3e2f330c775bef4cb4ce8d210d14dda2e5a910fd
[pub/lufa.git] / Bootloaders / DFU / BootloaderDFU.c
1 /*
2 LUFA Library
3 Copyright (C) Dean Camera, 2021.
4
5 dean [at] fourwalledcubicle [dot] com
6 www.lufa-lib.org
7 */
8
9 /*
10 Copyright 2021 Dean Camera (dean [at] fourwalledcubicle [dot] com)
11
12 Permission to use, copy, modify, distribute, and sell this
13 software and its documentation for any purpose is hereby granted
14 without fee, provided that the above copyright notice appear in
15 all copies and that both that the copyright notice and this
16 permission notice and warranty disclaimer appear in supporting
17 documentation, and that the name of the author not be used in
18 advertising or publicity pertaining to distribution of the
19 software without specific, written prior permission.
20
21 The author disclaims all warranties with regard to this
22 software, including all implied warranties of merchantability
23 and fitness. In no event shall the author be liable for any
24 special, indirect or consequential damages or any damages
25 whatsoever resulting from loss of use, data or profits, whether
26 in an action of contract, negligence or other tortious action,
27 arising out of or in connection with the use or performance of
28 this software.
29 */
30
31 /** \file
32 *
33 * Main source file for the DFU class bootloader. This file contains the complete bootloader logic.
34 */
35
36 #define INCLUDE_FROM_BOOTLOADER_C
37 #include "BootloaderDFU.h"
38
39 /** Flag to indicate if the bootloader is currently running in secure mode, disallowing memory operations
40 * other than erase. This is initially set to the value set by SECURE_MODE, and cleared by the bootloader
41 * once a memory erase has completed in a bootloader session.
42 */
43 static bool IsSecure = SECURE_MODE;
44
45 /** Flag to indicate if the bootloader should be running, or should exit and allow the application code to run
46 * via a soft reset. When cleared, the bootloader will abort, the USB interface will shut down and the application
47 * jumped to via an indirect jump to location 0x0000 (or other location specified by the host).
48 */
49 static bool RunBootloader = true;
50
51 /** Flag to indicate if the bootloader is waiting to exit. When the host requests the bootloader to exit and
52 * jump to the application address it specifies, it sends two sequential commands which must be properly
53 * acknowledged. Upon reception of the first the RunBootloader flag is cleared and the WaitForExit flag is set,
54 * causing the bootloader to wait for the final exit command before shutting down.
55 */
56 static bool WaitForExit = false;
57
58 /** Current DFU state machine state, one of the values in the DFU_State_t enum. */
59 static uint8_t DFU_State = dfuIDLE;
60
61 /** Status code of the last executed DFU command. This is set to one of the values in the DFU_Status_t enum after
62 * each operation, and returned to the host when a Get Status DFU request is issued.
63 */
64 static uint8_t DFU_Status = OK;
65
66 /** Data containing the DFU command sent from the host. */
67 static DFU_Command_t SentCommand;
68
69 /** Response to the last issued Read Data DFU command. Unlike other DFU commands, the read command
70 * requires a single byte response from the bootloader containing the read data when the next DFU_UPLOAD command
71 * is issued by the host.
72 */
73 static uint8_t ResponseByte;
74
75 /** Pointer to the start of the user application. By default this is 0x0000 (the reset vector), however the host
76 * may specify an alternate address when issuing the application soft-start command.
77 */
78 static AppPtr_t AppStartPtr = (AppPtr_t)0x0000;
79
80 /** 64-bit flash page number. This is concatenated with the current 16-bit address on USB AVRs containing more than
81 * 64KB of flash memory.
82 */
83 static uint8_t Flash64KBPage = 0;
84
85 /** Memory start address, indicating the current address in the memory being addressed (either FLASH or EEPROM
86 * depending on the issued command from the host).
87 */
88 static uint16_t StartAddr = 0x0000;
89
90 /** Memory end address, indicating the end address to read from/write to in the memory being addressed (either FLASH
91 * of EEPROM depending on the issued command from the host).
92 */
93 static uint16_t EndAddr = 0x0000;
94
95 /** Magic lock for forced application start. If the HWBE fuse is programmed and BOOTRST is unprogrammed, the bootloader
96 * will start if the /HWB line of the AVR is held low and the system is reset. However, if the /HWB line is still held
97 * low when the application attempts to start via a watchdog reset, the bootloader will re-start. If set to the value
98 * \ref MAGIC_BOOT_KEY the special init function \ref Application_Jump_Check() will force the application to start.
99 */
100 uint16_t MagicBootKey ATTR_NO_INIT;
101
102
103 /** Special startup routine to check if the bootloader was started via a watchdog reset, and if the magic application
104 * start key has been loaded into \ref MagicBootKey. If the bootloader started via the watchdog and the key is valid,
105 * this will force the user application to start via a software jump.
106 */
107 void Application_Jump_Check(void)
108 {
109 bool JumpToApplication = false;
110
111 #if (BOARD == BOARD_LEONARDO)
112 /* Enable pull-up on the IO13 pin so we can use it to select the mode */
113 PORTC |= (1 << 7);
114 Delay_MS(10);
115
116 /* If IO13 is not jumpered to ground, start the user application instead */
117 JumpToApplication = ((PINC & (1 << 7)) != 0);
118
119 /* Disable pull-up after the check has completed */
120 PORTC &= ~(1 << 7);
121 #elif ((BOARD == BOARD_XPLAIN) || (BOARD == BOARD_XPLAIN_REV1))
122 /* Disable JTAG debugging */
123 JTAG_DISABLE();
124
125 /* Enable pull-up on the JTAG TCK pin so we can use it to select the mode */
126 PORTF |= (1 << 4);
127 Delay_MS(10);
128
129 /* If the TCK pin is not jumpered to ground, start the user application instead */
130 JumpToApplication = ((PINF & (1 << 4)) != 0);
131
132 /* Re-enable JTAG debugging */
133 JTAG_ENABLE();
134 #else
135 {
136 /* If the reset source was the bootloader and the key is correct, clear it and jump to the application;
137 * this can happen in the HWBE fuse is set, and the HBE pin is low during the watchdog reset */
138 if ((MCUSR & (1 << WDRF)) && (MagicBootKey == MAGIC_BOOT_KEY))
139 JumpToApplication = true;
140
141 /* Clear reset source */
142 MCUSR &= ~(1 << WDRF);
143 }
144 #endif
145
146 /* Don't run the user application if the reset vector is blank (no app loaded) */
147 bool ApplicationValid = (pgm_read_word_near(0) != 0xFFFF);
148
149 /* If a request has been made to jump to the user application, honor it */
150 if (JumpToApplication && ApplicationValid)
151 {
152 /* Turn off the watchdog */
153 MCUSR &= ~(1 << WDRF);
154 wdt_disable();
155
156 /* Clear the boot key and jump to the user application */
157 MagicBootKey = 0;
158
159 // cppcheck-suppress constStatement
160 ((void (*)(void))0x0000)();
161 }
162 }
163
164
165 static volatile bool stayinbootloader;
166
167 /** Main program entry point. This routine configures the hardware required by the bootloader, then continuously
168 * runs the bootloader processing routine until instructed to soft-exit, or hard-reset via the watchdog to start
169 * the loaded application code.
170 */
171 int main(void)
172 {
173 /* Configure hardware required by the bootloader */
174 SetupHardware();
175
176 /* Turn on first LED on the board to indicate that the bootloader has started */
177 //LEDs_SetAllLEDs(LEDS_LED1);
178
179 /* Enable global interrupts so that the USB stack can function */
180 GlobalInterruptEnable();
181
182 /* Run the USB management task while the bootloader is supposed to be running */
183 /*if bit_is_clear(PINB,PB5) // PB5 is Digital 9 on Arduino Pro Micro
184 {
185 loop_until_bit_is_set(PINB,PB5);
186
187 while ((RunBootloader || WaitForExit) && bit_is_set(PINB,PB5))
188 USB_USBTask();
189
190 loop_until_bit_is_clear(PINB,PB5);
191 }*/
192
193 stayinbootloader = false;
194
195 uint16_t i = 0;
196 while (RunBootloader || WaitForExit)
197 {
198 USB_USBTask();
199
200 if (!stayinbootloader)
201 {
202 _delay_ms(1);
203 if (i++ > 5000)
204 {
205 break;
206 }
207 }
208 else
209 {
210 i = 0;
211 }
212 }
213
214 /* Wait a short time to end all USB transactions and then disconnect */
215 _delay_us(1000);
216
217 /* Reset configured hardware back to their original states for the user application */
218 ResetHardware();
219
220 /* Start the user application */
221 AppStartPtr();
222 }
223
224 /** Configures all hardware required for the bootloader. */
225 static void SetupHardware(void)
226 {
227 /* Disable watchdog if enabled by bootloader/fuses */
228 MCUSR &= ~(1 << WDRF);
229 wdt_disable();
230
231 /* Disable clock division */
232 clock_prescale_set(clock_div_1);
233
234 /* Relocate the interrupt vector table to the bootloader section */
235 MCUCR = (1 << IVCE);
236 MCUCR = (1 << IVSEL);
237
238 /* Initialize the USB and other board hardware drivers */
239 USB_Init();
240 //LEDs_Init();
241 DDRB = 1;
242 PORTB = _BV(PB5);
243 DDRD = 0b00100000;
244 PORTD = 0;
245
246 /* Bootloader active LED toggle timer initialization */
247 TIMSK1 = (1 << TOIE1);
248 TCCR1B = ((1 << CS11) | (1 << CS10));
249 }
250
251 /** Resets all configured hardware required for the bootloader back to their original states. */
252 static void ResetHardware(void)
253 {
254 /* Shut down the USB and other board hardware drivers */
255 USB_Disable();
256 //LEDs_Disable();
257 DDRB = 0;
258 PORTB = 0;
259 DDRD = 0;
260 PORTD = 0;
261
262 /* Disable Bootloader active LED toggle timer */
263 TIMSK1 = 0;
264 TCCR1B = 0;
265
266 /* Relocate the interrupt vector table back to the application section */
267 MCUCR = (1 << IVCE);
268 MCUCR = 0;
269 }
270
271 /** ISR to periodically toggle the LEDs on the board to indicate that the bootloader is active. */
272 ISR(TIMER1_OVF_vect, ISR_BLOCK)
273 {
274 //LEDs_ToggleLEDs(LEDS_LED1 | LEDS_LED2);
275 PORTB &= ~_BV(PB0);
276 _delay_ms(5);
277 PORTB |= _BV(PB0);
278 }
279
280 /** Event handler for the USB_ControlRequest event. This is used to catch and process control requests sent to
281 * the device from the USB host before passing along unhandled control requests to the library for processing
282 * internally.
283 */
284 void EVENT_USB_Device_ControlRequest(void)
285 {
286 /* Ignore any requests that aren't directed to the DFU interface */
287 if ((USB_ControlRequest.bmRequestType & (CONTROL_REQTYPE_TYPE | CONTROL_REQTYPE_RECIPIENT)) !=
288 (REQTYPE_CLASS | REQREC_INTERFACE))
289 {
290 return;
291 }
292
293 stayinbootloader = true;
294
295 /* Activity - toggle indicator LEDs */
296 //LEDs_ToggleLEDs(LEDS_LED1 | LEDS_LED2);
297 PORTB &= ~_BV(PB0);
298 _delay_ms(5);
299 PORTB |= _BV(PB0);
300
301 /* Get the size of the command and data from the wLength value */
302 SentCommand.DataSize = USB_ControlRequest.wLength;
303
304 switch (USB_ControlRequest.bRequest)
305 {
306 case DFU_REQ_DNLOAD:
307 Endpoint_ClearSETUP();
308
309 /* Check if bootloader is waiting to terminate */
310 if (WaitForExit)
311 {
312 /* Bootloader is terminating - process last received command */
313 ProcessBootloaderCommand();
314
315 /* Indicate that the last command has now been processed - free to exit bootloader */
316 WaitForExit = false;
317 }
318
319 /* If the request has a data stage, load it into the command struct */
320 if (SentCommand.DataSize)
321 {
322 while (!(Endpoint_IsOUTReceived()))
323 {
324 if (USB_DeviceState == DEVICE_STATE_Unattached)
325 return;
326 }
327
328 /* First byte of the data stage is the DNLOAD request's command */
329 SentCommand.Command = Endpoint_Read_8();
330
331 /* One byte of the data stage is the command, so subtract it from the total data bytes */
332 SentCommand.DataSize--;
333
334 /* Load in the rest of the data stage as command parameters */
335 for (uint8_t DataByte = 0; (DataByte < sizeof(SentCommand.Data)) &&
336 Endpoint_BytesInEndpoint(); DataByte++)
337 {
338 SentCommand.Data[DataByte] = Endpoint_Read_8();
339 SentCommand.DataSize--;
340 }
341
342 /* Process the command */
343 ProcessBootloaderCommand();
344 }
345
346 /* Check if currently downloading firmware */
347 if (DFU_State == dfuDNLOAD_IDLE)
348 {
349 if (!(SentCommand.DataSize))
350 {
351 DFU_State = dfuIDLE;
352 }
353 else
354 {
355 /* Throw away the filler bytes before the start of the firmware */
356 DiscardFillerBytes(DFU_FILLER_BYTES_SIZE);
357
358 /* Throw away the packet alignment filler bytes before the start of the firmware */
359 DiscardFillerBytes(StartAddr % FIXED_CONTROL_ENDPOINT_SIZE);
360
361 /* Calculate the number of bytes remaining to be written */
362 uint16_t BytesRemaining = ((EndAddr - StartAddr) + 1);
363
364 if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x00)) // Write flash
365 {
366 /* Calculate the number of words to be written from the number of bytes to be written */
367 uint16_t WordsRemaining = (BytesRemaining >> 1);
368
369 union
370 {
371 uint16_t Words[2];
372 uint32_t Long;
373 } CurrFlashAddress = {.Words = {StartAddr, Flash64KBPage}};
374
375 uint32_t CurrFlashPageStartAddress = CurrFlashAddress.Long;
376 uint8_t WordsInFlashPage = 0;
377
378 while (WordsRemaining--)
379 {
380 /* Check if endpoint is empty - if so clear it and wait until ready for next packet */
381 if (!(Endpoint_BytesInEndpoint()))
382 {
383 Endpoint_ClearOUT();
384
385 while (!(Endpoint_IsOUTReceived()))
386 {
387 if (USB_DeviceState == DEVICE_STATE_Unattached)
388 return;
389 }
390 }
391
392 /* Write the next word into the current flash page */
393 BootloaderAPI_FillWord(CurrFlashAddress.Long, Endpoint_Read_16_LE());
394
395 /* Adjust counters */
396 WordsInFlashPage += 1;
397 CurrFlashAddress.Long += 2;
398
399 /* See if an entire page has been written to the flash page buffer */
400 if ((WordsInFlashPage == (SPM_PAGESIZE >> 1)) || !(WordsRemaining))
401 {
402 /* Commit the flash page to memory */
403 BootloaderAPI_WritePage(CurrFlashPageStartAddress);
404
405 /* Check if programming incomplete */
406 if (WordsRemaining)
407 {
408 CurrFlashPageStartAddress = CurrFlashAddress.Long;
409 WordsInFlashPage = 0;
410
411 /* Erase next page's temp buffer */
412 BootloaderAPI_ErasePage(CurrFlashAddress.Long);
413 }
414 }
415 }
416
417 /* Once programming complete, start address equals the end address */
418 StartAddr = EndAddr;
419 }
420 else // Write EEPROM
421 {
422 while (BytesRemaining--)
423 {
424 /* Check if endpoint is empty - if so clear it and wait until ready for next packet */
425 if (!(Endpoint_BytesInEndpoint()))
426 {
427 Endpoint_ClearOUT();
428
429 while (!(Endpoint_IsOUTReceived()))
430 {
431 if (USB_DeviceState == DEVICE_STATE_Unattached)
432 return;
433 }
434 }
435
436 /* Read the byte from the USB interface and write to to the EEPROM */
437 eeprom_update_byte((uint8_t*)StartAddr, Endpoint_Read_8());
438
439 /* Adjust counters */
440 StartAddr++;
441 }
442 }
443
444 /* Throw away the currently unused DFU file suffix */
445 DiscardFillerBytes(DFU_FILE_SUFFIX_SIZE);
446 }
447 }
448
449 Endpoint_ClearOUT();
450
451 Endpoint_ClearStatusStage();
452
453 break;
454 case DFU_REQ_UPLOAD:
455 Endpoint_ClearSETUP();
456
457 while (!(Endpoint_IsINReady()))
458 {
459 if (USB_DeviceState == DEVICE_STATE_Unattached)
460 return;
461 }
462
463 if (DFU_State != dfuUPLOAD_IDLE)
464 {
465 if ((DFU_State == dfuERROR) && IS_ONEBYTE_COMMAND(SentCommand.Data, 0x01)) // Blank Check
466 {
467 /* Blank checking is performed in the DFU_DNLOAD request - if we get here we've told the host
468 that the memory isn't blank, and the host is requesting the first non-blank address */
469 Endpoint_Write_16_LE(StartAddr);
470 }
471 else
472 {
473 /* Idle state upload - send response to last issued command */
474 Endpoint_Write_8(ResponseByte);
475 }
476 }
477 else
478 {
479 /* Determine the number of bytes remaining in the current block */
480 uint16_t BytesRemaining = ((EndAddr - StartAddr) + 1);
481
482 if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x00)) // Read FLASH
483 {
484 /* Calculate the number of words to be written from the number of bytes to be written */
485 uint16_t WordsRemaining = (BytesRemaining >> 1);
486
487 union
488 {
489 uint16_t Words[2];
490 uint32_t Long;
491 } CurrFlashAddress = {.Words = {StartAddr, Flash64KBPage}};
492
493 while (WordsRemaining--)
494 {
495 /* Check if endpoint is full - if so clear it and wait until ready for next packet */
496 if (Endpoint_BytesInEndpoint() == FIXED_CONTROL_ENDPOINT_SIZE)
497 {
498 Endpoint_ClearIN();
499
500 while (!(Endpoint_IsINReady()))
501 {
502 if (USB_DeviceState == DEVICE_STATE_Unattached)
503 return;
504 }
505 }
506
507 /* Read the flash word and send it via USB to the host */
508 #if (FLASHEND > 0xFFFF)
509 Endpoint_Write_16_LE(pgm_read_word_far(CurrFlashAddress.Long));
510 #else
511 Endpoint_Write_16_LE(pgm_read_word(CurrFlashAddress.Long));
512 #endif
513
514 /* Adjust counters */
515 CurrFlashAddress.Long += 2;
516 }
517
518 /* Once reading is complete, start address equals the end address */
519 StartAddr = EndAddr;
520 }
521 else if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x02)) // Read EEPROM
522 {
523 while (BytesRemaining--)
524 {
525 /* Check if endpoint is full - if so clear it and wait until ready for next packet */
526 if (Endpoint_BytesInEndpoint() == FIXED_CONTROL_ENDPOINT_SIZE)
527 {
528 Endpoint_ClearIN();
529
530 while (!(Endpoint_IsINReady()))
531 {
532 if (USB_DeviceState == DEVICE_STATE_Unattached)
533 return;
534 }
535 }
536
537 /* Read the EEPROM byte and send it via USB to the host */
538 Endpoint_Write_8(eeprom_read_byte((uint8_t*)StartAddr));
539
540 /* Adjust counters */
541 StartAddr++;
542 }
543 }
544
545 /* Return to idle state */
546 DFU_State = dfuIDLE;
547 }
548
549 Endpoint_ClearIN();
550
551 Endpoint_ClearStatusStage();
552 break;
553 case DFU_REQ_GETSTATUS:
554 Endpoint_ClearSETUP();
555
556 while (!(Endpoint_IsINReady()))
557 {
558 if (USB_DeviceState == DEVICE_STATE_Unattached)
559 return;
560 }
561
562 /* Write 8-bit status value */
563 Endpoint_Write_8(DFU_Status);
564
565 /* Write 24-bit poll timeout value */
566 Endpoint_Write_8(0);
567 Endpoint_Write_16_LE(0);
568
569 /* Write 8-bit state value */
570 Endpoint_Write_8(DFU_State);
571
572 /* Write 8-bit state string ID number */
573 Endpoint_Write_8(0);
574
575 Endpoint_ClearIN();
576
577 Endpoint_ClearStatusStage();
578 break;
579 case DFU_REQ_CLRSTATUS:
580 Endpoint_ClearSETUP();
581
582 /* Reset the status value variable to the default OK status */
583 DFU_Status = OK;
584
585 Endpoint_ClearStatusStage();
586 break;
587 case DFU_REQ_GETSTATE:
588 Endpoint_ClearSETUP();
589
590 while (!(Endpoint_IsINReady()))
591 {
592 if (USB_DeviceState == DEVICE_STATE_Unattached)
593 return;
594 }
595
596 /* Write the current device state to the endpoint */
597 Endpoint_Write_8(DFU_State);
598
599 Endpoint_ClearIN();
600
601 Endpoint_ClearStatusStage();
602 break;
603 case DFU_REQ_ABORT:
604 Endpoint_ClearSETUP();
605
606 /* Reset the current state variable to the default idle state */
607 DFU_State = dfuIDLE;
608
609 Endpoint_ClearStatusStage();
610 break;
611 }
612 }
613
614 /** Routine to discard the specified number of bytes from the control endpoint stream. This is used to
615 * discard unused bytes in the stream from the host, including the memory program block suffix.
616 *
617 * \param[in] NumberOfBytes Number of bytes to discard from the host from the control endpoint
618 */
619 static void DiscardFillerBytes(uint8_t NumberOfBytes)
620 {
621 while (NumberOfBytes--)
622 {
623 if (!(Endpoint_BytesInEndpoint()))
624 {
625 Endpoint_ClearOUT();
626
627 /* Wait until next data packet received */
628 while (!(Endpoint_IsOUTReceived()))
629 {
630 if (USB_DeviceState == DEVICE_STATE_Unattached)
631 return;
632 }
633 }
634 else
635 {
636 Endpoint_Discard_8();
637 }
638 }
639 }
640
641 /** Routine to process an issued command from the host, via a DFU_DNLOAD request wrapper. This routine ensures
642 * that the command is allowed based on the current secure mode flag value, and passes the command off to the
643 * appropriate handler function.
644 */
645 static void ProcessBootloaderCommand(void)
646 {
647 /* Check if device is in secure mode */
648 if (IsSecure)
649 {
650 /* Don't process command unless it is a READ or chip erase command */
651 if (!(((SentCommand.Command == COMMAND_WRITE) &&
652 IS_TWOBYTE_COMMAND(SentCommand.Data, 0x00, 0xFF)) ||
653 (SentCommand.Command == COMMAND_READ)))
654 {
655 /* Set the state and status variables to indicate the error */
656 DFU_State = dfuERROR;
657 DFU_Status = errWRITE;
658
659 /* Stall command */
660 Endpoint_StallTransaction();
661
662 /* Don't process the command */
663 return;
664 }
665 }
666
667 /* Dispatch the required command processing routine based on the command type */
668 switch (SentCommand.Command)
669 {
670 case COMMAND_PROG_START:
671 ProcessMemProgCommand();
672 break;
673 case COMMAND_DISP_DATA:
674 ProcessMemReadCommand();
675 break;
676 case COMMAND_WRITE:
677 ProcessWriteCommand();
678 break;
679 case COMMAND_READ:
680 ProcessReadCommand();
681 break;
682 case COMMAND_CHANGE_BASE_ADDR:
683 if (IS_TWOBYTE_COMMAND(SentCommand.Data, 0x03, 0x00)) // Set 64KB flash page command
684 Flash64KBPage = SentCommand.Data[2];
685
686 break;
687 }
688 }
689
690 /** Routine to concatenate the given pair of 16-bit memory start and end addresses from the host, and store them
691 * in the StartAddr and EndAddr global variables.
692 */
693 static void LoadStartEndAddresses(void)
694 {
695 union
696 {
697 uint8_t Bytes[2];
698 uint16_t Word;
699 } Address[2] = {{.Bytes = {SentCommand.Data[2], SentCommand.Data[1]}},
700 {.Bytes = {SentCommand.Data[4], SentCommand.Data[3]}}};
701
702 /* Load in the start and ending read addresses from the sent data packet */
703 StartAddr = Address[0].Word;
704 EndAddr = Address[1].Word;
705 }
706
707 /** Handler for a Memory Program command issued by the host. This routine handles the preparations needed
708 * to write subsequent data from the host into the specified memory.
709 */
710 static void ProcessMemProgCommand(void)
711 {
712 if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x00) || // Write FLASH command
713 IS_ONEBYTE_COMMAND(SentCommand.Data, 0x01)) // Write EEPROM command
714 {
715 /* Load in the start and ending read addresses */
716 LoadStartEndAddresses();
717
718 /* If FLASH is being written to, we need to pre-erase the first page to write to */
719 if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x00))
720 {
721 union
722 {
723 uint16_t Words[2];
724 uint32_t Long;
725 } CurrFlashAddress = {.Words = {StartAddr, Flash64KBPage}};
726
727 /* Erase the current page's temp buffer */
728 BootloaderAPI_ErasePage(CurrFlashAddress.Long);
729 }
730
731 /* Set the state so that the next DNLOAD requests reads in the firmware */
732 DFU_State = dfuDNLOAD_IDLE;
733 }
734 }
735
736 /** Handler for a Memory Read command issued by the host. This routine handles the preparations needed
737 * to read subsequent data from the specified memory out to the host, as well as implementing the memory
738 * blank check command.
739 */
740 static void ProcessMemReadCommand(void)
741 {
742 if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x00) || // Read FLASH command
743 IS_ONEBYTE_COMMAND(SentCommand.Data, 0x02)) // Read EEPROM command
744 {
745 /* Load in the start and ending read addresses */
746 LoadStartEndAddresses();
747
748 /* Set the state so that the next UPLOAD requests read out the firmware */
749 DFU_State = dfuUPLOAD_IDLE;
750 }
751 else if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x01)) // Blank check FLASH command
752 {
753 uint32_t CurrFlashAddress = 0;
754
755 while (CurrFlashAddress < (uint32_t)BOOT_START_ADDR)
756 {
757 /* Check if the current byte is not blank */
758 #if (FLASHEND > 0xFFFF)
759 if (pgm_read_byte_far(CurrFlashAddress) != 0xFF)
760 #else
761 if (pgm_read_byte(CurrFlashAddress) != 0xFF)
762 #endif
763 {
764 /* Save the location of the first non-blank byte for response back to the host */
765 Flash64KBPage = (CurrFlashAddress >> 16);
766 StartAddr = CurrFlashAddress;
767
768 /* Set state and status variables to the appropriate error values */
769 DFU_State = dfuERROR;
770 DFU_Status = errCHECK_ERASED;
771
772 break;
773 }
774
775 CurrFlashAddress++;
776 }
777 }
778 }
779
780 /** Handler for a Data Write command issued by the host. This routine handles non-programming commands such as
781 * bootloader exit (both via software jumps and hardware watchdog resets) and flash memory erasure.
782 */
783 static void ProcessWriteCommand(void)
784 {
785 if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x03)) // Start application
786 {
787 /* Indicate that the bootloader is terminating */
788 WaitForExit = true;
789
790 /* Check if data supplied for the Start Program command - no data executes the program */
791 if (SentCommand.DataSize)
792 {
793 if (SentCommand.Data[1] == 0x01) // Start via jump
794 {
795 union
796 {
797 uint8_t Bytes[2];
798 AppPtr_t FuncPtr;
799 } Address = {.Bytes = {SentCommand.Data[4], SentCommand.Data[3]}};
800
801 /* Load in the jump address into the application start address pointer */
802 AppStartPtr = Address.FuncPtr;
803 }
804 }
805 else
806 {
807 if (SentCommand.Data[1] == 0x00) // Start via watchdog
808 {
809 /* Unlock the forced application start mode of the bootloader if it is restarted */
810 MagicBootKey = MAGIC_BOOT_KEY;
811
812 /* Start the watchdog to reset the AVR once the communications are finalized */
813 wdt_enable(WDTO_250MS);
814 }
815 else // Start via jump
816 {
817 /* Set the flag to terminate the bootloader at next opportunity if a valid application has been loaded */
818 if (pgm_read_word_near(0) == 0xFFFF)
819 RunBootloader = false;
820 }
821 }
822 }
823 else if (IS_TWOBYTE_COMMAND(SentCommand.Data, 0x00, 0xFF)) // Erase flash
824 {
825 /* Clear the application section of flash */
826 for (uint32_t CurrFlashAddress = 0; CurrFlashAddress < (uint32_t)BOOT_START_ADDR; CurrFlashAddress += SPM_PAGESIZE)
827 BootloaderAPI_ErasePage(CurrFlashAddress);
828
829 /* Memory has been erased, reset the security bit so that programming/reading is allowed */
830 IsSecure = false;
831 }
832 }
833
834 /** Handler for a Data Read command issued by the host. This routine handles bootloader information retrieval
835 * commands such as device signature and bootloader version retrieval.
836 */
837 static void ProcessReadCommand(void)
838 {
839 const uint8_t BootloaderInfo[3] = {BOOTLOADER_VERSION, BOOTLOADER_ID_BYTE1, BOOTLOADER_ID_BYTE2};
840 const uint8_t SignatureInfo[4] = {0x58, AVR_SIGNATURE_1, AVR_SIGNATURE_2, AVR_SIGNATURE_3};
841
842 uint8_t DataIndexToRead = SentCommand.Data[1];
843 bool ReadAddressInvalid = false;
844
845 if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x00)) // Read bootloader info
846 {
847 if (DataIndexToRead < 3)
848 ResponseByte = BootloaderInfo[DataIndexToRead];
849 else
850 ReadAddressInvalid = true;
851 }
852 else if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x01)) // Read signature byte
853 {
854 switch (DataIndexToRead)
855 {
856 case 0x30:
857 ResponseByte = SignatureInfo[0];
858 break;
859 case 0x31:
860 ResponseByte = SignatureInfo[1];
861 break;
862 case 0x60:
863 ResponseByte = SignatureInfo[2];
864 break;
865 case 0x61:
866 ResponseByte = SignatureInfo[3];
867 break;
868 default:
869 ReadAddressInvalid = true;
870 break;
871 }
872 }
873
874 if (ReadAddressInvalid)
875 {
876 /* Set the state and status variables to indicate the error */
877 DFU_State = dfuERROR;
878 DFU_Status = errADDRESS;
879 }
880 }