X-Git-Url: http://git.linex4red.de/pub/USBaspLoader.git/blobdiff_plain/2ca9a19cd19c152ec45d920994a4c64c94d4b3f5..d7ac76b34c7ead103afb231d705976faa5c4beae:/firmware/bootloaderconfig.h?ds=sidebyside diff --git a/firmware/bootloaderconfig.h b/firmware/bootloaderconfig.h index a54adab..f469f8d 100644 --- a/firmware/bootloaderconfig.h +++ b/firmware/bootloaderconfig.h @@ -3,15 +3,15 @@ * Author: Christian Starkjohann * Author: Stephan Baerwolf * Creation Date: 2007-12-08 - * Modification Date: 2012-11-10 + * Modification Date: 2013-03-31 * Tabsize: 4 * Copyright: (c) 2007 by OBJECTIVE DEVELOPMENT Software GmbH * License: GNU GPL v2 (see License.txt) - * This Revision: $Id: bootloaderconfig.h 729 2009-03-20 09:03:58Z cs $ */ #ifndef __bootloaderconfig_h_included__ #define __bootloaderconfig_h_included__ +#include /* General Description: @@ -56,14 +56,28 @@ these macros are defined, the boot loader usees them. /* This is the port where the USB bus is connected. When you configure it to * "B", the registers PORTB, PINB and DDRB will be used. */ +#ifndef USB_CFG_INTPORT_BIT + #if (defined(__AVR_ATmega640__) || defined(__AVR_ATmega1280__) || defined(__AVR_ATmega1281__) || defined(__AVR_ATmega2560__) || defined(__AVR_ATmega2561__)) + #define USB_CFG_INTPORT_BIT 0 + #else + #define USB_CFG_INTPORT_BIT 2 + #endif +#endif +/* Not all devices have their INT0 on PD2. + * Since "INT0" and "USB_CFG_DPLUS_BIT" should get the same signals, + * map them to be ideally the same: + * So abstract "USB_CFG_DPLUS_BIT" to this one here. + */ + #ifndef USB_CFG_DMINUS_BIT - #define USB_CFG_DMINUS_BIT 6 /* old value was 4 */ + /* This is Revision 3 and later (where PD6 and PD7 were swapped */ + #define USB_CFG_DMINUS_BIT 7 /* Rev.2 and previous was 6 */ #endif /* This is the bit number in USB_CFG_IOPORT where the USB D- line is connected. * This may be any bit in the port. */ #ifndef USB_CFG_DPLUS_BIT - #define USB_CFG_DPLUS_BIT 2 + #define USB_CFG_DPLUS_BIT USB_CFG_INTPORT_BIT #endif /* This is the bit number in USB_CFG_IOPORT where the USB D+ line is connected. * This may be any bit in the port. Please note that D+ must also be connected @@ -76,7 +90,8 @@ these macros are defined, the boot loader usees them. * jumper is connected to this port */ #ifndef JUMPER_BIT - #define JUMPER_BIT 7 /* old value was 0 */ + /* This is Revision 3 and later (where PD6 and PD7 were swapped */ + #define JUMPER_BIT 6 /* Rev.2 and previous was 7 */ #endif /* * jumper is connected to this bit in port "JUMPER_PORT", active low @@ -143,35 +158,106 @@ these macros are defined, the boot loader usees them. * feature. */ -#define HAVE_EEPROM_PAGED_ACCESS 1 +#define HAVE_SPMINTEREFACE_NORETMAGIC 1 +/* + * If sth. went wrong within "bootloader__do_spm" and this macro is ACTIVATED, + * then "bootloader__do_spm" will not return the call and loop infinity instead. + * + * This feature prevents old updaters to do sth. undefined on wrong magic. + */ + +/* all boards should use a magic to make it safe to confuse updatefiles :-) */ +#define HAVE_SPMINTEREFACE_MAGICVALUE 0 +/* If this feature is enabled (value != 0), the configured 32bit value is + * used as a magic value within spminterface. "bootloader__do_spm" will check + * additional four (4) registers for this value and only proceed, if they contain + * the right value. With this feature you can identify your board and avoid + * updating the wrong bootloader to the wrong board! + * + * Not all values are possible - "SPMINTEREFACE_MAGICVALUE" must be very sparse! + * To avoid collisions, magic-values will be organized centrally by Stephan + * Following values are definitly blocked or reserved and must not be used: + * 0x00000000, 0x12345678, + * 0x00a500a5, 0x00a5a500, 0xa50000a5, 0xa500a500, + * 0x005a005a, 0x005a5a00, 0x5a00005a, 0x5a005a00, + * 0x5aa55aa5, 0x5aa5a55a, 0xa55a5aa5, 0xa55aa55a, + * 0x5a5a5a5a, 0xa5a5a5a5, + * 0xffa5ffa5, 0xffa5a5ff, 0xa5ffffa5, 0xa5ffa5ff, + * 0xff5aff5a, 0xff5a5aff, 0x5affff5a, 0x5aff5aff, + * 0x00ff00ff, 0x00ffff00, 0xff0000ff, 0xff00ff00, + * 0xffffffff + * + * To request your own magic, please send at least following information + * about yourself and your board together within an informal request to: + * stephan@matrixstorm.com / matrixstorm@gmx.de / stephan.baerwolf@tu-ilmenau.de + * - your name + * - your e-mail + * - your project (maybe an url?) + * - your type of MCU used + * --> your used "BOOTLOADER_ADDRESS" (since same magics can be reused for different "BOOTLOADER_ADDRESS") + * + * There may be no garanty for it, but Stephan will then send you an + * response with a "SPMINTEREFACE_MAGICVALUE" just for your board/project... + * WITH REQUESTING A MAGIC YOU AGREE TO PUBLISHED YOUR DATA SEND WITHIN THE REQUEST + */ + +#ifndef CONFIG_NO__EEPROM_PAGED_ACCESS +# define HAVE_EEPROM_PAGED_ACCESS 1 +#else +# define HAVE_EEPROM_PAGED_ACCESS 0 +#endif /* If HAVE_EEPROM_PAGED_ACCESS is defined to 1, page mode access to EEPROM is * compiled in. Whether page mode or byte mode access is used by AVRDUDE * depends on the target device. Page mode is only used if the device supports * it, e.g. for the ATMega88, 168 etc. You can save quite a bit of memory by * disabling page mode EEPROM access. Costs ~ 138 bytes. */ -#define HAVE_EEPROM_BYTE_ACCESS 1 + +#ifndef CONFIG_NO__EEPROM_BYTE_ACCESS +# define HAVE_EEPROM_BYTE_ACCESS 1 +#else +# define HAVE_EEPROM_BYTE_ACCESS 0 +#endif /* If HAVE_EEPROM_BYTE_ACCESS is defined to 1, byte mode access to EEPROM is * compiled in. Byte mode is only used if the device (as identified by its * signature) does not support page mode for EEPROM. It is required for * accessing the EEPROM on the ATMega8. Costs ~54 bytes. */ + #ifndef CONFIG_NO__BOOTLOADER_CAN_EXIT - #define BOOTLOADER_CAN_EXIT 1 +# define BOOTLOADER_CAN_EXIT 1 #else - #define BOOTLOADER_CAN_EXIT 0 +# define BOOTLOADER_CAN_EXIT 0 #endif /* If this macro is defined to 1, the boot loader will exit shortly after the * programmer closes the connection to the device. Costs extra bytes. */ -#define HAVE_CHIP_ERASE 0 + +#ifndef CONFIG_NO__CHIP_ERASE +# define HAVE_CHIP_ERASE 1 +#else +# define HAVE_CHIP_ERASE 0 +#endif /* If this macro is defined to 1, the boot loader implements the Chip Erase * ISP command. Otherwise pages are erased on demand before they are written. */ +#ifndef CONFIG_NO__ONDEMAND_PAGEERASE +# define HAVE_ONDEMAND_PAGEERASE 1 +#else +# define HAVE_ONDEMAND_PAGEERASE 0 +#endif +/* Even if "HAVE_CHIP_ERASE" is avtivated - enabling the "HAVE_ONDEMAND_PAGEERASE"- + * feature the bootloader will erase pages on demand short before writing new data + * to it. + * If pages are not erase before reprogram (for example because user call avrdude -D) + * then data may become inconsistent since writing only allow to unset bits in the flash. + * This feature may prevent this... + */ + #ifndef CONFIG_NO__NEED_WATCHDOG - #define NEED_WATCHDOG 1 +# define NEED_WATCHDOG 1 #else - #define NEED_WATCHDOG 0 +# define NEED_WATCHDOG 0 #endif /* ATTANTION: This macro MUST BE 1, if the MCU has reset enabled watchdog (WDTON is 0). * If this macro is defined to 1, the bootloader implements an additional "wdt_disable()" @@ -179,6 +265,106 @@ these macros are defined, the boot loader usees them. * If the used MCU is fused not to enable watchdog after reset (WDTON is 1 - safty level 1) * then "NEED_WATCHDOG" may be deactivated in order to save some memory. */ + +#ifndef CONFIG_NO__PRECISESLEEP +# define HAVE_UNPRECISEWAIT 0 +#else +# define HAVE_UNPRECISEWAIT 1 +#endif +/* This macro enables hand-optimized assembler code + * instead to use _sleep_ms for delaying USB enumeration. + * Because normally these timings do not need to be exact, + * the optimized assembler code does not need to be precise. + * Therefore it is very small, which saves some PROGMEM bytes! + */ + +#ifndef CONFIG_NO__FLASH_BYTE_READACCESS +# define HAVE_FLASH_BYTE_READACCESS 1 +#else +# define HAVE_FLASH_BYTE_READACCESS 0 +#endif +/* If HAVE_FLASH_BYTE_READACCESS is defined to 1, byte mode access to FLASH is + * compiled in. Byte mode sometimes might be used by some programming softwares + * (avrdude in terminal mode). Without this feature the device would return "0" + * instead the right content of the flash memory. + */ + +#ifdef CONFIG_USE__EXCESSIVE_ASSEMBLER +# define USE_EXCESSIVE_ASSEMBLER 1 +#else +# define USE_EXCESSIVE_ASSEMBLER 0 +#endif +/* This macro enables large codeareas of hand-optimized assembler code. + * WARNING: + * It will only work properly on devices with <64k of flash memory and SRAM. + * Some configuration macros (when changed) may not be applied correctly + * (since their behaviour is raced within asm)! + * Nevertheless this feature saves lots of memory. + */ + +#ifdef CONFIG_USE__BOOTUP_CLEARRAM +# define USE_BOOTUP_CLEARRAM 1 +#else +# define USE_BOOTUP_CLEARRAM 0 +#endif +/* This macro enables some (init3) code, executed at bootup. + * This codefragment will safely overwrite the whole SRAM with "0" + * (except registers and IO), since RESET will NOT clear old RAM content. + */ + +#ifdef CONFIG_NO__BOOTLOADERENTRY_FROMSOFTWARE +# define HAVE_BOOTLOADERENTRY_FROMSOFTWARE 0 +#else +# define HAVE_BOOTLOADERENTRY_FROMSOFTWARE 1 +#endif +/* + * Enable firmware to boot the bootloader without + * user intervention + */ + +#ifdef CONFIG_NO__BOOTLOADER_HIDDENEXITCOMMAND +# define HAVE_BOOTLOADER_HIDDENEXITCOMMAND 0 +#else +# define HAVE_BOOTLOADER_HIDDENEXITCOMMAND 0xff +#endif +/* + * When enabling "BOOTLOADER_HIDDENEXITCOMMAND", then + * sending the RAW-ISP command "0xff 0xXX 0xXX 0xXX" + * will cause the bootloader to start the firmware + * as soon as the programming software disconnects. + */ + +#ifndef BOOTLOADER_LOOPCYCLES_TIMEOUT +# define BOOTLOADER_LOOPCYCLES_TIMEOUT 0 +#endif +/* + * When greater than "0", "BOOTLOADER_LOOPCYCLES_TIMEOUT" + * defines how many 16bit loopcycles can be cycled, + * before bootloader times out and starts user + * firmware. + * Of course "BOOTLOADER_CAN_EXIT" must be enabled. + * If value is even too small, bootloader will not + * exit as long as bootLoaderConditionSimple stays on. + */ + +#ifdef CONFIG_HAVE__BOOTLOADER_ABORTTIMEOUTONACT +#endif +/* + * When defined, the bootloader will abort the timeout when + * it sees some activity (bootLoaderConditionSimple() or + * programming). + * After aborting timeout, the bootloader falls back to + * conventional exitting. + */ + +#ifdef CONFIG_HAVE__BOOTLOADER_ALWAYSENTERPROGRAMMODE +#endif +/* + * Ignore bootLoaderCondition() (BUT NOT bootLoaderConditionSimple()) + * and always enter the program-mode. + * This is helpful to emulate behaviour of Arduino bootloaders + */ + //#define SIGNATURE_BYTES 0x1e, 0x93, 0x07, 0 /* ATMega8 */ /* This macro defines the signature bytes returned by the emulated USBasp to * the programmer software. They should match the actual device at least in @@ -203,6 +389,10 @@ these macros are defined, the boot loader usees them. # define MCUCSR MCUSR #endif +/* WARNING: + * following commands and macros may not be evaluated properly when 'USE_EXCESSIVE_ASSEMBLER" + */ + static inline void bootLoaderInit(void) { PIN_DDR(JUMPER_PORT) = 0; @@ -211,18 +401,57 @@ static inline void bootLoaderInit(void) // deactivated by Stephan - reset after each avrdude op is annoing! // if(!(MCUCSR & (1 << EXTRF))) /* If this was not an external reset, ignore */ // leaveBootloader(); - - MCUCSR = 0; /* clear all reset flags for next time */ } -#if BOOTLOADER_CAN_EXIT static inline void bootLoaderExit(void) { PIN_PORT(JUMPER_PORT) = 0; /* undo bootLoaderInit() changes */ } -#endif -#define bootLoaderCondition() ((PIN_PIN(JUMPER_PORT) & (1 << PIN(JUMPER_PORT, JUMPER_BIT))) == 0) + +#define bootLoaderConditionSimple() ((PIN_PIN(JUMPER_PORT) & (1 << PIN(JUMPER_PORT, JUMPER_BIT))) == 0) + +#if (HAVE_BOOTLOADERENTRY_FROMSOFTWARE) +/* + * How it works: The idea + * + * During normal C initialization, the stackpointer (SP) always is pointed to + * SRAMs end, where it grows towards RAMSTART. + * + * Check if last possible pushed address in stack is bootloaders address. + * Store investigation result into "__BOOTLOADERENTRY_FROMSOFTWARE__bootup_RAMEND_doesmatch" + * Result will be "0xff" in case of mismatch. + */ + +#include +#include + +#define __BOOTLOADERENTRY_FROMSOFTWARE__EXPECTEDADDRESS (BOOTLOADER_ADDRESS>>1) +static volatile uint8_t __BOOTLOADERENTRY_FROMSOFTWARE__bootup_RAMEND_doesmatch __attribute__ ((section(".noinit"))); +static volatile uint8_t __BOOTLOADERENTRY_FROMSOFTWARE__bootup_MCUCSR __attribute__ ((section(".noinit"))); + +# ifdef CONFIG_HAVE__BOOTLOADER_ALWAYSENTERPROGRAMMODE +# define bootLoaderCondition() (true) +# else +static inline bool bootLoaderCondition(void) +{ + if (__BOOTLOADERENTRY_FROMSOFTWARE__bootup_MCUCSR & (~(_BV(WDRF)))) { + } else { + if (__BOOTLOADERENTRY_FROMSOFTWARE__bootup_RAMEND_doesmatch == (__BOOTLOADERENTRY_FROMSOFTWARE__EXPECTEDADDRESS & 0xff)) { + // anything else: match - the firmware is calling the bootloader + return true; + } + } + return bootLoaderConditionSimple(); +} +# endif +#else +# ifdef CONFIG_HAVE__BOOTLOADER_ALWAYSENTERPROGRAMMODE +# define bootLoaderCondition() (true) +# else +# define bootLoaderCondition bootLoaderConditionSimple +# endif +#endif #endif /* __ASSEMBLER__ */