0x0000;
79
80 /** 64-bit flash page number. This is concatenated with the current 16-bit address on USB AVRs containing more than
81 * 64KB of flash memory.
82 */
83 uint8_t Flash64KBPage = 0;
84
85 /** Memory start address, indicating the current address in the memory being addressed (either FLASH or EEPROM
86 * depending on the issued command from the host).
87 */
88 uint16_t StartAddr = 0x0000;
89
90 /** Memory end address, indicating the end address to read to/write from in the memory being addressed (either FLASH
91 * of EEPROM depending on the issued command from the host).
92 */
93 uint16_t EndAddr = 0x0000;
94
95
96 /** Main program entry point. This routine configures the hardware required by the bootloader, then continuously
97 * runs the bootloader processing routine until instructed to soft-exit, or hard-reset via the watchdog to start
98 * the loaded application code.
99 */
100 int main(void)
101 {
102 /* Configure hardware required by the bootloader */
103 SetupHardware();
104
105 #if ((BOARD == BOARD_XPLAIN) || (BOARD == BOARD_XPLAIN_REV1))
106 /* Disable JTAG debugging */
107 MCUCR |= (1 << JTD);
108 MCUCR |= (1 << JTD);
109
110 /* Enable pull-up on the JTAG TCK pin so we can use it to select the mode */
111 PORTF |= (1 << 4);
112 _delay_ms(10);
113
114 /* If the TCK pin is not jumpered to ground, start the user application instead */
115 RunBootloader = (!(PINF & (1 << 4)));
116
117 /* Re-enable JTAG debugging */
118 MCUCR &= ~(1 << JTD);
119 MCUCR &= ~(1 << JTD);
120 #endif
121
122 /* Enable global interrupts so that the USB stack can function */
123 sei();
124
125 /* Run the USB management task while the bootloader is supposed to be running */
126 while (RunBootloader || WaitForExit)
127 USB_USBTask();
128
129 /* Reset configured hardware back to their original states for the user application */
130 ResetHardware();
131
132 /* Start the user application */
133 AppStartPtr();
134 }
135
136 /** Configures all hardware required for the bootloader. */
137 void SetupHardware(void)
138 {
139 /* Disable watchdog if enabled by bootloader/fuses */
140 MCUSR &= ~(1 << WDRF);
141 wdt_disable();
142
143 /* Disable clock division */
144 clock_prescale_set(clock_div_1);
145
146 /* Relocate the interrupt vector table to the bootloader section */
147 MCUCR = (1 << IVCE);
148 MCUCR = (1 << IVSEL);
149
150 /* Initialize the USB subsystem */
151 USB_Init();
152 }
153
154 /** Resets all configured hardware required for the bootloader back to their original states. */
155 void ResetHardware(void)
156 {
157 /* Shut down the USB subsystem */
158 USB_ShutDown();
159
160 /* Relocate the interrupt vector table back to the application section */
161 MCUCR = (1 << IVCE);
162 MCUCR = 0;
163 }
164
165 /** Event handler for the USB_ControlRequest event. This is used to catch and process control requests sent to
166 * the device from the USB host before passing along unhandled control requests to the library for processing
167 * internally.
168 */
169 void EVENT_USB_Device_ControlRequest(void)
170 {
171 /* Get the size of the command and data from the wLength value */
172 SentCommand.DataSize = USB_ControlRequest.wLength;
173
174 /* Ignore any requests that aren't directed to the DFU interface */
175 if ((USB_ControlRequest.bmRequestType & (CONTROL_REQTYPE_TYPE | CONTROL_REQTYPE_RECIPIENT)) !=
176 (REQTYPE_CLASS | REQREC_INTERFACE))
177 {
178 return;
179 }
180
181 switch (USB_ControlRequest.bRequest)
182 {
183 case REQ_DFU_DNLOAD:
184 Endpoint_ClearSETUP();
185
186 /* Check if bootloader is waiting to terminate */
187 if (WaitForExit)
188 {
189 /* Bootloader is terminating - process last received command */
190 ProcessBootloaderCommand();
191
192 /* Indicate that the last command has now been processed - free to exit bootloader */
193 WaitForExit = false;
194 }
195
196 /* If the request has a data stage, load it into the command struct */
197 if (SentCommand.DataSize)
198 {
199 while (!(Endpoint_IsOUTReceived()))
200 {
201 if (USB_DeviceState == DEVICE_STATE_Unattached)
202 return;
203 }
204
205 /* First byte of the data stage is the DNLOAD request's command */
206 SentCommand.Command = Endpoint_Read_Byte();
207
208 /* One byte of the data stage is the command, so subtract it from the total data bytes */
209 SentCommand.DataSize--;
210
211 /* Load in the rest of the data stage as command parameters */
212 for (uint8_t DataByte = 0; (DataByte < sizeof(SentCommand.Data)) &&
213 Endpoint_BytesInEndpoint(); DataByte++)
214 {
215 SentCommand.Data[DataByte] = Endpoint_Read_Byte();
216 SentCommand.DataSize--;
217 }
218
219 /* Process the command */
220 ProcessBootloaderCommand();
221 }
222
223 /* Check if currently downloading firmware */
224 if (DFU_State == dfuDNLOAD_IDLE)
225 {
226 if (!(SentCommand.DataSize))
227 {
228 DFU_State = dfuIDLE;
229 }
230 else
231 {
232 /* Throw away the filler bytes before the start of the firmware */
233 DiscardFillerBytes(DFU_FILLER_BYTES_SIZE);
234
235 /* Throw away the packet alignment filler bytes before the start of the firmware */
236 DiscardFillerBytes(StartAddr % FIXED_CONTROL_ENDPOINT_SIZE);
237
238 /* Calculate the number of bytes remaining to be written */
239 uint16_t BytesRemaining = ((EndAddr - StartAddr) + 1);
240
241 if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x00)) // Write flash
242 {
243 /* Calculate the number of words to be written from the number of bytes to be written */
244 uint16_t WordsRemaining = (BytesRemaining >> 1);
245
246 union
247 {
248 uint16_t Words[2];
249 uint32_t Long;
250 } CurrFlashAddress = {.Words = {StartAddr, Flash64KBPage}};
251
252 uint32_t CurrFlashPageStartAddress = CurrFlashAddress.Long;
253 uint8_t WordsInFlashPage = 0;
254
255 while (WordsRemaining--)
256 {
257 /* Check if endpoint is empty - if so clear it and wait until ready for next packet */
258 if (!(Endpoint_BytesInEndpoint()))
259 {
260 Endpoint_ClearOUT();
261
262 while (!(Endpoint_IsOUTReceived()))
263 {
264 if (USB_DeviceState == DEVICE_STATE_Unattached)
265 return;
266 }
267 }
268
269 /* Write the next word into the current flash page */
270 boot_page_fill(CurrFlashAddress.Long, Endpoint_Read_Word_LE());
271
272 /* Adjust counters */
273 WordsInFlashPage += 1;
274 CurrFlashAddress.Long += 2;
275
276 /* See if an entire page has been written to the flash page buffer */
277 if ((WordsInFlashPage == (SPM_PAGESIZE >> 1)) || !(WordsRemaining))
278 {
279 /* Commit the flash page to memory */
280 boot_page_write(CurrFlashPageStartAddress);
281 boot_spm_busy_wait();
282
283 /* Check if programming incomplete */
284 if (WordsRemaining)
285 {
286 CurrFlashPageStartAddress = CurrFlashAddress.Long;
287 WordsInFlashPage = 0;
288
289 /* Erase next page's temp buffer */
290 boot_page_erase(CurrFlashAddress.Long);
291 boot_spm_busy_wait();
292 }
293 }
294 }
295
296 /* Once programming complete, start address equals the end address */
297 StartAddr = EndAddr;
298
299 /* Re-enable the RWW section of flash */
300 boot_rww_enable();
301 }
302 else // Write EEPROM
303 {
304 while (BytesRemaining--)
305 {
306 /* Check if endpoint is empty - if so clear it and wait until ready for next packet */
307 if (!(Endpoint_BytesInEndpoint()))
308 {
309 Endpoint_ClearOUT();
310
311 while (!(Endpoint_IsOUTReceived()))
312 {
313 if (USB_DeviceState == DEVICE_STATE_Unattached)
314 return;
315 }
316 }
317
318 /* Read the byte from the USB interface and write to to the EEPROM */
319 eeprom_write_byte((uint8_t*)StartAddr, Endpoint_Read_Byte());
320
321 /* Adjust counters */
322 StartAddr++;
323 }
324 }
325
326 /* Throw away the currently unused DFU file suffix */
327 DiscardFillerBytes(DFU_FILE_SUFFIX_SIZE);
328 }
329 }
330
331 Endpoint_ClearOUT();
332
333 Endpoint_ClearStatusStage();
334
335 break;
336 case REQ_DFU_UPLOAD:
337 Endpoint_ClearSETUP();
338
339 while (!(Endpoint_IsINReady()))
340 {
341 if (USB_DeviceState == DEVICE_STATE_Unattached)
342 return;
343 }
344
345 if (DFU_State != dfuUPLOAD_IDLE)
346 {
347 if ((DFU_State == dfuERROR) && IS_ONEBYTE_COMMAND(SentCommand.Data, 0x01)) // Blank Check
348 {
349 /* Blank checking is performed in the DFU_DNLOAD request - if we get here we've told the host
350 that the memory isn't blank, and the host is requesting the first non-blank address */
351 Endpoint_Write_Word_LE(StartAddr);
352 }
353 else
354 {
355 /* Idle state upload - send response to last issued command */
356 Endpoint_Write_Byte(ResponseByte);
357 }
358 }
359 else
360 {
361 /* Determine the number of bytes remaining in the current block */
362 uint16_t BytesRemaining = ((EndAddr - StartAddr) + 1);
363
364 if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x00)) // Read FLASH
365 {
366 /* Calculate the number of words to be written from the number of bytes to be written */
367 uint16_t WordsRemaining = (BytesRemaining >> 1);
368
369 union
370 {
371 uint16_t Words[2];
372 uint32_t Long;
373 } CurrFlashAddress = {.Words = {StartAddr, Flash64KBPage}};
374
375 while (WordsRemaining--)
376 {
377 /* Check if endpoint is full - if so clear it and wait until ready for next packet */
378 if (Endpoint_BytesInEndpoint() == FIXED_CONTROL_ENDPOINT_SIZE)
379 {
380 Endpoint_ClearIN();
381
382 while (!(Endpoint_IsINReady()))
383 {
384 if (USB_DeviceState == DEVICE_STATE_Unattached)
385 return;
386 }
387 }
388
389 /* Read the flash word and send it via USB to the host */
390 #if (FLASHEND > 0xFFFF)
391 Endpoint_Write_Word_LE(pgm_read_word_far(CurrFlashAddress.Long));
392 #else
393 Endpoint_Write_Word_LE(pgm_read_word(CurrFlashAddress.Long));
394 #endif
395
396 /* Adjust counters */
397 CurrFlashAddress.Long += 2;
398 }
399
400 /* Once reading is complete, start address equals the end address */
401 StartAddr = EndAddr;
402 }
403 else if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x02)) // Read EEPROM
404 {
405 while (BytesRemaining--)
406 {
407 /* Check if endpoint is full - if so clear it and wait until ready for next packet */
408 if (Endpoint_BytesInEndpoint() == FIXED_CONTROL_ENDPOINT_SIZE)
409 {
410 Endpoint_ClearIN();
411
412 while (!(Endpoint_IsINReady()))
413 {
414 if (USB_DeviceState == DEVICE_STATE_Unattached)
415 return;
416 }
417 }
418
419 /* Read the EEPROM byte and send it via USB to the host */
420 Endpoint_Write_Byte(eeprom_read_byte((uint8_t*)StartAddr));
421
422 /* Adjust counters */
423 StartAddr++;
424 }
425 }
426
427 /* Return to idle state */
428 DFU_State = dfuIDLE;
429 }
430
431 Endpoint_ClearIN();
432
433 Endpoint_ClearStatusStage();
434 break;
435 case REQ_DFU_GETSTATUS:
436 Endpoint_ClearSETUP();
437
438 /* Write 8-bit status value */
439 Endpoint_Write_Byte(DFU_Status);
440
441 /* Write 24-bit poll timeout value */
442 Endpoint_Write_Byte(0);
443 Endpoint_Write_Word_LE(0);
444
445 /* Write 8-bit state value */
446 Endpoint_Write_Byte(DFU_State);
447
448 /* Write 8-bit state string ID number */
449 Endpoint_Write_Byte(0);
450
451 Endpoint_ClearIN();
452
453 Endpoint_ClearStatusStage();
454 break;
455 case REQ_DFU_CLRSTATUS:
456 Endpoint_ClearSETUP();
457
458 /* Reset the status value variable to the default OK status */
459 DFU_Status = OK;
460
461 Endpoint_ClearStatusStage();
462 break;
463 case REQ_DFU_GETSTATE:
464 Endpoint_ClearSETUP();
465
466 /* Write the current device state to the endpoint */
467 Endpoint_Write_Byte(DFU_State);
468
469 Endpoint_ClearIN();
470
471 Endpoint_ClearStatusStage();
472 break;
473 case REQ_DFU_ABORT:
474 Endpoint_ClearSETUP();
475
476 /* Reset the current state variable to the default idle state */
477 DFU_State = dfuIDLE;
478
479 Endpoint_ClearStatusStage();
480 break;
481 }
482 }
483
484 /** Routine to discard the specified number of bytes from the control endpoint stream. This is used to
485 * discard unused bytes in the stream from the host, including the memory program block suffix.
486 *
487 * \param[in] NumberOfBytes Number of bytes to discard from the host from the control endpoint
488 */
489 static void DiscardFillerBytes(uint8_t NumberOfBytes)
490 {
491 while (NumberOfBytes--)
492 {
493 if (!(Endpoint_BytesInEndpoint()))
494 {
495 Endpoint_ClearOUT();
496
497 /* Wait until next data packet received */
498 while (!(Endpoint_IsOUTReceived()))
499 {
500 if (USB_DeviceState == DEVICE_STATE_Unattached)
501 return;
502 }
503 }
504 else
505 {
506 Endpoint_Discard_Byte();
507 }
508 }
509 }
510
511 /** Routine to process an issued command from the host, via a DFU_DNLOAD request wrapper. This routine ensures
512 * that the command is allowed based on the current secure mode flag value, and passes the command off to the
513 * appropriate handler function.
514 */
515 static void ProcessBootloaderCommand(void)
516 {
517 /* Check if device is in secure mode */
518 if (IsSecure)
519 {
520 /* Don't process command unless it is a READ or chip erase command */
521 if (!(((SentCommand.Command == COMMAND_WRITE) &&
522 IS_TWOBYTE_COMMAND(SentCommand.Data, 0x00, 0xFF)) ||
523 (SentCommand.Command == COMMAND_READ)))
524 {
525 /* Set the state and status variables to indicate the error */
526 DFU_State = dfuERROR;
527 DFU_Status = errWRITE;
528
529 /* Stall command */
530 Endpoint_StallTransaction();
531
532 /* Don't process the command */
533 return;
534 }
535 }
536
537 /* Dispatch the required command processing routine based on the command type */
538 switch (SentCommand.Command)
539 {
540 case COMMAND_PROG_START:
541 ProcessMemProgCommand();
542 break;
543 case COMMAND_DISP_DATA:
544 ProcessMemReadCommand();
545 break;
546 case COMMAND_WRITE:
547 ProcessWriteCommand();
548 break;
549 case COMMAND_READ:
550 ProcessReadCommand();
551 break;
552 case COMMAND_CHANGE_BASE_ADDR:
553 if (IS_TWOBYTE_COMMAND(SentCommand.Data, 0x03, 0x00)) // Set 64KB flash page command
554 Flash64KBPage = SentCommand.Data[2];
555
556 break;
557 }
558 }
559
560 /** Routine to concatenate the given pair of 16-bit memory start and end addresses from the host, and store them
561 * in the StartAddr and EndAddr global variables.
562 */
563 static void LoadStartEndAddresses(void)
564 {
565 union
566 {
567 uint8_t Bytes[2];
568 uint16_t Word;
569 } Address[2] = {{.Bytes = {SentCommand.Data[2], SentCommand.Data[1]}},
570 {.Bytes = {SentCommand.Data[4], SentCommand.Data[3]}}};
571
572 /* Load in the start and ending read addresses from the sent data packet */
573 StartAddr = Address[0].Word;
574 EndAddr = Address[1].Word;
575 }
576
577 /** Handler for a Memory Program command issued by the host. This routine handles the preparations needed
578 * to write subsequent data from the host into the specified memory.
579 */
580 static void ProcessMemProgCommand(void)
581 {
582 if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x00) || // Write FLASH command
583 IS_ONEBYTE_COMMAND(SentCommand.Data, 0x01)) // Write EEPROM command
584 {
585 /* Load in the start and ending read addresses */
586 LoadStartEndAddresses();
587
588 /* If FLASH is being written to, we need to pre-erase the first page to write to */
589 if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x00))
590 {
591 union
592 {
593 uint16_t Words[2];
594 uint32_t Long;
595 } CurrFlashAddress = {.Words = {StartAddr, Flash64KBPage}};
596
597 /* Erase the current page's temp buffer */
598 boot_page_erase(CurrFlashAddress.Long);
599 boot_spm_busy_wait();
600 }
601
602 /* Set the state so that the next DNLOAD requests reads in the firmware */
603 DFU_State = dfuDNLOAD_IDLE;
604 }
605 }
606
607 /** Handler for a Memory Read command issued by the host. This routine handles the preparations needed
608 * to read subsequent data from the specified memory out to the host, as well as implementing the memory
609 * blank check command.
610 */
611 static void ProcessMemReadCommand(void)
612 {
613 if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x00) || // Read FLASH command
614 IS_ONEBYTE_COMMAND(SentCommand.Data, 0x02)) // Read EEPROM command
615 {
616 /* Load in the start and ending read addresses */
617 LoadStartEndAddresses();
618
619 /* Set the state so that the next UPLOAD requests read out the firmware */
620 DFU_State = dfuUPLOAD_IDLE;
621 }
622 else if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x01)) // Blank check FLASH command
623 {
624 uint32_t CurrFlashAddress = 0;
625
626 while (CurrFlashAddress < BOOT_START_ADDR)
627 {
628 /* Check if the current byte is not blank */
629 #if (FLASHEND > 0xFFFF)
630 if (pgm_read_byte_far(CurrFlashAddress) != 0xFF)
631 #else
632 if (pgm_read_byte(CurrFlashAddress) != 0xFF)
633 #endif
634 {
635 /* Save the location of the first non-blank byte for response back to the host */
636 Flash64KBPage = (CurrFlashAddress >> 16);
637 StartAddr = CurrFlashAddress;
638
639 /* Set state and status variables to the appropriate error values */
640 DFU_State = dfuERROR;
641 DFU_Status = errCHECK_ERASED;
642
643 break;
644 }
645
646 CurrFlashAddress++;
647 }
648 }
649 }
650
651 /** Handler for a Data Write command issued by the host. This routine handles non-programming commands such as
652 * bootloader exit (both via software jumps and hardware watchdog resets) and flash memory erasure.
653 */
654 static void ProcessWriteCommand(void)
655 {
656 if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x03)) // Start application
657 {
658 /* Indicate that the bootloader is terminating */
659 WaitForExit = true;
660
661 /* Check if data supplied for the Start Program command - no data executes the program */
662 if (SentCommand.DataSize)
663 {
664 if (SentCommand.Data[1] == 0x01) // Start via jump
665 {
666 union
667 {
668 uint8_t Bytes[2];
669 AppPtr_t FuncPtr;
670 } Address = {.Bytes = {SentCommand.Data[4], SentCommand.Data[3]}};
671
672 /* Load in the jump address into the application start address pointer */
673 AppStartPtr = Address.FuncPtr;
674 }
675 }
676 else
677 {
678 if (SentCommand.Data[1] == 0x00) // Start via watchdog
679 {
680 /* Start the watchdog to reset the AVR once the communications are finalized */
681 wdt_enable(WDTO_250MS);
682 }
683 else // Start via jump
684 {
685 /* Set the flag to terminate the bootloader at next opportunity */
686 RunBootloader = false;
687 }
688 }
689 }
690 else if (IS_TWOBYTE_COMMAND(SentCommand.Data, 0x00, 0xFF)) // Erase flash
691 {
692 uint32_t CurrFlashAddress = 0;
693
694 /* Clear the application section of flash */
695 while (CurrFlashAddress < BOOT_START_ADDR)
696 {
697 boot_page_erase(CurrFlashAddress);
698 boot_spm_busy_wait();
699 boot_page_write(CurrFlashAddress);
700 boot_spm_busy_wait();
701
702 CurrFlashAddress += SPM_PAGESIZE;
703 }
704
705 /* Re-enable the RWW section of flash as writing to the flash locks it out */
706 boot_rww_enable();
707
708 /* Memory has been erased, reset the security bit so that programming/reading is allowed */
709 IsSecure = false;
710 }
711 }
712
713 /** Handler for a Data Read command issued by the host. This routine handles bootloader information retrieval
714 * commands such as device signature and bootloader version retrieval.
715 */
716 static void ProcessReadCommand(void)
717 {
718 const uint8_t BootloaderInfo[3] = {BOOTLOADER_VERSION, BOOTLOADER_ID_BYTE1, BOOTLOADER_ID_BYTE2};
719 const uint8_t SignatureInfo[3] = {AVR_SIGNATURE_1, AVR_SIGNATURE_2, AVR_SIGNATURE_3};
720
721 uint8_t DataIndexToRead = SentCommand.Data[1];
722
723 if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x00)) // Read bootloader info
724 ResponseByte = BootloaderInfo[DataIndexToRead];
725 else if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x01)) // Read signature byte
726 ResponseByte = SignatureInfo[DataIndexToRead - 0x30];
727 }
728