Tweaks to the new Benito Programmer project for documentation and port/pin usage.
[pub/USBasp.git] / LUFA / Drivers / USB / LowLevel / Pipe.h
1 /*
2 LUFA Library
3 Copyright (C) Dean Camera, 2009.
4
5 dean [at] fourwalledcubicle [dot] com
6 www.fourwalledcubicle.com
7 */
8
9 /*
10 Copyright 2009 Dean Camera (dean [at] fourwalledcubicle [dot] com)
11
12 Permission to use, copy, modify, and distribute this software
13 and its documentation for any purpose and without fee is hereby
14 granted, provided that the above copyright notice appear in all
15 copies and that both that the copyright notice and this
16 permission notice and warranty disclaimer appear in supporting
17 documentation, and that the name of the author not be used in
18 advertising or publicity pertaining to distribution of the
19 software without specific, written prior permission.
20
21 The author disclaim all warranties with regard to this
22 software, including all implied warranties of merchantability
23 and fitness. In no event shall the author be liable for any
24 special, indirect or consequential damages or any damages
25 whatsoever resulting from loss of use, data or profits, whether
26 in an action of contract, negligence or other tortious action,
27 arising out of or in connection with the use or performance of
28 this software.
29 */
30
31 /** \ingroup Group_USB
32 * @defgroup Group_PipeManagement Pipe Management
33 *
34 * This module contains functions, macros and enums related to pipe management when in USB Host mode. This
35 * module contains the pipe management macros, as well as pipe interrupt and data send/recieve functions
36 * for various data types.
37 *
38 * @{
39 */
40
41 /** @defgroup Group_PipeRW Pipe Data Reading and Writing
42 *
43 * Functions, macros, variables, enums and types related to data reading and writing from and to pipes.
44 */
45
46 /** \ingroup Group_PipeRW
47 * @defgroup Group_PipePrimitiveRW Read/Write of Primitive Data Types
48 *
49 * Functions, macros, variables, enums and types related to data reading and writing of primitive data types
50 * from and to pipes.
51 */
52
53 /** \ingroup Group_PipeRW
54 * @defgroup Group_PipeStreamRW Read/Write of Multi-Byte Streams
55 *
56 * Functions, macros, variables, enums and types related to data reading and writing of data streams from
57 * and to pipes.
58 */
59
60 /** @defgroup Group_PipePacketManagement Pipe Packet Management
61 *
62 * Functions, macros, variables, enums and types related to packet management of pipes.
63 */
64
65 /** @defgroup Group_PipeControlReq Pipe Control Request Management
66 *
67 * Module for host mode request processing. This module allows for the transmission of standard, class and
68 * vendor control requests to the default control endpoint of an attached device while in host mode.
69 *
70 * \see Chapter 9 of the USB 2.0 specification.
71 */
72
73 #ifndef __PIPE_H__
74 #define __PIPE_H__
75
76 /* Includes: */
77 #include <avr/io.h>
78 #include <avr/pgmspace.h>
79 #include <avr/eeprom.h>
80 #include <stdbool.h>
81
82 #include "../../../Common/Common.h"
83 #include "../HighLevel/USBTask.h"
84
85 #if !defined(NO_STREAM_CALLBACKS) || defined(__DOXYGEN__)
86 #include "../HighLevel/StreamCallbacks.h"
87 #endif
88
89 /* Enable C linkage for C++ Compilers: */
90 #if defined(__cplusplus)
91 extern "C" {
92 #endif
93
94 /* Public Interface - May be used in end-application: */
95 /* Macros: */
96 /** Mask for \ref Pipe_GetErrorFlags(), indicating that an overflow error occurred in the pipe on the received data. */
97 #define PIPE_ERRORFLAG_OVERFLOW (1 << 6)
98
99 /** Mask for \ref Pipe_GetErrorFlags(), indicating that an underflow error occurred in the pipe on the received data. */
100 #define PIPE_ERRORFLAG_UNDERFLOW (1 << 5)
101
102 /** Mask for \ref Pipe_GetErrorFlags(), indicating that a CRC error occurred in the pipe on the received data. */
103 #define PIPE_ERRORFLAG_CRC16 (1 << 4)
104
105 /** Mask for \ref Pipe_GetErrorFlags(), indicating that a hardware timeout error occurred in the pipe. */
106 #define PIPE_ERRORFLAG_TIMEOUT (1 << 3)
107
108 /** Mask for \ref Pipe_GetErrorFlags(), indicating that a hardware PID error occurred in the pipe. */
109 #define PIPE_ERRORFLAG_PID (1 << 2)
110
111 /** Mask for \ref Pipe_GetErrorFlags(), indicating that a hardware data PID error occurred in the pipe. */
112 #define PIPE_ERRORFLAG_DATAPID (1 << 1)
113
114 /** Mask for \ref Pipe_GetErrorFlags(), indicating that a hardware data toggle error occurred in the pipe. */
115 #define PIPE_ERRORFLAG_DATATGL (1 << 0)
116
117 /** Token mask for \ref Pipe_ConfigurePipe(). This sets the pipe as a SETUP token (for CONTROL type pipes),
118 * which will trigger a control request on the attached device when data is written to the pipe.
119 */
120 #define PIPE_TOKEN_SETUP (0 << PTOKEN0)
121
122 /** Token mask for \ref Pipe_ConfigurePipe(). This sets the pipe as a IN token (for non-CONTROL type pipes),
123 * indicating that the pipe data will flow from device to host.
124 */
125 #define PIPE_TOKEN_IN (1 << PTOKEN0)
126
127 /** Token mask for \ref Pipe_ConfigurePipe(). This sets the pipe as a IN token (for non-CONTROL type pipes),
128 * indicating that the pipe data will flow from host to device.
129 */
130 #define PIPE_TOKEN_OUT (2 << PTOKEN0)
131
132 /** Mask for the bank mode selection for the \ref Pipe_ConfigurePipe() macro. This indicates that the pipe
133 * should have one single bank, which requires less USB FIFO memory but results in slower transfers as
134 * only one USB device (the AVR or the attached device) can access the pipe's bank at the one time.
135 */
136 #define PIPE_BANK_SINGLE (0 << EPBK0)
137
138 /** Mask for the bank mode selection for the \ref Pipe_ConfigurePipe() macro. This indicates that the pipe
139 * should have two banks, which requires more USB FIFO memory but results in faster transfers as one
140 * USB device (the AVR or the attached device) can access one bank while the other accesses the second
141 * bank.
142 */
143 #define PIPE_BANK_DOUBLE (1 << EPBK0)
144
145 /** Pipe address for the default control pipe, which always resides in address 0. This is
146 * defined for convenience to give more readable code when used with the pipe macros.
147 */
148 #define PIPE_CONTROLPIPE 0
149
150 /** Default size of the default control pipe's bank, until altered by the Endpoint0Size value
151 * in the device descriptor of the attached device.
152 */
153 #define PIPE_CONTROLPIPE_DEFAULT_SIZE 64
154
155 /** Pipe number mask, for masking against pipe addresses to retrieve the pipe's numerical address
156 * in the device.
157 */
158 #define PIPE_PIPENUM_MASK 0x07
159
160 /** Total number of pipes (including the default control pipe at address 0) which may be used in
161 * the device. Different USB AVR models support different amounts of pipes, this value reflects
162 * the maximum number of pipes for the currently selected AVR model.
163 */
164 #define PIPE_TOTAL_PIPES 7
165
166 /** Size in bytes of the largest pipe bank size possible in the device. Not all banks on each AVR
167 * model supports the largest bank size possible on the device; different pipe numbers support
168 * different maximum bank sizes. This value reflects the largest possible bank of any pipe on the
169 * currently selected USB AVR model.
170 */
171 #define PIPE_MAX_SIZE 256
172
173 /** Endpoint number mask, for masking against endpoint addresses to retrieve the endpoint's
174 * numerical address in the attached device.
175 */
176 #define PIPE_EPNUM_MASK 0x0F
177
178 /* Pseudo-Function Macros: */
179 #if defined(__DOXYGEN__)
180 /** Indicates the number of bytes currently stored in the current pipes's selected bank.
181 *
182 * \note The return width of this function may differ, depending on the maximum pipe bank size
183 * of the selected AVR model.
184 *
185 * \ingroup Group_PipeRW
186 *
187 * \return Total number of bytes in the currently selected Pipe's FIFO buffer
188 */
189 static inline uint16_t Pipe_BytesInPipe(void);
190
191 /** Returns the pipe address of the currently selected pipe. This is typically used to save the
192 * currently selected pipe number so that it can be restored after another pipe has been manipulated.
193 *
194 * \return Index of the currently selected pipe
195 */
196 static inline uint8_t Pipe_GetCurrentPipe(void);
197
198 /** Selects the given pipe number. Any pipe operations which do not require the pipe number to be
199 * indicated will operate on the currently selected pipe.
200 *
201 * \param[in] PipeNumber Index of the pipe to select
202 */
203 static inline void Pipe_SelectPipe(uint8_t PipeNumber);
204
205 /** Resets the desired pipe, including the pipe banks and flags.
206 *
207 * \param[in] PipeNumber Index of the pipe to reset
208 */
209 static inline void Pipe_ResetPipe(uint8_t PipeNumber);
210
211 /** Enables the currently selected pipe so that data can be sent and received through it to and from
212 * an attached device.
213 *
214 * \note Pipes must first be configured properly via \ref Pipe_ConfigurePipe().
215 */
216 static inline void Pipe_EnablePipe(void);
217
218 /** Disables the currently selected pipe so that data cannot be sent and received through it to and
219 * from an attached device.
220 */
221 static inline void Pipe_DisablePipe(void);
222
223 /** Determines if the currently selected pipe is enabled, but not necessarily configured.
224 *
225 * \return Boolean True if the currently selected pipe is enabled, false otherwise
226 */
227 static inline bool Pipe_IsEnabled(void);
228
229 /** Gets the current pipe token, indicating the pipe's data direction and type.
230 *
231 * \return The current pipe token, as a PIPE_TOKEN_* mask
232 */
233 static inline uint8_t Pipe_GetPipeToken(void);
234
235 /** Sets the token for the currently selected pipe to one of the tokens specified by the PIPE_TOKEN_*
236 * masks. This can be used on CONTROL type pipes, to allow for bidirectional transfer of data during
237 * control requests, or on regular pipes to allow for half-duplex bidirectional data transfer to devices
238 * which have two endpoints of opposite direction sharing the same endpoint address within the device.
239 *
240 * \param[in] Token New pipe token to set the selected pipe to, as a PIPE_TOKEN_* mask
241 */
242 static inline void Pipe_SetPipeToken(uint8_t Token);
243
244 /** Configures the currently selected pipe to allow for an unlimited number of IN requests. */
245 static inline void Pipe_SetInfiniteINRequests(void);
246
247 /** Configures the currently selected pipe to only allow the specified number of IN requests to be
248 * accepted by the pipe before it is automatically frozen.
249 *
250 * \param[in] TotalINRequests Total number of IN requests that the pipe may receive before freezing
251 */
252 static inline void Pipe_SetFiniteINRequests(uint8_t TotalINRequests);
253
254 /** Determines if the currently selected pipe is configured.
255 *
256 * \return Boolean true if the selected pipe is configured, false otherwise
257 */
258 static inline bool Pipe_IsConfigured(void);
259
260 /** Sets the period between interrupts for an INTERRUPT type pipe to a specified number of milliseconds.
261 *
262 * \param[in] Milliseconds Number of milliseconds between each pipe poll
263 */
264 static inline void Pipe_SetInterruptPeriod(uint8_t Milliseconds);
265
266 /** Returns a mask indicating which pipe's interrupt periods have elapsed, indicating that the pipe should
267 * be serviced.
268 *
269 * \return Mask whose bits indicate which pipes have interrupted
270 */
271 static inline uint8_t Pipe_GetPipeInterrupts(void);
272
273 /** Determines if the specified pipe number has interrupted (valid only for INTERRUPT type
274 * pipes).
275 *
276 * \param[in] PipeNumber Index of the pipe whose interrupt flag should be tested
277 *
278 * \return Boolean true if the specified pipe has interrupted, false otherwise
279 */
280 static inline bool Pipe_HasPipeInterrupted(uint8_t PipeNumber);
281
282 /** Unfreezes the selected pipe, allowing it to communicate with an attached device. */
283 static inline void Pipe_Unfreeze(void);
284
285 /** Freezes the selected pipe, preventing it from communicating with an attached device. */
286 static inline void Pipe_Freeze(void);
287
288 /** Clears the master pipe error flag. */
289 static inline void Pipe_ClearError(void);
290
291 /** Determines if the master pipe error flag is set for the currently selected pipe, indicating that
292 * some sort of hardware error has occurred on the pipe.
293 *
294 * \see \ref Pipe_GetErrorFlags() macro for information on retrieving the exact error flag.
295 *
296 * \return Boolean true if an error has occurred on the selected pipe, false otherwise
297 */
298 static inline bool Pipe_IsError(void);
299
300 /** Clears all the currently selected pipe's hardware error flags, but does not clear the master error
301 * flag for the pipe.
302 */
303 static inline void Pipe_ClearErrorFlags(void);
304
305 /** Gets a mask of the hardware error flags which have occurred on the currently selected pipe. This
306 * value can then be masked against the PIPE_ERRORFLAG_* masks to determine what error has occurred.
307 *
308 * \return Mask comprising of PIPE_ERRORFLAG_* bits indicating what error has occurred on the selected pipe
309 */
310 static inline uint8_t Pipe_GetErrorFlags(void);
311
312 /** Determines if the currently selected pipe may be read from (if data is waiting in the pipe
313 * bank and the pipe is an IN direction, or if the bank is not yet full if the pipe is an OUT
314 * direction). This function will return false if an error has occurred in the pipe, or if the pipe
315 * is an IN direction and no packet (or an empty packet) has been received, or if the pipe is an OUT
316 * direction and the pipe bank is full.
317 *
318 * \note This function is not valid on CONTROL type pipes.
319 *
320 * \ingroup Group_PipePacketManagement
321 *
322 * \return Boolean true if the currently selected pipe may be read from or written to, depending on its direction
323 */
324 static inline bool Pipe_IsReadWriteAllowed(void);
325
326 /** Determines if an IN request has been received on the currently selected pipe.
327 *
328 * \ingroup Group_PipePacketManagement
329 *
330 * \return Boolean true if the current pipe has received an IN packet, false otherwise.
331 */
332 static inline bool Pipe_IsINReceived(void);
333
334 /** Determines if the currently selected pipe is ready to send an OUT request.
335 *
336 * \ingroup Group_PipePacketManagement
337 *
338 * \return Boolean true if the current pipe is ready for an OUT packet, false otherwise.
339 */
340 static inline bool Pipe_IsOUTReady(void);
341
342 /** Determines if no SETUP request is currently being sent to the attached device on the selected
343 * CONTROL type pipe.
344 *
345 * \ingroup Group_PipePacketManagement
346 *
347 * \return Boolean true if the current pipe is ready for a SETUP packet, false otherwise.
348 */
349 static inline bool Pipe_IsSETUPSent(void);
350
351 /** Sends the currently selected CONTROL type pipe's contents to the device as a SETUP packet.
352 *
353 * \ingroup Group_PipePacketManagement
354 */
355 static inline void Pipe_ClearSETUP(void);
356
357 /** Acknowledges the reception of a setup IN request from the attached device on the currently selected
358 * pipe, freeing the bank ready for the next packet.
359 *
360 * \ingroup Group_PipePacketManagement
361 */
362 static inline void Pipe_ClearIN(void);
363
364 /** Sends the currently selected pipe's contents to the device as an OUT packet on the selected pipe, freeing
365 * the bank ready for the next packet.
366 *
367 * \ingroup Group_PipePacketManagement
368 */
369 static inline void Pipe_ClearOUT(void);
370
371 /** Determines if the device sent a NAK (Negative Acknowledge) in response to the last sent packet on
372 * the currently selected pipe. This occurs when the host sends a packet to the device, but the device
373 * is not currently ready to handle the packet (i.e. its endpoint banks are full). Once a NAK has been
374 * received, it must be cleared using \ref Pipe_ClearNAKReceived() before the previous (or any other) packet
375 * can be re-sent.
376 *
377 * \ingroup Group_PipePacketManagement
378 *
379 * \return Boolean true if an NAK has been received on the current pipe, false otherwise
380 */
381 static inline bool Pipe_IsNAKReceived(void);
382
383 /** Clears the NAK condition on the currently selected pipe.
384 *
385 * \ingroup Group_PipePacketManagement
386 *
387 * \see \ref Pipe_IsNAKReceived() for more details.
388 */
389 static inline void Pipe_ClearNAKReceived(void);
390
391 /** Determines if the currently selected pipe has had the STALL condition set by the attached device.
392 *
393 * \ingroup Group_PipePacketManagement
394 *
395 * \return Boolean true if the current pipe has been stalled by the attached device, false otherwise
396 */
397 static inline bool Pipe_IsStalled(void);
398
399 /** Clears the STALL condition detection flag on the currently selected pipe, but does not clear the
400 * STALL condition itself (this must be done via a ClearFeature control request to the device).
401 *
402 * \ingroup Group_PipePacketManagement
403 */
404 static inline void Pipe_ClearStall(void);
405 #else
406 #define Pipe_BytesInPipe() UPBCX
407
408 #define Pipe_GetCurrentPipe() (UPNUM & PIPE_PIPENUM_MASK)
409
410 #define Pipe_SelectPipe(pipenum) MACROS{ UPNUM = pipenum; }MACROE
411
412 #define Pipe_ResetPipe(pipenum) MACROS{ UPRST = (1 << pipenum); UPRST = 0; }MACROE
413
414 #define Pipe_EnablePipe() MACROS{ UPCONX |= (1 << PEN); }MACROE
415
416 #define Pipe_DisablePipe() MACROS{ UPCONX &= ~(1 << PEN); }MACROE
417
418 #define Pipe_IsEnabled() ((UPCONX & (1 << PEN)) ? true : false)
419
420 #define Pipe_GetPipeToken() (UPCFG0X & PIPE_TOKEN_MASK)
421
422 #define Pipe_SetToken(token) MACROS{ UPCFG0X = ((UPCFG0X & ~PIPE_TOKEN_MASK) | token); }MACROE
423
424 #define Pipe_SetInfiniteINRequests() MACROS{ UPCONX |= (1 << INMODE); }MACROE
425
426 #define Pipe_SetFiniteINRequests(n) MACROS{ UPCONX &= ~(1 << INMODE); UPINRQX = n; }MACROE
427
428 #define Pipe_IsConfigured() ((UPSTAX & (1 << CFGOK)) ? true : false)
429
430 #define Pipe_SetInterruptPeriod(ms) MACROS{ UPCFG2X = ms; }MACROE
431
432 #define Pipe_GetPipeInterrupts() UPINT
433
434 #define Pipe_HasPipeInterrupted(n) ((UPINT & (1 << n)) ? true : false)
435
436 #define Pipe_Unfreeze() MACROS{ UPCONX &= ~(1 << PFREEZE); }MACROE
437
438 #define Pipe_Freeze() MACROS{ UPCONX |= (1 << PFREEZE); }MACROE
439
440 #define Pipe_ClearError() MACROS{ UPINTX &= ~(1 << PERRI); }MACROE
441
442 #define Pipe_IsError() ((UPINTX & (1 << PERRI)) ? true : false)
443
444 #define Pipe_ClearErrorFlags() MACROS{ UPERRX = 0; }MACROE
445
446 #define Pipe_GetErrorFlags() ((UPERRX & (PIPE_ERRORFLAG_CRC16 | PIPE_ERRORFLAG_TIMEOUT | \
447 PIPE_ERRORFLAG_PID | PIPE_ERRORFLAG_DATAPID | \
448 PIPE_ERRORFLAG_DATATGL)) | \
449 (UPSTAX & PIPE_ERRORFLAG_OVERFLOW | PIPE_ERRORFLAG_UNDERFLOW))
450
451 #define Pipe_IsReadWriteAllowed() ((UPINTX & (1 << RWAL)) ? true : false)
452
453 #define Pipe_IsINReceived() ((UPINTX & (1 << RXINI)) ? true : false)
454
455 #define Pipe_IsOUTReady() ((UPINTX & (1 << TXOUTI)) ? true : false)
456
457 #define Pipe_IsSETUPSent() ((UPINTX & (1 << TXSTPI)) ? true : false)
458
459 #define Pipe_ClearIN() MACROS{ uint8_t Temp = UPINTX; UPINTX = (Temp & ~(1 << RXINI)); \
460 UPINTX = (Temp & ~(1 << FIFOCON)); }MACROE
461
462 #define Pipe_ClearOUT() MACROS{ uint8_t Temp = UPINTX; UPINTX = (Temp & ~(1 << TXOUTI)); \
463 UPINTX = (Temp & ~(1 << FIFOCON)); }MACROE
464
465 #define Pipe_ClearSETUP() MACROS{ uint8_t Temp = UPINTX; UPINTX = (Temp & ~(1 << TXSTPI)); \
466 UPINTX = (Temp & ~(1 << FIFOCON)); }MACROE
467
468 #define Pipe_IsNAKReceived() ((UPINTX & (1 << NAKEDI)) ? true : false)
469
470 #define Pipe_ClearNAKReceived() MACROS{ UPINTX &= ~(1 << NAKEDI); }MACROE
471
472 #define Pipe_IsStalled() ((UPINTX & (1 << RXSTALLI)) ? true : false)
473
474 #define Pipe_ClearStall() MACROS{ UPINTX &= ~(1 << RXSTALLI); }MACROE
475 #endif
476
477 /* Enums: */
478 /** Enum for the possible error return codes of the Pipe_WaitUntilReady function
479 *
480 * \ingroup Group_PipeRW
481 */
482 enum Pipe_WaitUntilReady_ErrorCodes_t
483 {
484 PIPE_READYWAIT_NoError = 0, /**< Pipe ready for next packet, no error */
485 PIPE_READYWAIT_PipeStalled = 1, /**< The device stalled the pipe while waiting. */
486 PIPE_READYWAIT_DeviceDisconnected = 2, /**< Device was disconnected from the host while waiting. */
487 PIPE_READYWAIT_Timeout = 3, /**< The device failed to accept or send the next packet
488 * within the software timeout period set by the
489 * \ref USB_STREAM_TIMEOUT_MS macro.
490 */
491 };
492
493 /** Enum for the possible error return codes of the Pipe_*_Stream_* functions.
494 *
495 * \ingroup Group_PipeRW
496 */
497 enum Pipe_Stream_RW_ErrorCodes_t
498 {
499 PIPE_RWSTREAM_NoError = 0, /**< Command completed successfully, no error. */
500 PIPE_RWSTREAM_PipeStalled = 1, /**< The device stalled the pipe during the transfer. */
501 PIPE_RWSTREAM_DeviceDisconnected = 2, /**< Device was disconnected from the host during
502 * the transfer.
503 */
504 PIPE_RWSTREAM_Timeout = 3, /**< The device failed to accept or send the next packet
505 * within the software timeout period set by the
506 * \ref USB_STREAM_TIMEOUT_MS macro.
507 */
508 PIPE_RWSTREAM_CallbackAborted = 4, /**< Indicates that the stream's callback function aborted
509 * the transfer early.
510 */
511 };
512
513 /* Inline Functions: */
514 /** Reads one byte from the currently selected pipe's bank, for OUT direction pipes.
515 *
516 * \ingroup Group_PipePrimitiveRW
517 *
518 * \return Next byte in the currently selected pipe's FIFO buffer
519 */
520 static inline uint8_t Pipe_Read_Byte(void) ATTR_WARN_UNUSED_RESULT ATTR_ALWAYS_INLINE;
521 static inline uint8_t Pipe_Read_Byte(void)
522 {
523 return UPDATX;
524 }
525
526 /** Writes one byte from the currently selected pipe's bank, for IN direction pipes.
527 *
528 * \ingroup Group_PipePrimitiveRW
529 *
530 * \param[in] Byte Next byte to write into the the currently selected pipe's FIFO buffer
531 */
532 static inline void Pipe_Write_Byte(const uint8_t Byte) ATTR_ALWAYS_INLINE;
533 static inline void Pipe_Write_Byte(const uint8_t Byte)
534 {
535 UPDATX = Byte;
536 }
537
538 /** Discards one byte from the currently selected pipe's bank, for OUT direction pipes.
539 *
540 * \ingroup Group_PipePrimitiveRW
541 */
542 static inline void Pipe_Discard_Byte(void) ATTR_ALWAYS_INLINE;
543 static inline void Pipe_Discard_Byte(void)
544 {
545 uint8_t Dummy;
546
547 Dummy = UPDATX;
548 }
549
550 /** Reads two bytes from the currently selected pipe's bank in little endian format, for OUT
551 * direction pipes.
552 *
553 * \ingroup Group_PipePrimitiveRW
554 *
555 * \return Next word in the currently selected pipe's FIFO buffer
556 */
557 static inline uint16_t Pipe_Read_Word_LE(void) ATTR_WARN_UNUSED_RESULT ATTR_ALWAYS_INLINE;
558 static inline uint16_t Pipe_Read_Word_LE(void)
559 {
560 uint16_t Data;
561
562 Data = UPDATX;
563 Data |= (((uint16_t)UPDATX) << 8);
564
565 return Data;
566 }
567
568 /** Reads two bytes from the currently selected pipe's bank in big endian format, for OUT
569 * direction pipes.
570 *
571 * \ingroup Group_PipePrimitiveRW
572 *
573 * \return Next word in the currently selected pipe's FIFO buffer
574 */
575 static inline uint16_t Pipe_Read_Word_BE(void) ATTR_WARN_UNUSED_RESULT ATTR_ALWAYS_INLINE;
576 static inline uint16_t Pipe_Read_Word_BE(void)
577 {
578 uint16_t Data;
579
580 Data = (((uint16_t)UPDATX) << 8);
581 Data |= UPDATX;
582
583 return Data;
584 }
585
586 /** Writes two bytes to the currently selected pipe's bank in little endian format, for IN
587 * direction pipes.
588 *
589 * \ingroup Group_PipePrimitiveRW
590 *
591 * \param[in] Word Next word to write to the currently selected pipe's FIFO buffer
592 */
593 static inline void Pipe_Write_Word_LE(const uint16_t Word) ATTR_ALWAYS_INLINE;
594 static inline void Pipe_Write_Word_LE(const uint16_t Word)
595 {
596 UPDATX = (Word & 0xFF);
597 UPDATX = (Word >> 8);
598 }
599
600 /** Writes two bytes to the currently selected pipe's bank in big endian format, for IN
601 * direction pipes.
602 *
603 * \ingroup Group_PipePrimitiveRW
604 *
605 * \param[in] Word Next word to write to the currently selected pipe's FIFO buffer
606 */
607 static inline void Pipe_Write_Word_BE(const uint16_t Word) ATTR_ALWAYS_INLINE;
608 static inline void Pipe_Write_Word_BE(const uint16_t Word)
609 {
610 UPDATX = (Word >> 8);
611 UPDATX = (Word & 0xFF);
612 }
613
614 /** Discards two bytes from the currently selected pipe's bank, for OUT direction pipes.
615 *
616 * \ingroup Group_PipePrimitiveRW
617 */
618 static inline void Pipe_Discard_Word(void) ATTR_ALWAYS_INLINE;
619 static inline void Pipe_Discard_Word(void)
620 {
621 uint8_t Dummy;
622
623 Dummy = UPDATX;
624 Dummy = UPDATX;
625 }
626
627 /** Reads four bytes from the currently selected pipe's bank in little endian format, for OUT
628 * direction pipes.
629 *
630 * \ingroup Group_PipePrimitiveRW
631 *
632 * \return Next double word in the currently selected pipe's FIFO buffer
633 */
634 static inline uint32_t Pipe_Read_DWord_LE(void) ATTR_WARN_UNUSED_RESULT ATTR_ALWAYS_INLINE;
635 static inline uint32_t Pipe_Read_DWord_LE(void)
636 {
637 union
638 {
639 uint32_t DWord;
640 uint8_t Bytes[4];
641 } Data;
642
643 Data.Bytes[0] = UPDATX;
644 Data.Bytes[1] = UPDATX;
645 Data.Bytes[2] = UPDATX;
646 Data.Bytes[3] = UPDATX;
647
648 return Data.DWord;
649 }
650
651 /** Reads four bytes from the currently selected pipe's bank in big endian format, for OUT
652 * direction pipes.
653 *
654 * \ingroup Group_PipePrimitiveRW
655 *
656 * \return Next double word in the currently selected pipe's FIFO buffer
657 */
658 static inline uint32_t Pipe_Read_DWord_BE(void) ATTR_WARN_UNUSED_RESULT ATTR_ALWAYS_INLINE;
659 static inline uint32_t Pipe_Read_DWord_BE(void)
660 {
661 union
662 {
663 uint32_t DWord;
664 uint8_t Bytes[4];
665 } Data;
666
667 Data.Bytes[3] = UPDATX;
668 Data.Bytes[2] = UPDATX;
669 Data.Bytes[1] = UPDATX;
670 Data.Bytes[0] = UPDATX;
671
672 return Data.DWord;
673 }
674
675 /** Writes four bytes to the currently selected pipe's bank in little endian format, for IN
676 * direction pipes.
677 *
678 * \ingroup Group_PipePrimitiveRW
679 *
680 * \param[in] DWord Next double word to write to the currently selected pipe's FIFO buffer
681 */
682 static inline void Pipe_Write_DWord_LE(const uint32_t DWord) ATTR_ALWAYS_INLINE;
683 static inline void Pipe_Write_DWord_LE(const uint32_t DWord)
684 {
685 Pipe_Write_Word_LE(DWord);
686 Pipe_Write_Word_LE(DWord >> 16);
687 }
688
689 /** Writes four bytes to the currently selected pipe's bank in big endian format, for IN
690 * direction pipes.
691 *
692 * \ingroup Group_PipePrimitiveRW
693 *
694 * \param[in] DWord Next double word to write to the currently selected pipe's FIFO buffer
695 */
696 static inline void Pipe_Write_DWord_BE(const uint32_t DWord) ATTR_ALWAYS_INLINE;
697 static inline void Pipe_Write_DWord_BE(const uint32_t DWord)
698 {
699 Pipe_Write_Word_BE(DWord >> 16);
700 Pipe_Write_Word_BE(DWord);
701 }
702
703 /** Discards four bytes from the currently selected pipe's bank, for OUT direction pipes.
704 *
705 * \ingroup Group_PipePrimitiveRW
706 */
707 static inline void Pipe_Discard_DWord(void) ATTR_ALWAYS_INLINE;
708 static inline void Pipe_Discard_DWord(void)
709 {
710 uint8_t Dummy;
711
712 Dummy = UPDATX;
713 Dummy = UPDATX;
714 Dummy = UPDATX;
715 Dummy = UPDATX;
716 }
717
718 /* External Variables: */
719 /** Global indicating the maximum packet size of the default control pipe located at address
720 * 0 in the device. This value is set to the value indicated in the attached device's device
721 * descriptor once the USB interface is initialized into host mode and a device is attached
722 * to the USB bus.
723 *
724 * \note This variable should be treated as read-only in the user application, and never manually
725 * changed in value.
726 */
727 extern uint8_t USB_ControlPipeSize;
728
729 /* Function Prototypes: */
730 #if !defined(NO_STREAM_CALLBACKS) || defined(__DOXYGEN__)
731 #define _CALLBACK_PARAM , StreamCallbackPtr_t Callback
732 #else
733 #define _CALLBACK_PARAM
734 #endif
735
736 /** Configures the specified pipe number with the given pipe type, token, target endpoint number in the
737 * attached device, bank size and banking mode. Pipes should be allocated in ascending order by their
738 * address in the device (i.e. pipe 1 should be configured before pipe 2 and so on) to prevent fragmentation
739 * of the USB FIFO memory.
740 *
741 * The pipe type may be one of the EP_TYPE_* macros listed in LowLevel.h, the token may be one of the
742 * PIPE_TOKEN_* masks.
743 *
744 * The bank size must indicate the maximum packet size that the pipe can handle. Different pipe
745 * numbers can handle different maximum packet sizes - refer to the chosen USB AVR's datasheet to
746 * determine the maximum bank size for each pipe.
747 *
748 * The banking mode may be either \ref PIPE_BANK_SINGLE or \ref PIPE_BANK_DOUBLE.
749 *
750 * A newly configured pipe is frozen by default, and must be unfrozen before use via the \ref Pipe_Unfreeze()
751 * before being used. Pipes should be kept frozen unless waiting for data from a device while in IN mode, or
752 * sending data to the device in OUT mode. IN type pipes are also automatically configured to accept infinite
753 * numbers of IN requests without automatic freezing - this can be overridden by a call to
754 * \ref Pipe_SetFiniteINRequests().
755 *
756 * \note The default control pipe does not have to be manually configured, as it is automatically
757 * configured by the library internally.
758 *
759 * \note This routine will select the specified pipe, and the pipe will remain selected once the
760 * routine completes regardless of if the pipe configuration succeeds.
761 *
762 * \return Boolean true if the configuration is successful, false otherwise
763 */
764 bool Pipe_ConfigurePipe(const uint8_t Number, const uint8_t Type, const uint8_t Token, const uint8_t EndpointNumber,
765 const uint16_t Size, const uint8_t Banks);
766
767 /** Spinloops until the currently selected non-control pipe is ready for the next packed of data
768 * to be read or written to it.
769 *
770 * \ingroup Group_PipeRW
771 *
772 * \return A value from the Pipe_WaitUntilReady_ErrorCodes_t enum.
773 */
774 uint8_t Pipe_WaitUntilReady(void);
775
776 /** Reads and discards the given number of bytes from the pipe, discarding fully read packets from the host
777 * as needed. The last packet is not automatically discarded once the remaining bytes has been read; the
778 * user is responsible for manually discarding the last packet from the device via the \ref Pipe_ClearIN() macro.
779 * Between each USB packet, the given stream callback function is executed repeatedly until the next packet is ready,
780 * allowing for early aborts of stream transfers.
781 *
782 * The callback routine should be created according to the information in \ref Group_StreamCallbacks.
783 * If the token NO_STREAM_CALLBACKS is passed via the -D option to the compiler, stream callbacks are
784 * disabled and this function has the Callback parameter omitted.
785 *
786 * The pipe token is set automatically, thus this can be used on bi-directional pipes directly without
787 * having to explicitly change the data direction with a call to \ref Pipe_SetPipeToken().
788 *
789 * \ingroup Group_PipeStreamRW
790 *
791 * \param[in] Length Number of bytes to send via the currently selected pipe.
792 * \param[in] Callback Name of a callback routine to call between successive USB packet transfers, NULL if no callback
793 *
794 * \return A value from the \ref Pipe_Stream_RW_ErrorCodes_t enum.
795 */
796 uint8_t Pipe_Discard_Stream(uint16_t Length _CALLBACK_PARAM);
797
798 /** Writes the given number of bytes to the pipe from the given buffer in little endian,
799 * sending full packets to the device as needed. The last packet filled is not automatically sent;
800 * the user is responsible for manually sending the last written packet to the host via the
801 * \ref Pipe_ClearOUT() macro. Between each USB packet, the given stream callback function is
802 * executed repeatedly until the next packet is ready, allowing for early aborts of stream transfers.
803 *
804 * The callback routine should be created according to the information in \ref Group_StreamCallbacks.
805 * If the token NO_STREAM_CALLBACKS is passed via the -D option to the compiler, stream callbacks are
806 * disabled and this function has the Callback parameter omitted.
807 *
808 * The pipe token is set automatically, thus this can be used on bi-directional pipes directly without
809 * having to explicitly change the data direction with a call to \ref Pipe_SetPipeToken().
810 *
811 * \ingroup Group_PipeStreamRW
812 *
813 * \param[in] Buffer Pointer to the source data buffer to read from.
814 * \param[in] Length Number of bytes to read for the currently selected pipe into the buffer.
815 * \param[in] Callback Name of a callback routine to call between successive USB packet transfers, NULL if no callback
816 *
817 * \return A value from the \ref Pipe_Stream_RW_ErrorCodes_t enum.
818 */
819 uint8_t Pipe_Write_Stream_LE(void* Buffer, uint16_t Length _CALLBACK_PARAM) ATTR_NON_NULL_PTR_ARG(1);
820
821 /** EEPROM buffer source version of \ref Pipe_Write_Stream_LE.
822 *
823 * \ingroup Group_PipeStreamRW
824 *
825 * \param[in] Buffer Pointer to the source data buffer to read from.
826 * \param[in] Length Number of bytes to read for the currently selected pipe into the buffer.
827 * \param[in] Callback Name of a callback routine to call between successive USB packet transfers, NULL if no callback
828 *
829 * \return A value from the \ref Pipe_Stream_RW_ErrorCodes_t enum.
830 */
831 uint8_t Pipe_Write_EStream_LE(void* Buffer, uint16_t Length _CALLBACK_PARAM) ATTR_NON_NULL_PTR_ARG(1);
832
833 /** FLASH buffer source version of \ref Pipe_Write_Stream_LE.
834 *
835 * \note The FLASH data must be located in the first 64KB of FLASH for this function to work correctly.
836 *
837 * \ingroup Group_PipeStreamRW
838 *
839 * \param[in] Buffer Pointer to the source data buffer to read from.
840 * \param[in] Length Number of bytes to read for the currently selected pipe into the buffer.
841 * \param[in] Callback Name of a callback routine to call between successive USB packet transfers, NULL if no callback
842 *
843 * \return A value from the \ref Pipe_Stream_RW_ErrorCodes_t enum.
844 */
845 uint8_t Pipe_Write_PStream_LE(void* Buffer, uint16_t Length _CALLBACK_PARAM) ATTR_NON_NULL_PTR_ARG(1);
846
847 /** Writes the given number of bytes to the pipe from the given buffer in big endian,
848 * sending full packets to the device as needed. The last packet filled is not automatically sent;
849 * the user is responsible for manually sending the last written packet to the host via the
850 * \ref Pipe_ClearOUT() macro. Between each USB packet, the given stream callback function is
851 * executed repeatedly until the next packet is ready, allowing for early aborts of stream transfers.
852 *
853 * The callback routine should be created according to the information in \ref Group_StreamCallbacks.
854 * If the token NO_STREAM_CALLBACKS is passed via the -D option to the compiler, stream callbacks are
855 * disabled and this function has the Callback parameter omitted.
856 *
857 * The pipe token is set automatically, thus this can be used on bi-directional pipes directly without
858 * having to explicitly change the data direction with a call to \ref Pipe_SetPipeToken().
859 *
860 * \ingroup Group_PipeStreamRW
861 *
862 * \param[in] Buffer Pointer to the source data buffer to read from.
863 * \param[in] Length Number of bytes to read for the currently selected pipe into the buffer.
864 * \param[in] Callback Name of a callback routine to call between successive USB packet transfers, NULL if no callback
865 *
866 * \return A value from the \ref Pipe_Stream_RW_ErrorCodes_t enum.
867 */
868 uint8_t Pipe_Write_Stream_BE(void* Buffer, uint16_t Length _CALLBACK_PARAM) ATTR_NON_NULL_PTR_ARG(1);
869
870 /** EEPROM buffer source version of \ref Pipe_Write_Stream_BE.
871 *
872 * \ingroup Group_PipeStreamRW
873 *
874 * \param[in] Buffer Pointer to the source data buffer to read from.
875 * \param[in] Length Number of bytes to read for the currently selected pipe into the buffer.
876 * \param[in] Callback Name of a callback routine to call between successive USB packet transfers, NULL if no callback
877 *
878 * \return A value from the \ref Pipe_Stream_RW_ErrorCodes_t enum.
879 */
880 uint8_t Pipe_Write_EStream_BE(void* Buffer, uint16_t Length _CALLBACK_PARAM) ATTR_NON_NULL_PTR_ARG(1);
881
882 /** FLASH buffer source version of \ref Pipe_Write_Stream_BE.
883 *
884 * \note The FLASH data must be located in the first 64KB of FLASH for this function to work correctly.
885 *
886 * \ingroup Group_PipeStreamRW
887 *
888 * \param[in] Buffer Pointer to the source data buffer to read from.
889 * \param[in] Length Number of bytes to read for the currently selected pipe into the buffer.
890 * \param[in] Callback Name of a callback routine to call between successive USB packet transfers, NULL if no callback
891 *
892 * \return A value from the \ref Pipe_Stream_RW_ErrorCodes_t enum.
893 */
894 uint8_t Pipe_Write_PStream_BE(void* Buffer, uint16_t Length _CALLBACK_PARAM) ATTR_NON_NULL_PTR_ARG(1);
895
896 /** Reads the given number of bytes from the pipe into the given buffer in little endian,
897 * sending full packets to the device as needed. The last packet filled is not automatically sent;
898 * the user is responsible for manually sending the last written packet to the host via the
899 * \ref Pipe_ClearIN() macro. Between each USB packet, the given stream callback function is
900 * executed repeatedly until the next packet is ready, allowing for early aborts of stream transfers.
901 *
902 * The callback routine should be created according to the information in \ref Group_StreamCallbacks.
903 * If the token NO_STREAM_CALLBACKS is passed via the -D option to the compiler, stream callbacks are
904 * disabled and this function has the Callback parameter omitted.
905 *
906 * The pipe token is set automatically, thus this can be used on bi-directional pipes directly without
907 * having to explicitly change the data direction with a call to \ref Pipe_SetPipeToken().
908 *
909 * \ingroup Group_PipeStreamRW
910 *
911 * \param[out] Buffer Pointer to the source data buffer to write to.
912 * \param[in] Length Number of bytes to read for the currently selected pipe to read from.
913 * \param[in] Callback Name of a callback routine to call between successive USB packet transfers, NULL if no callback
914 *
915 * \return A value from the \ref Pipe_Stream_RW_ErrorCodes_t enum.
916 */
917 uint8_t Pipe_Read_Stream_LE(void* Buffer, uint16_t Length _CALLBACK_PARAM) ATTR_NON_NULL_PTR_ARG(1);
918
919 /** EEPROM buffer source version of \ref Pipe_Read_Stream_LE.
920 *
921 * \ingroup Group_PipeStreamRW
922 *
923 * \param[out] Buffer Pointer to the source data buffer to write to.
924 * \param[in] Length Number of bytes to read for the currently selected pipe to read from.
925 * \param[in] Callback Name of a callback routine to call between successive USB packet transfers, NULL if no callback
926 *
927 * \return A value from the \ref Pipe_Stream_RW_ErrorCodes_t enum.
928 */
929 uint8_t Pipe_Read_EStream_LE(void* Buffer, uint16_t Length _CALLBACK_PARAM) ATTR_NON_NULL_PTR_ARG(1);
930
931 /** Reads the given number of bytes from the pipe into the given buffer in big endian,
932 * sending full packets to the device as needed. The last packet filled is not automatically sent;
933 * the user is responsible for manually sending the last written packet to the host via the
934 * \ref Pipe_ClearIN() macro. Between each USB packet, the given stream callback function is
935 * executed repeatedly until the next packet is ready, allowing for early aborts of stream transfers.
936 *
937 * The callback routine should be created according to the information in \ref Group_StreamCallbacks.
938 * If the token NO_STREAM_CALLBACKS is passed via the -D option to the compiler, stream callbacks are
939 * disabled and this function has the Callback parameter omitted.
940 *
941 * The pipe token is set automatically, thus this can be used on bi-directional pipes directly without
942 * having to explicitly change the data direction with a call to \ref Pipe_SetPipeToken().
943 *
944 * \ingroup Group_PipeStreamRW
945 *
946 * \param[out] Buffer Pointer to the source data buffer to write to.
947 * \param[in] Length Number of bytes to read for the currently selected pipe to read from.
948 * \param[in] Callback Name of a callback routine to call between successive USB packet transfers, NULL if no callback
949 *
950 * \return A value from the \ref Pipe_Stream_RW_ErrorCodes_t enum.
951 */
952 uint8_t Pipe_Read_Stream_BE(void* Buffer, uint16_t Length _CALLBACK_PARAM) ATTR_NON_NULL_PTR_ARG(1);
953
954 /** EEPROM buffer source version of \ref Pipe_Read_Stream_BE.
955 *
956 * \ingroup Group_PipeStreamRW
957 *
958 * \param[out] Buffer Pointer to the source data buffer to write to.
959 * \param[in] Length Number of bytes to read for the currently selected pipe to read from.
960 * \param[in] Callback Name of a callback routine to call between successive USB packet transfers, NULL if no callback
961 *
962 * \return A value from the \ref Pipe_Stream_RW_ErrorCodes_t enum.
963 */
964 uint8_t Pipe_Read_EStream_BE(void* Buffer, uint16_t Length _CALLBACK_PARAM) ATTR_NON_NULL_PTR_ARG(1);
965
966 /* Private Interface - For use in library only: */
967 #if !defined(__DOXYGEN__)
968 /* Macros: */
969 #define PIPE_TOKEN_MASK (0x03 << PTOKEN0)
970
971 #if !defined(ENDPOINT_CONTROLEP)
972 #define ENDPOINT_CONTROLEP 0
973 #endif
974
975 #define Pipe_AllocateMemory() MACROS{ UPCFG1X |= (1 << ALLOC); }MACROE
976 #define Pipe_DeallocateMemory() MACROS{ UPCFG1X &= ~(1 << ALLOC); }MACROE
977
978 /* Function Prototypes: */
979 void Pipe_ClearPipes(void);
980
981 /* Inline Functions: */
982 static inline uint8_t Pipe_BytesToEPSizeMask(uint16_t Bytes) ATTR_WARN_UNUSED_RESULT ATTR_CONST ATTR_ALWAYS_INLINE;
983 static inline uint8_t Pipe_BytesToEPSizeMask(uint16_t Bytes)
984 {
985 if (Bytes <= 8)
986 return (0 << EPSIZE0);
987 else if (Bytes <= 16)
988 return (1 << EPSIZE0);
989 else if (Bytes <= 32)
990 return (2 << EPSIZE0);
991 else if (Bytes <= 64)
992 return (3 << EPSIZE0);
993 else if (Bytes <= 128)
994 return (4 << EPSIZE0);
995 else
996 return (5 << EPSIZE0);
997 };
998
999 #endif
1000
1001 /* Disable C linkage for C++ Compilers: */
1002 #if defined(__cplusplus)
1003 }
1004 #endif
1005
1006 #endif
1007
1008 /** @} */