--- /dev/null
+/*\r
+ LUFA Library\r
+ Copyright (C) Dean Camera, 2009.\r
+ \r
+ dean [at] fourwalledcubicle [dot] com\r
+ www.fourwalledcubicle.com\r
+*/\r
+\r
+/*\r
+ Copyright 2009 Dean Camera (dean [at] fourwalledcubicle [dot] com)\r
+ AVR ISP Programmer code Copyright 2009 Opendous Inc. (www.opendous.org)\r
+ For more info and usage instructions for this firmware, visit:\r
+ http://code.google.com/p/avropendous/wiki/AVR_ISP_Programmer\r
+\r
+ Note that this firmware is designed to work with AVRdude:\r
+ http://savannah.nongnu.org/projects/avrdude\r
+ But should work with other software that supports the AVR910 ISP\r
+ programmer or STK200 hardware.\r
+\r
+ Permission to use, copy, modify, and distribute this software\r
+ and its documentation for any purpose and without fee is hereby\r
+ granted, provided that the above copyright notice appear in all\r
+ copies and that both that the copyright notice and this\r
+ permission notice and warranty disclaimer appear in supporting\r
+ documentation, and that the name of the author not be used in\r
+ advertising or publicity pertaining to distribution of the\r
+ software without specific, written prior permission.\r
+\r
+ The author disclaim all warranties with regard to this\r
+ software, including all implied warranties of merchantability\r
+ and fitness. In no event shall the author be liable for any\r
+ special, indirect or consequential damages or any damages\r
+ whatsoever resulting from loss of use, data or profits, whether\r
+ in an action of contract, negligence or other tortious action,\r
+ arising out of or in connection with the use or performance of\r
+ this software.\r
+*/\r
+\r
+/*\r
+ Usage:\r
+ avrdude -vv -F -P COM7 -c avr910 -p t261\r
+ Note -F flag which overrides signature check and enables programming\r
+ of any "In-System Programmable via SPI Port" AVR MCU. Part number,\r
+ t261, should be set to your target device.\r
+ avrdude -vv -F -P COM7 -c avr910 -p t261 -U flash:w:PROG.hex\r
+ PROG.hex is the hex file to program your t261 AVR with\r
+ avrdude -vv -F -P COM7 -b 115200 -c avr910 -p t261 -U flash:w:test.hex\r
+ The -b 115200 sets the SPI clock to 62.5kHz from the default 125kHz and may\r
+ work when the default programming speed fails.\r
+ AVROSP.exe -dATtiny261 -cCOM7 -rf\r
+ AVRosp is the Open Source AVR ISP Programming Software available from Atmel.com\r
+\r
+ Note: on Linux systems, COM7 should be replaced with someting like /dev/ttyACM0\r
+ You can determine this value by running dmesg after plugging in the device\r
+ Note: you must RESET the programmer after each use (AVRdude session).\r
+\r
+ Note: If you experience errors with older devices, try changing the DELAY defines\r
+\r
+ MISO, MOSI, and SCK are connected directly from the AVRopendous board\r
+ to the pin of the same functionality on the target. RESET pin on the target\r
+ can be connected either to SS (PB0), or PC2. Do not have any other pins\r
+ connected - especially HWB pin, to avoid unintentional behaviour.\r
+\r
+ AVR910 functionality was overlayed on USBtoSerial functionality.\r
+ Keep this in mind when looking over the code.\r
+ Default target speed is 125kHz and corresponds to 19200 baud, which\r
+ is the default setting for AVRdude.\r
+\r
+ Changing "Baud-Rate" will change the SPI speed. Defualt SPI clock speed\r
+ is 8Mhz / 4 = 2MHz. 8Mhz is the device clock speed. This is the setting at\r
+ 9600 baud. The following is a table of baud-rate vs. SPI Speed that will result\r
+ 9600 = 2Mhz\r
+ 14400 = 1MHz\r
+ 19200 = 125kHz (AVRdude Default)\r
+ 38400 = 250kHz\r
+ 57600 = 500kHz\r
+ 115200 = 62.5kHz\r
+\r
+ Before running, you will need to install the INF file that\r
+ is located in the project directory. This will enable\r
+ Windows to use its inbuilt CDC drivers, negating the need\r
+ for special Windows drivers for the device. To install,\r
+ right-click the .INF file and choose the Install option.\r
+*/\r
+\r
+/* TODO: - fix the requirement that a RESET must be performed after each session, which\r
+ is only an issue under Windows. Everything works fine under Linux\r
+*/\r
+\r
+#include "AVRISP_Programmer.h"\r
+\r
+/* Project Tags, for reading out using the ButtLoad project */\r
+BUTTLOADTAG(ProjName, "LUFA AVR910 ISP Programmer");\r
+BUTTLOADTAG(BuildTime, __TIME__);\r
+BUTTLOADTAG(BuildDate, __DATE__);\r
+BUTTLOADTAG(LUFAVersion, "LUFA V" LUFA_VERSION_STRING);\r
+\r
+\r
+#define RESETPORT PORTB\r
+#define RESETPIN PB0\r
+#define RESETPORT2 PORTC\r
+#define RESETPIN2 PC2\r
+#define CR_HEX '\r'\r
+\r
+#define DELAY_VERYSHORT 0x01\r
+#define DELAY_SHORT 0x02\r
+#define DELAY_MEDIUM 0x03\r
+#define DELAY_LONG 0x05\r
+#define DELAY_MULTIPLE 0x02\r
+\r
+\r
+/* AVR Device Codes - Can have a maximum of 14 but can be any you want.\r
+ Note that these are completely irrelevent. If AVRdude supports a device,\r
+ then that device is programmable. Use -F switch to ignore device codes. */\r
+#define AVRDEVCODE01 0x55 /* ATtiny12 */\r
+#define AVRDEVCODE02 0x56 /* ATtiny15 */\r
+#define AVRDEVCODE03 0x5E /* ATtiny261 */\r
+#define AVRDEVCODE04 0x76 /* ATmega8 */\r
+#define AVRDEVCODE05 0x74 /*ATmega16 */\r
+#define AVRDEVCODE06 0x72 /* ATmega32 */\r
+#define AVRDEVCODE07 0x45 /* ATmega64 */\r
+#define AVRDEVCODE08 0x74 /* ATmega644 */\r
+#define AVRDEVCODE09 0x43 /* ATmega128 */\r
+#define AVRDEVCODE10 0x63 /* ATmega162 */\r
+#define AVRDEVCODE11 0x78 /* ATmega169 */\r
+#define AVRDEVCODE12 0x6C /* AT90S4434 */\r
+#define AVRDEVCODE13 0x38 /* AT90S8515A */\r
+#define AVRDEVCODE14 0x65 /* AT90S8555 */\r
+\r
+\r
+/* Scheduler Task List */\r
+TASK_LIST\r
+{\r
+ { Task: USB_USBTask , TaskStatus: TASK_STOP },\r
+ { Task: CDC_Task , TaskStatus: TASK_STOP },\r
+};\r
+\r
+/* Globals: */\r
+/** Contains the current baud rate and other settings of the virtual serial port.\r
+ *\r
+ These values are set by the host via a class-specific request, and the physical USART should be reconfigured to match the\r
+ new settings each time they are changed by the host.\r
+ */\r
+CDC_Line_Coding_t LineCoding = { BaudRateBPS: 9600,\r
+ CharFormat: OneStopBit,\r
+ ParityType: Parity_None,\r
+ DataBits: 8 };\r
+\r
+/** Ring (circular) buffer to hold the RX data - data from the host to the attached device on the serial port. */\r
+RingBuff_t Rx_Buffer;\r
+\r
+/** Ring (circular) buffer to hold the TX data - data from the attached device on the serial port to the host. */\r
+RingBuff_t Tx_Buffer;\r
+\r
+/** Flag to indicate if the USART is currently transmitting data from the Rx_Buffer circular buffer. */\r
+volatile bool Transmitting = false;\r
+\r
+\r
+/* some global variables used throughout */\r
+uint8_t tempIOreg = 0;\r
+uint8_t tempIOreg2 = 0;\r
+uint8_t tempIOreg3 = 0;\r
+uint8_t tempIOreg4 = 0;\r
+uint8_t dataWidth = 0;\r
+uint8_t firstRun = 1;\r
+uint8_t deviceCode = 0;\r
+uint8_t tempByte = 0;\r
+uint16_t currAddress = 0;\r
+uint16_t timerval = 0;\r
+\r
+\r
+\r
+/** Main program entry point. This routine configures the hardware required by the application, then\r
+ starts the scheduler to run the application tasks.\r
+ */\r
+int main(void)\r
+{\r
+ /* Disable watchdog if enabled by bootloader/fuses */\r
+ MCUSR &= ~(1 << WDRF);\r
+ wdt_disable();\r
+\r
+ /* Disable Clock Division */\r
+ SetSystemClockPrescaler(0);\r
+\r
+ /* Hardware Initialization */\r
+ LEDs_Init();\r
+ ReconfigureSPI();\r
+ // prepare PortB\r
+ DDRB = 0;\r
+ PORTB = 0;\r
+ DDRC |= ((1 << PC2) | (1 << PC4) | (1 << PC5) | (1 << PC6) | (1 << PC7)); //AT90USBxx2\r
+ // PC2 is also used for RESET, so set it HIGH initially - note 'P' command sets it to LOW (Active)\r
+ PORTC |= ((1 << PC2) | (1 << PC4) | (1 << PC5) | (1 << PC6) | (1 << PC7)); //AT90USBxx2\r
+ DDRD = 0;\r
+ PORTD = (1 << PB7); // only PB7(HWB) should be High as this is the bootloader pin\r
+ // Prepare PortB for SPI - set PB0(^SS), PB1(SCK), PB2(MOSI) as output as well as all other pins except PB3(MISO)\r
+ DDRB = (1 << PB0) | (1 << PB1) | (1 << PB2) | (0 << PB3) | (1 << PB4) | (1 << PB5) | (1 << PB6) | (1 << PB7);\r
+ PORTB |= (1 << PB0);\r
+ // make sure DataFlash devices to not interfere - deselect them by setting PE0 and PE1 HIGH:\r
+ PORTE = 0xFF;\r
+ DDRE = 0xFF;\r
+\r
+ // initialize Timer1 for use in delay function\r
+ TCCR1A = 0;\r
+ //TCCR1B = (1 << CS10); // no prescaling, use CLK\r
+ TCCR1B = ((1 << CS12) | (1 << CS10)); // prescale by CLK/1024\r
+ // 8MHz/1024 = 7813 ticks per second --> ~8 ticks per millisecond (ms)\r
+ timerval = TCNT1; // start timer1\r
+\r
+\r
+ /* Ringbuffer Initialization */\r
+ Buffer_Initialize(&Rx_Buffer);\r
+ Buffer_Initialize(&Tx_Buffer);\r
+ \r
+ /* Indicate USB not ready */\r
+ UpdateStatus(Status_USBNotReady);\r
+ \r
+ /* Initialize Scheduler so that it can be used */\r
+ Scheduler_Init();\r
+\r
+ /* Initialize USB Subsystem */\r
+ USB_Init();\r
+\r
+ /* Scheduling - routine never returns, so put this last in the main function */\r
+ Scheduler_Start();\r
+}\r
+\r
+/** Event handler for the USB_Connect event. This indicates that the device is enumerating via the status LEDs and\r
+ starts the library USB task to begin the enumeration and USB management process.\r
+ */\r
+EVENT_HANDLER(USB_Connect)\r
+{\r
+ /* Start USB management task */\r
+ Scheduler_SetTaskMode(USB_USBTask, TASK_RUN);\r
+\r
+ /* Indicate USB enumerating */\r
+ UpdateStatus(Status_USBEnumerating);\r
+}\r
+\r
+/** Event handler for the USB_Disconnect event. This indicates that the device is no longer connected to a host via\r
+ the status LEDs and stops the USB management and CDC management tasks.\r
+ */\r
+EVENT_HANDLER(USB_Disconnect)\r
+{\r
+ /* Stop running CDC and USB management tasks */\r
+ Scheduler_SetTaskMode(CDC_Task, TASK_STOP);\r
+ Scheduler_SetTaskMode(USB_USBTask, TASK_STOP);\r
+\r
+ /* Indicate USB not ready */\r
+ UpdateStatus(Status_USBNotReady);\r
+}\r
+\r
+/** Event handler for the USB_ConfigurationChanged event. This is fired when the host set the current configuration\r
+ of the USB device after enumeration - the device endpoints are configured and the CDC management task started.\r
+ */\r
+EVENT_HANDLER(USB_ConfigurationChanged)\r
+{\r
+ /* Setup CDC Notification, Rx and Tx Endpoints */\r
+ Endpoint_ConfigureEndpoint(CDC_NOTIFICATION_EPNUM, EP_TYPE_INTERRUPT,\r
+ ENDPOINT_DIR_IN, CDC_NOTIFICATION_EPSIZE,\r
+ ENDPOINT_BANK_SINGLE);\r
+\r
+ Endpoint_ConfigureEndpoint(CDC_TX_EPNUM, EP_TYPE_BULK,\r
+ ENDPOINT_DIR_IN, CDC_TXRX_EPSIZE,\r
+ ENDPOINT_BANK_SINGLE);\r
+\r
+ Endpoint_ConfigureEndpoint(CDC_RX_EPNUM, EP_TYPE_BULK,\r
+ ENDPOINT_DIR_OUT, CDC_TXRX_EPSIZE,\r
+ ENDPOINT_BANK_SINGLE);\r
+\r
+ /* Indicate USB connected and ready */\r
+ UpdateStatus(Status_USBReady);\r
+\r
+ /* Start CDC task */\r
+ Scheduler_SetTaskMode(CDC_Task, TASK_RUN);\r
+}\r
+\r
+/** Event handler for the USB_UnhandledControlPacket event. This is used to catch standard and class specific\r
+ control requests that are not handled internally by the USB library (including the CDC control commands,\r
+ which are all issued via the control endpoint), so that they can be handled appropriately for the application.\r
+ */\r
+EVENT_HANDLER(USB_UnhandledControlPacket)\r
+{\r
+ uint8_t* LineCodingData = (uint8_t*)&LineCoding;\r
+\r
+ /* Process CDC specific control requests */\r
+ switch (bRequest)\r
+ {\r
+ case REQ_GetLineEncoding:\r
+ if (bmRequestType == (REQDIR_DEVICETOHOST | REQTYPE_CLASS | REQREC_INTERFACE))\r
+ { \r
+ /* Acknowedge the SETUP packet, ready for data transfer */\r
+ Endpoint_ClearSetupReceived();\r
+\r
+ /* Write the line coding data to the control endpoint */\r
+ Endpoint_Write_Control_Stream_LE(LineCodingData, sizeof(LineCoding));\r
+ \r
+ /* Finalize the stream transfer to send the last packet or clear the host abort */\r
+ Endpoint_ClearSetupOUT();\r
+ }\r
+ \r
+ break;\r
+ case REQ_SetLineEncoding:\r
+ if (bmRequestType == (REQDIR_HOSTTODEVICE | REQTYPE_CLASS | REQREC_INTERFACE))\r
+ {\r
+ /* Acknowedge the SETUP packet, ready for data transfer */\r
+ Endpoint_ClearSetupReceived();\r
+\r
+ /* Read the line coding data in from the host into the global struct */\r
+ Endpoint_Read_Control_Stream_LE(LineCodingData, sizeof(LineCoding));\r
+\r
+ /* Finalize the stream transfer to clear the last packet from the host */\r
+ Endpoint_ClearSetupIN();\r
+ \r
+ /* Reconfigure the USART with the new settings */\r
+ ReconfigureSPI();\r
+ }\r
+ \r
+ break;\r
+ case REQ_SetControlLineState:\r
+ if (bmRequestType == (REQDIR_HOSTTODEVICE | REQTYPE_CLASS | REQREC_INTERFACE))\r
+ {\r
+#if 0\r
+ /* NOTE: Here you can read in the line state mask from the host, to get the current state of the output handshake\r
+ lines. The mask is read in from the wValue parameter, and can be masked against the CONTROL_LINE_OUT_* masks\r
+ to determine the RTS and DTR line states using the following code:\r
+ */\r
+\r
+ uint16_t wIndex = Endpoint_Read_Word_LE();\r
+ \r
+ // Do something with the given line states in wIndex\r
+#endif\r
+ \r
+ /* Acknowedge the SETUP packet, ready for data transfer */\r
+ Endpoint_ClearSetupReceived();\r
+ \r
+ /* Send an empty packet to acknowedge the command */\r
+ Endpoint_ClearSetupIN();\r
+ }\r
+ \r
+ break;\r
+ }\r
+}\r
+\r
+/** Task to manage CDC data transmission and reception to and from the host, from and to the physical USART. */\r
+TASK(CDC_Task)\r
+{\r
+ if (USB_IsConnected)\r
+ {\r
+#if 0\r
+ /* NOTE: Here you can use the notification endpoint to send back line state changes to the host, for the special RS-232\r
+ handshake signal lines (and some error states), via the CONTROL_LINE_IN_* masks and the following code:\r
+ */\r
+\r
+ USB_Notification_Header_t Notification = (USB_Notification_Header_t)\r
+ {\r
+ NotificationType: (REQDIR_DEVICETOHOST | REQTYPE_CLASS | REQREC_INTERFACE),\r
+ Notification: NOTIF_SerialState,\r
+ wValue: 0,\r
+ wIndex: 0,\r
+ wLength: sizeof(uint16_t),\r
+ };\r
+ \r
+ uint16_t LineStateMask;\r
+ \r
+ // Set LineStateMask here to a mask of CONTROL_LINE_IN_* masks to set the input handshake line states to send to the host\r
+ \r
+ Endpoint_SelectEndpoint(CDC_NOTIFICATION_EPNUM);\r
+ Endpoint_Write_Stream_LE(&Notification, sizeof(Notification));\r
+ Endpoint_Write_Stream_LE(&LineStateMask, sizeof(LineStateMask));\r
+ Endpoint_ClearCurrentBank();\r
+#endif\r
+\r
+ /* Select the Serial Rx Endpoint */\r
+ Endpoint_SelectEndpoint(CDC_RX_EPNUM);\r
+ \r
+ if (Endpoint_ReadWriteAllowed())\r
+ {\r
+ /* Read the received data endpoint into the transmission buffer */\r
+ while (Endpoint_BytesInEndpoint())\r
+ {\r
+ /* Wait until the buffer has space for a new character */\r
+ while (!((BUFF_STATICSIZE - Rx_Buffer.Elements)));\r
+ \r
+ /* Store each character from the endpoint */\r
+ Buffer_StoreElement(&Rx_Buffer, Endpoint_Read_Byte());\r
+\r
+\r
+\r
+\r
+ /* Each time there is an element, check which comand should be\r
+ run and if enough data is available to run that command.\r
+ There are 1-byte, 2-byte, 3-byte, 4-byte commands, and 5-byte commands\r
+ Remember that the "which command" byte counts as 1 */\r
+ if (Rx_Buffer.Elements == 0) {\r
+ // do nothing, wait for data\r
+ } else {\r
+ tempByte = Buffer_PeekElement(&Rx_Buffer); // peek at first element\r
+\r
+ /* make sure the issued command and associated data are all ready */\r
+ if (Rx_Buffer.Elements == 1) { // zero data byte command\r
+ if ((tempByte == 'P') | (tempByte == 'a') | (tempByte == 'm') |\r
+ (tempByte == 'R') | (tempByte == 'd') | (tempByte == 'e') |\r
+ (tempByte == 'L') | (tempByte == 's') | (tempByte == 't') | \r
+ (tempByte == 'S') | (tempByte == 'V') | (tempByte == 'v') |\r
+ (tempByte == 'p') | (tempByte == 'F')) {\r
+ processHostSPIRequest(); // command has enough data, process it\r
+ }\r
+ } else if (Rx_Buffer.Elements == 2) { // one data byte command\r
+ if ((tempByte == 'T') | (tempByte == 'c') | (tempByte == 'C') |\r
+ (tempByte == 'D') | (tempByte == 'l') | (tempByte == 'f') |\r
+ (tempByte == 'x') | (tempByte == 'y')) {\r
+ processHostSPIRequest(); // command has enough data, process it\r
+ }\r
+ } else if (Rx_Buffer.Elements == 3) { // two data byte command\r
+ if ((tempByte == 'A') | (tempByte == 'Z')) {\r
+ processHostSPIRequest(); // command has enough data, process it\r
+ }\r
+ } else if (Rx_Buffer.Elements == 4) { // three data byte command\r
+ if ((tempByte == ':')) {\r
+ processHostSPIRequest(); // command has enough data, process it\r
+ }\r
+ } else if (Rx_Buffer.Elements == 5) { // four data byte command\r
+ if ((tempByte == '.')) {\r
+ processHostSPIRequest(); // command has enough data, process it\r
+ }\r
+ } else {\r
+ // do nothing\r
+ }\r
+ }\r
+\r
+\r
+\r
+ }\r
+ \r
+ /* Clear the endpoint buffer */\r
+ Endpoint_ClearCurrentBank();\r
+ }\r
+ \r
+ /* Check if Rx buffer contains data */\r
+ if (Rx_Buffer.Elements)\r
+ {\r
+ /* Initiate the transmission of the buffer contents if USART idle */\r
+ if (!(Transmitting))\r
+ {\r
+ Transmitting = true;\r
+ /* The following flushes the receive buffer to prepare for new data and commands */\r
+ /* Need to flush the buffer as the command byte which is peeked above needs to be */\r
+ /* dealt with, otherwise the command bytes will overflow the buffer eventually */\r
+ //Buffer_GetElement(&Rx_Buffer); // works also\r
+ Buffer_Initialize(&Rx_Buffer);\r
+ }\r
+ }\r
+\r
+ /* Select the Serial Tx Endpoint */\r
+ Endpoint_SelectEndpoint(CDC_TX_EPNUM);\r
+\r
+ /* Check if the Tx buffer contains anything to be sent to the host */\r
+ if (Tx_Buffer.Elements)\r
+ {\r
+ /* Wait until Serial Tx Endpoint Ready for Read/Write */\r
+ while (!(Endpoint_ReadWriteAllowed()));\r
+ \r
+ /* Check before sending the data if the endpoint is completely full */\r
+ bool IsFull = (Endpoint_BytesInEndpoint() == CDC_TXRX_EPSIZE);\r
+ \r
+ /* Write the transmission buffer contents to the received data endpoint */\r
+ while (Tx_Buffer.Elements && (Endpoint_BytesInEndpoint() < CDC_TXRX_EPSIZE))\r
+ Endpoint_Write_Byte(Buffer_GetElement(&Tx_Buffer));\r
+ \r
+ /* Send the data */\r
+ Endpoint_ClearCurrentBank();\r
+\r
+ /* If a full endpoint was sent, we need to send an empty packet afterwards to terminate the transfer */\r
+ if (IsFull)\r
+ {\r
+ /* Wait until Serial Tx Endpoint Ready for Read/Write */\r
+ while (!(Endpoint_ReadWriteAllowed()));\r
+\r
+ /* Send an empty packet to terminate the transfer */\r
+ Endpoint_ClearCurrentBank();\r
+ }\r
+ }\r
+ }\r
+}\r
+\r
+\r
+\r
+/** Function to manage status updates to the user. This is done via LEDs on the given board, if available, but may be changed to\r
+ log to a serial port, or anything else that is suitable for status updates.\r
+ *\r
+ \param CurrentStatus Current status of the system, from the USBtoSerial_StatusCodes_t enum\r
+ */\r
+void UpdateStatus(uint8_t CurrentStatus)\r
+{\r
+ uint8_t LEDMask = LEDS_NO_LEDS;\r
+ \r
+ /* Set the LED mask to the appropriate LED mask based on the given status code */\r
+ switch (CurrentStatus)\r
+ {\r
+ case Status_USBNotReady:\r
+ LEDMask = (LEDS_LED1);\r
+ break;\r
+ case Status_USBEnumerating:\r
+ LEDMask = (LEDS_LED1 | LEDS_LED2);\r
+ break;\r
+ case Status_USBReady:\r
+ LEDMask = (LEDS_LED2 | LEDS_LED4);\r
+ break;\r
+ }\r
+ \r
+ /* Set the board LEDs to the new LED mask */\r
+ LEDs_SetAllLEDs(LEDMask);\r
+}\r
+\r
+\r
+/** Reconfigures SPI to match the current serial port settings issued by the host. */\r
+void ReconfigureSPI(void)\r
+{\r
+ uint8_t SPCRmask = (1 << SPE) | (1 << MSTR); // always enable SPI as Master\r
+ uint8_t SPSRmask = 0;\r
+\r
+ /* Determine data width */\r
+ if (LineCoding.ParityType == Parity_Odd) {\r
+ dataWidth = 16;\r
+ } else if (LineCoding.ParityType == Parity_Even) {\r
+ dataWidth = 32;\r
+ } else if (LineCoding.ParityType == Parity_None) {\r
+ dataWidth = 8;\r
+ }\r
+\r
+ /* Determine stop bits - 1.5 stop bits is set as 1 stop bit due to hardware limitations */\r
+ /* For SPI, determine whether format is LSB or MSB */\r
+ if (LineCoding.CharFormat == TwoStopBits) { \r
+ SPCRmask |= (1 << DORD);\r
+ } else if (LineCoding.CharFormat == OneStopBit) {\r
+ SPCRmask |= (0 << DORD);\r
+ }\r
+\r
+ /* Determine data size - 5, 6, 7, or 8 bits are supported */\r
+ /* Changing line coding changes SPI Mode\r
+ CPOL=0, CPHA=0 Sample (Rising) Setup (Falling) SPI-Mode0 == 8 bits line coding\r
+ CPOL=0, CPHA=1 Setup (Rising) Sample (Falling) SPI-Mode1 == 7 bits line coding\r
+ CPOL=1, CPHA=0 Sample (Falling) Setup (Rising) SPI-Mode2 == 6 bits line coding\r
+ CPOL=1, CPHA=1 Setup (Falling) Sample (Rising) SPI-Mode3 == 5 bits line coding\r
+ */\r
+ if (LineCoding.DataBits == 5) {\r
+ SPCRmask |= ((1 << CPOL) | (1 << CPHA));\r
+ } else if (LineCoding.DataBits == 6) {\r
+ SPCRmask |= ((1 << CPOL) | (0 << CPHA));\r
+ } else if (LineCoding.DataBits == 7) {\r
+ SPCRmask |= ((0 << CPOL) | (1 << CPHA));\r
+ } else if (LineCoding.DataBits == 8) {\r
+ SPCRmask |= ((0 << CPOL) | (0 << CPHA));\r
+ }\r
+\r
+\r
+ /* Set the USART baud rate register to the desired baud rate value */\r
+ /* also alter the SPI speed via value of baud rate */\r
+ if (LineCoding.BaudRateBPS == 9600) { // 2Mhz SPI (Fosc / 4)\r
+ SPCRmask |= ((0 << SPR1) | (0 << SPR0));\r
+ SPSRmask |= (0 << SPI2X);\r
+ } else if (LineCoding.BaudRateBPS == 14400) { // 1Mhz SPI (Fosc / 8)\r
+ SPCRmask |= ((0 << SPR1) | (1 << SPR0));\r
+ SPSRmask |= (1 << SPI2X);\r
+ } else if (LineCoding.BaudRateBPS == 57600) { // 500kHz SPI (Fosc / 16)\r
+ SPCRmask |= ((0 << SPR1) | (1 << SPR0));\r
+ SPSRmask |= (0 << SPI2X);\r
+ } else if (LineCoding.BaudRateBPS == 38400) { // 250kHz SPI (Fosc / 32)\r
+ SPCRmask |= ((1 << SPR1) | (0 << SPR0));\r
+ SPSRmask |= (1 << SPI2X);\r
+ } else if (LineCoding.BaudRateBPS == 19200) { // 125kHz SPI (Fosc / 64)\r
+ SPCRmask |= ((1 << SPR1) | (0 << SPR0));\r
+ SPSRmask |= (0 << SPI2X);\r
+ } else if (LineCoding.BaudRateBPS == 115200) { // 62.5kHz SPI (Fosc / 128)\r
+ SPCRmask |= ((1 << SPR1) | (1 << SPR0));\r
+ SPSRmask |= (0 << SPI2X);\r
+ }\r
+\r
+ SPCR = SPCRmask;\r
+ SPSR = SPSRmask;\r
+\r
+ // only read if first run\r
+ if (firstRun) {\r
+ tempIOreg = SPSR; //need to read to initiliaze\r
+ tempIOreg = SPDR; //need to read to initiliaze\r
+ firstRun = 0;\r
+ }\r
+\r
+}\r
+\r
+\r
+/* process data according to AVR910 protocol */\r
+void processHostSPIRequest(void) {\r
+\r
+ uint8_t readByte1 = 0;\r
+ uint8_t readByte2 = 0;\r
+ uint8_t readByte3 = 0;\r
+ uint8_t readByte4 = 0;\r
+ uint8_t firstByte = 0;\r
+\r
+ /* Taken from a90isp_ver23.asm:\r
+ +-------------+------------+------+\r
+ ;* Commands | Host writes | Host reads | |\r
+ ;* -------- +-----+-------+------+-----+ |\r
+ ;* | ID | data | data | | Note |\r
+ ;* +-----------------------------------+-----+-------+------+-----+------+\r
+ ;* | Enter programming mode | 'P' | | | 13d | 1 |\r
+ ;* | Report autoincrement address | 'a' | | | 'Y' | |\r
+ ;* | Set address | 'A' | ah al | | 13d | 2 |\r
+ ;* | Write program memory, low byte | 'c' | dd | | 13d | 3 |\r
+ ;* | Write program memory, high byte | 'C' | dd | | 13d | 3 |\r
+ ;* | Issue Page Write | 'm' | | | 13d | |\r
+ ;* | Read program memory | 'R' | |dd(dd)| | 4 |\r
+ ;* | Write data memory | 'D' | dd | | 13d | |\r
+ ;* | Read data memory | 'd' | | dd | | |\r
+ ;* | Chip erase | 'e' | | | 13d | |\r
+ ;* | Write lock bits | 'l' | dd | | 13d | |\r
+ ;* | Write fuse bits | 'f' | dd | | 13d | 11 |\r
+ ;* | Read fuse and lock bits | 'F' | | dd | | 11 |\r
+ ;* | Leave programming mode | 'L' | | | 13d | 5 |\r
+ ;* | Select device type | 'T' | dd | | 13d | 6 |\r
+ ;* | Read signature bytes | 's' | | 3*dd | | |\r
+ ;* | Return supported device codes | 't' | | n*dd | 00d | 7 |\r
+ ;* | Return software identifier | 'S' | | s[7] | | 8 |\r
+ ;* | Return sofware version | 'V' | |dd dd | | 9 |\r
+ ;* | Return hardware version | 'v' | |dd dd | | 9 |\r
+ ;* | Return programmer type | 'p' | | dd | | 10 |\r
+ ;* | Set LED | 'x' | dd | | 13d | 12 |\r
+ ;* | Clear LED | 'y' | dd | | 13d | 12 |\r
+ ;* | Universial command | ':' | 3*dd | dd | 13d | |\r
+ ;* | New universal command | '.' | 4*dd | dd | 13d | |\r
+ ;* | Special test command | 'Z' | 2*dd | dd | | |\r
+ */\r
+\r
+ firstByte = Buffer_GetElement(&Rx_Buffer);\r
+ Buffer_Initialize(&Tx_Buffer); // make sure the buffer is clear before proceeding\r
+\r
+ if (firstByte == 'P') { // enter Programming mode\r
+ // enable SPI -- already done\r
+ // enter programming mode on target:\r
+ //PORTB = 0; // set clock to zero\r
+ RESETPORT = (1 << RESETPIN); // set RESET pin on target to 1\r
+ RESETPORT2 = (1 << RESETPIN2);\r
+ delay_ms(DELAY_SHORT);\r
+ //RESETPORT = (RESETPORT & ~(1 << RESETPIN)); // set RESET pin on target to 0 - Active\r
+ RESETPORT = 0x00;\r
+ RESETPORT2 = 0;\r
+ delay_ms(DELAY_SHORT);\r
+ SPI_SendByte(0xAC);\r
+ SPI_SendByte(0x53);\r
+ SPI_SendByte(0x00);\r
+ SPI_SendByte(0x00);\r
+ delay_ms(DELAY_VERYSHORT);\r
+ Buffer_StoreElement(&Tx_Buffer, CR_HEX); // return carriage return (CR_HEX) if successful\r
+\r
+ } else if (firstByte == 'T') { // Select device type\r
+ deviceCode = Buffer_GetElement(&Rx_Buffer); // set device type\r
+ Buffer_StoreElement(&Tx_Buffer, CR_HEX); // return carriage return (CR_HEX) if successful\r
+\r
+ } else if (firstByte == 'a') { // Report autoincrement address\r
+ Buffer_StoreElement(&Tx_Buffer, 'Y'); // return 'Y' - Auto-increment enabled\r
+\r
+ } else if (firstByte == 'A') { //Load Address\r
+ // get two bytes over serial and set currAddress to them\r
+ readByte1 = Buffer_GetElement(&Rx_Buffer); // high byte\r
+ readByte2 = Buffer_GetElement(&Rx_Buffer); // low byte\r
+ currAddress = (readByte1 << 8) | (readByte2);\r
+ Buffer_StoreElement(&Tx_Buffer, CR_HEX); // return carriage return (CR_HEX) if successful\r
+\r
+ } else if (firstByte == 'c') { // Write program memory, low byte\r
+ // send 4 bytes over SPI; 0x40, then Address High Byte, then Low, then data\r
+ readByte1 = Buffer_GetElement(&Rx_Buffer);\r
+ SPI_SendByte(0x40);\r
+ SPI_SendByte((currAddress >> 8)); // high byte\r
+ SPI_SendByte((currAddress)); // low byte\r
+ SPI_SendByte(readByte1); // data\r
+ delay_ms(DELAY_MEDIUM); // certain MCUs require a delay of about 24585 cycles\r
+ Buffer_StoreElement(&Tx_Buffer, CR_HEX); // return carriage return (CR_HEX) if successful\r
+\r
+ } else if (firstByte == 'C') { // Write program memory, high byte\r
+ // send 4 bytes over SPI; 0x48, then Address High Byte, then Low, then data\r
+ readByte1 = Buffer_GetElement(&Rx_Buffer);\r
+ SPI_SendByte(0x48);\r
+ SPI_SendByte((currAddress >> 8)); // high byte\r
+ SPI_SendByte((currAddress)); // low byte\r
+ SPI_SendByte(readByte1); // data\r
+ currAddress++; // increment currAddress\r
+ Buffer_StoreElement(&Tx_Buffer, CR_HEX); // return carriage return (CR_HEX) if successful\r
+\r
+ } else if (firstByte == 'm') { // Write Program Memory Page\r
+ // send 4 bytes over SPI; 0x4c, then Address High Byte, then Low, then 0x00\r
+ SPI_SendByte(0x4C);\r
+ SPI_SendByte((currAddress >> 8)); // high byte\r
+ SPI_SendByte((currAddress)); // low byte\r
+ SPI_SendByte(0x00);\r
+ delay_ms(DELAY_LONG);\r
+ Buffer_StoreElement(&Tx_Buffer, CR_HEX); // return carriage return (CR_HEX) if successful\r
+\r
+ } else if (firstByte == 'R') { // Read Program Memory\r
+ // send 4 bytes over SPI; 0x28, then Address High Byte, then Low, then send back read data from 4th byte over serial\r
+ SPI_SendByte(0x28);\r
+ SPI_SendByte((currAddress >> 8)); // high byte\r
+ SPI_SendByte((currAddress)); // low byte\r
+ readByte1 = SPI_TransferByte(0x00); // read in data\r
+ Buffer_StoreElement(&Tx_Buffer, readByte1);\r
+ // send 4 bytes over SPI; 0x20, then Address High Byte, then Low, then send back read data from 4th byte over serial\r
+ SPI_SendByte(0x20);\r
+ SPI_SendByte((currAddress >> 8)); // high byte\r
+ SPI_SendByte((currAddress)); // low byte\r
+ readByte2 = SPI_TransferByte(0x00); // read in data\r
+ Buffer_StoreElement(&Tx_Buffer, readByte2);\r
+ currAddress++; // increment currAddress\r
+\r
+ } else if (firstByte == 'D') { // Write Data Memory\r
+ // send 4 bytes over SPI; 0xc0, then Address High Byte, then Low, then data\r
+ readByte1 = Buffer_GetElement(&Rx_Buffer);\r
+ SPI_SendByte(0xC0);\r
+ SPI_SendByte((currAddress >> 8)); // high byte\r
+ SPI_SendByte((currAddress)); // low byte\r
+ SPI_SendByte(readByte1); // data\r
+ delay_ms(DELAY_MEDIUM);\r
+ currAddress++; // increment currAddress\r
+ Buffer_StoreElement(&Tx_Buffer, CR_HEX); // return carriage return (CR_HEX) if successful\r
+\r
+ } else if (firstByte == 'd') { // Read Data Memory\r
+ // send 4 bytes over SPI; 0xa0, then Address High Byte, then Low, then send back read data from 4th byte over serial\r
+ SPI_SendByte(0xA0);\r
+ SPI_SendByte((currAddress >> 8)); // high byte\r
+ SPI_SendByte((currAddress)); // low byte\r
+ readByte1 = SPI_TransferByte(0x00); // read in data\r
+ Buffer_StoreElement(&Tx_Buffer, readByte1);\r
+ currAddress++; // increment currAddress\r
+\r
+ } else if (firstByte == 'e') { // erase the target device\r
+ // send 4 bytes over SPI; 0xac, 0x80, 0x04, 0x00\r
+ SPI_SendByte(0xAC);\r
+ SPI_SendByte(0x80);\r
+ SPI_SendByte(0x04);\r
+ SPI_SendByte(0x00);\r
+ delay_ms(DELAY_LONG);\r
+ Buffer_StoreElement(&Tx_Buffer, CR_HEX); // return carriage return (CR_HEX) if successful\r
+\r
+ } else if (firstByte == 'l') { // write lock bits\r
+ // send 4 bytes over SPI; 0xac, [andi s_data 0x06], 0xe0, 0x00\r
+ readByte1 = Buffer_GetElement(&Rx_Buffer); // read in lock bits data\r
+ SPI_SendByte(0xAC);\r
+ SPI_SendByte(((0x06 & readByte1) | 0xE0)); // TODO - is this correct???\r
+ SPI_SendByte(0x00);\r
+ SPI_SendByte(0x00);\r
+ delay_ms(DELAY_MEDIUM);\r
+ Buffer_StoreElement(&Tx_Buffer, CR_HEX); // return carriage return (CR_HEX) if successful\r
+\r
+ } else if (firstByte == 'f') { // write fuse bits\r
+ // ignore this command, but need to remove data from the receive buffer\r
+ readByte1 = Buffer_GetElement(&Rx_Buffer);\r
+ Buffer_StoreElement(&Tx_Buffer, CR_HEX); // return carriage return (CR_HEX) if successful\r
+\r
+ } else if (firstByte == 'L') { // leave programming mode\r
+ RESETPORT |= (1 << RESETPIN); // set RESET pin on target to 1\r
+ RESETPORT2 |= (1 << RESETPIN2); // set RESET pin on target to 1\r
+ Buffer_StoreElement(&Tx_Buffer, CR_HEX); // return carriage return (CR_HEX) if successful\r
+\r
+ } else if (firstByte == 's') { // Read signature bytes\r
+ // send 4 bytes over SPI; 0x30, 0x00, 0x02, read and send last byte over serial\r
+ SPI_SendByte(0x30);\r
+ SPI_SendByte(0x00);\r
+ SPI_SendByte(0x02);\r
+ readByte1 = SPI_TransferByte(0x00); // read in data\r
+ Buffer_StoreElement(&Tx_Buffer, readByte1);\r
+ SPI_SendByte(0x30);\r
+ SPI_SendByte(0x00);\r
+ SPI_SendByte(0x01);\r
+ readByte1 = SPI_TransferByte(0x00); // read in data\r
+ Buffer_StoreElement(&Tx_Buffer, readByte1);\r
+ SPI_SendByte(0x30);\r
+ SPI_SendByte(0x00);\r
+ SPI_SendByte(0x00);\r
+ readByte1 = SPI_TransferByte(0x00); // read in data\r
+ Buffer_StoreElement(&Tx_Buffer, readByte1);\r
+\r
+ } else if (firstByte == 't') { // Return supported device codes\r
+ Buffer_StoreElement(&Tx_Buffer, AVRDEVCODE01);\r
+ Buffer_StoreElement(&Tx_Buffer, AVRDEVCODE02);\r
+ Buffer_StoreElement(&Tx_Buffer, AVRDEVCODE03);\r
+ Buffer_StoreElement(&Tx_Buffer, AVRDEVCODE04);\r
+ Buffer_StoreElement(&Tx_Buffer, AVRDEVCODE05);\r
+ Buffer_StoreElement(&Tx_Buffer, AVRDEVCODE06);\r
+ Buffer_StoreElement(&Tx_Buffer, AVRDEVCODE07);\r
+ Buffer_StoreElement(&Tx_Buffer, AVRDEVCODE08);\r
+ Buffer_StoreElement(&Tx_Buffer, AVRDEVCODE09);\r
+ Buffer_StoreElement(&Tx_Buffer, AVRDEVCODE10);\r
+ Buffer_StoreElement(&Tx_Buffer, AVRDEVCODE11);\r
+ Buffer_StoreElement(&Tx_Buffer, AVRDEVCODE12);\r
+ Buffer_StoreElement(&Tx_Buffer, AVRDEVCODE13);\r
+ Buffer_StoreElement(&Tx_Buffer, AVRDEVCODE14);\r
+ Buffer_StoreElement(&Tx_Buffer, 0x00);\r
+\r
+ } else if (firstByte == 'S') { // Return software identifier\r
+ // return string[7] with "AVR ISP"\r
+ Buffer_StoreElement(&Tx_Buffer, 'A');\r
+ Buffer_StoreElement(&Tx_Buffer, 'V');\r
+ Buffer_StoreElement(&Tx_Buffer, 'R');\r
+ Buffer_StoreElement(&Tx_Buffer, 0x20);\r
+ Buffer_StoreElement(&Tx_Buffer, 'I');\r
+ Buffer_StoreElement(&Tx_Buffer, 'S');\r
+ Buffer_StoreElement(&Tx_Buffer, 'P');\r
+\r
+ } else if (firstByte == 'V') { // Return sofware version\r
+ //return two bytes, software Major then Minor\r
+ Buffer_StoreElement(&Tx_Buffer, '2');\r
+ Buffer_StoreElement(&Tx_Buffer, '3');\r
+\r
+ } else if (firstByte == 'v') { // Return hardware version\r
+ //return two bytes, hardware Major then Minor \r
+ Buffer_StoreElement(&Tx_Buffer, ('1'));\r
+ Buffer_StoreElement(&Tx_Buffer, ('0'));\r
+\r
+ } else if (firstByte == 'p') { // Return programmer type\r
+ // return 'S' for Serial Programmer\r
+ Buffer_StoreElement(&Tx_Buffer, 'S');\r
+\r
+ } else if (firstByte == 'x') { // set LED\r
+ // ignore this command, but need to remove data from the receive buffer\r
+ readByte1 = Buffer_GetElement(&Rx_Buffer);\r
+ Buffer_StoreElement(&Tx_Buffer, CR_HEX); // return carriage return (CR_HEX) if successful\r
+\r
+ } else if (firstByte == 'y') { // clear LED\r
+ // ignore this command, but need to remove data from the receive buffer\r
+ readByte1 = Buffer_GetElement(&Rx_Buffer);\r
+ Buffer_StoreElement(&Tx_Buffer, CR_HEX); // return carriage return (CR_HEX) if successful\r
+\r
+ } else if (firstByte == ':') { // Universal Command\r
+ // get 3 bytes over serial\r
+ readByte1 = Buffer_GetElement(&Rx_Buffer);\r
+ readByte2 = Buffer_GetElement(&Rx_Buffer);\r
+ readByte3 = Buffer_GetElement(&Rx_Buffer);\r
+ SPI_SendByte(readByte1);\r
+ SPI_SendByte(readByte2);\r
+ SPI_SendByte(readByte3);\r
+ readByte1 = SPI_TransferByte(0x00);\r
+ Buffer_StoreElement(&Tx_Buffer, readByte1);\r
+ delay_ms(DELAY_MEDIUM);\r
+ Buffer_StoreElement(&Tx_Buffer, CR_HEX); // return carriage return (CR_HEX) if successful\r
+\r
+ } else if (firstByte == '.') { // New Universal Command\r
+ // get 4 bytes over serial\r
+ readByte1 = Buffer_GetElement(&Rx_Buffer);\r
+ readByte2 = Buffer_GetElement(&Rx_Buffer);\r
+ readByte3 = Buffer_GetElement(&Rx_Buffer);\r
+ readByte4 = Buffer_GetElement(&Rx_Buffer);\r
+ SPI_SendByte(readByte1);\r
+ SPI_SendByte(readByte2);\r
+ SPI_SendByte(readByte3);\r
+ readByte1 = SPI_TransferByte(readByte4);\r
+ Buffer_StoreElement(&Tx_Buffer, readByte1);\r
+ delay_ms(DELAY_MEDIUM);\r
+ Buffer_StoreElement(&Tx_Buffer, CR_HEX); // return carriage return (CR_HEX) if successful\r
+\r
+ } else if (firstByte == 'Z') { // Special test command\r
+ // do nothing, but need to remove data from the receive buffer\r
+ readByte1 = Buffer_GetElement(&Rx_Buffer);\r
+ readByte2 = Buffer_GetElement(&Rx_Buffer);\r
+\r
+ } else {\r
+ // do nothing, but need to return with a carriage return\r
+ Buffer_StoreElement(&Tx_Buffer, CR_HEX); // return carriage return (CR_HEX) if successful\r
+ }\r
+}\r
+\r
+\r
+void delay_ms(uint8_t dly) {\r
+ uint16_t endtime = 0;\r
+\r
+ endtime = TCNT1;\r
+ if (endtime > 63486) {\r
+ endtime = (dly * DELAY_MULTIPLE);\r
+ } else {\r
+ endtime += (dly * DELAY_MULTIPLE);\r
+ }\r
+\r
+ timerval = TCNT1;\r
+ while (timerval < endtime) {\r
+ timerval = TCNT1;\r
+ }\r
+}\r