X-Git-Url: http://git.linex4red.de/pub/USBasp.git/blobdiff_plain/68c317c4e9b54843fdafa5b0ab1eb19e8ffc37c3..3642ea0b9715cdf0196b10c9fc97898940eaefa6:/Bootloaders/MassStorage/Lib/VirtualFAT.c?ds=sidebyside diff --git a/Bootloaders/MassStorage/Lib/VirtualFAT.c b/Bootloaders/MassStorage/Lib/VirtualFAT.c index 024c4a6f0..63d4ea0f6 100644 --- a/Bootloaders/MassStorage/Lib/VirtualFAT.c +++ b/Bootloaders/MassStorage/Lib/VirtualFAT.c @@ -1,13 +1,13 @@ /* LUFA Library - Copyright (C) Dean Camera, 2013. + Copyright (C) Dean Camera, 2015. dean [at] fourwalledcubicle [dot] com www.lufa-lib.org */ /* - Copyright 2013 Dean Camera (dean [at] fourwalledcubicle [dot] com) + Copyright 2015 Dean Camera (dean [at] fourwalledcubicle [dot] com) Permission to use, copy, modify, distribute, and sell this software and its documentation for any purpose is hereby granted @@ -72,40 +72,168 @@ static const FATBootBlock_t BootBlock = }; /** FAT 8.3 style directory entry, for the virtual FLASH contents file. */ -static FATDirectoryEntry_t FirmwareFileEntries[2] = +static FATDirectoryEntry_t FirmwareFileEntries[] = { /* Root volume label entry; disk label is contained in the Filename and - * Extension fields (concantenated) with a special attribute flag - other + * Extension fields (concatenated) with a special attribute flag - other * fields are ignored. Should be the same as the label in the boot block. */ + [DISK_FILE_ENTRY_VolumeID] = { - .Filename = "LUFA BOO", - .Extension = "T ", - .Attributes = (1 << 3), - .Reserved = {0}, - .CreationTime = 0, - .CreationDate = 0, - .StartingCluster = 0, - .FileSizeBytes = 0, + .MSDOS_Directory = + { + .Name = "LUFA BOOT ", + .Attributes = FAT_FLAG_VOLUME_NAME, + .Reserved = {0}, + .CreationTime = 0, + .CreationDate = 0, + .StartingCluster = 0, + .Reserved2 = 0, + } }, - /* File entry for the virtual Firmware image. */ + /* VFAT Long File Name entry for the virtual firmware file; required to + * prevent corruption from systems that are unable to detect the device + * as being a legacy MSDOS style FAT12 volume. */ + [DISK_FILE_ENTRY_FLASH_LFN] = { - .Filename = "FIRMWARE", - .Extension = "BIN", - .Attributes = 0, - .Reserved = {0}, - .CreationTime = FAT_TIME(1, 1, 0), - .CreationDate = FAT_DATE(14, 2, 1989), - .StartingCluster = 2, - .FileSizeBytes = FIRMWARE_FILE_SIZE_BYTES, + .VFAT_LongFileName = + { + .Ordinal = 1 | FAT_ORDINAL_LAST_ENTRY, + .Attribute = FAT_FLAG_LONG_FILE_NAME, + .Reserved1 = 0, + .Reserved2 = 0, + + .Checksum = FAT_CHECKSUM('F','L','A','S','H',' ',' ',' ','B','I','N'), + + .Unicode1 = 'F', + .Unicode2 = 'L', + .Unicode3 = 'A', + .Unicode4 = 'S', + .Unicode5 = 'H', + .Unicode6 = '.', + .Unicode7 = 'B', + .Unicode8 = 'I', + .Unicode9 = 'N', + .Unicode10 = 0, + .Unicode11 = 0, + .Unicode12 = 0, + .Unicode13 = 0, + } + }, + + /* MSDOS file entry for the virtual Firmware image. */ + [DISK_FILE_ENTRY_FLASH_MSDOS] = + { + .MSDOS_File = + { + .Filename = "FLASH ", + .Extension = "BIN", + .Attributes = 0, + .Reserved = {0}, + .CreationTime = FAT_TIME(1, 1, 0), + .CreationDate = FAT_DATE(14, 2, 1989), + .StartingCluster = 2, + .FileSizeBytes = FLASH_FILE_SIZE_BYTES, + } + }, + + [DISK_FILE_ENTRY_EEPROM_LFN] = + { + .VFAT_LongFileName = + { + .Ordinal = 1 | FAT_ORDINAL_LAST_ENTRY, + .Attribute = FAT_FLAG_LONG_FILE_NAME, + .Reserved1 = 0, + .Reserved2 = 0, + + .Checksum = FAT_CHECKSUM('E','E','P','R','O','M',' ',' ','B','I','N'), + + .Unicode1 = 'E', + .Unicode2 = 'E', + .Unicode3 = 'P', + .Unicode4 = 'R', + .Unicode5 = 'O', + .Unicode6 = 'M', + .Unicode7 = '.', + .Unicode8 = 'B', + .Unicode9 = 'I', + .Unicode10 = 'N', + .Unicode11 = 0, + .Unicode12 = 0, + .Unicode13 = 0, + } + }, + + [DISK_FILE_ENTRY_EEPROM_MSDOS] = + { + .MSDOS_File = + { + .Filename = "EEPROM ", + .Extension = "BIN", + .Attributes = 0, + .Reserved = {0}, + .CreationTime = FAT_TIME(1, 1, 0), + .CreationDate = FAT_DATE(14, 2, 1989), + .StartingCluster = 2 + FILE_CLUSTERS(FLASH_FILE_SIZE_BYTES), + .FileSizeBytes = EEPROM_FILE_SIZE_BYTES, + } }, }; +/** Starting cluster of the virtual FLASH.BIN file on disk, tracked so that the + * offset from the start of the data sector can be determined. On Windows + * systems files are usually replaced using the original file's disk clusters, + * while Linux appears to overwrite with an offset which must be compensated for. + */ +static const uint16_t* FLASHFileStartCluster = &FirmwareFileEntries[DISK_FILE_ENTRY_FLASH_MSDOS].MSDOS_File.StartingCluster; + +/** Starting cluster of the virtual EEPROM.BIN file on disk, tracked so that the + * offset from the start of the data sector can be determined. On Windows + * systems files are usually replaced using the original file's disk clusters, + * while Linux appears to overwrite with an offset which must be compensated for. + */ +static const uint16_t* EEPROMFileStartCluster = &FirmwareFileEntries[DISK_FILE_ENTRY_EEPROM_MSDOS].MSDOS_File.StartingCluster; + +/** Reads a byte of EEPROM out from the EEPROM memory space. + * + * \note This function is required as the avr-libc EEPROM functions do not cope + * with linker relaxations, and a jump longer than 4K of FLASH on the + * larger USB AVRs will break the linker. This function is marked as + * never inlinable and placed into the normal text segment so that the + * call to the EEPROM function will be short even if the AUX boot section + * is used. + * + * \param[in] Address Address of the EEPROM location to read from + * + * \return Read byte of EEPROM data. + */ +static uint8_t ReadEEPROMByte(const uint8_t* const Address) +{ + return eeprom_read_byte(Address); +} + +/** Writes a byte of EEPROM out to the EEPROM memory space. + * + * \note This function is required as the avr-libc EEPROM functions do not cope + * with linker relaxations, and a jump longer than 4K of FLASH on the + * larger USB AVRs will break the linker. This function is marked as + * never inlinable and placed into the normal text segment so that the + * call to the EEPROM function will be short even if the AUX boot section + * is used. + * + * \param[in] Address Address of the EEPROM location to write to + * \param[in] Data New data to write to the EEPROM location + */ +static void WriteEEPROMByte(uint8_t* const Address, + const uint8_t Data) +{ + eeprom_update_byte(Address, Data); +} /** Updates a FAT12 cluster entry in the FAT file table with the specified next * chain index. If the cluster is the last in the file chain, the magic value - * 0xFFF is used. + * \c 0xFFF should be used. * * \note FAT data cluster indexes are offset by 2, so that cluster 2 is the * first file data cluster on the disk. See the FAT specification. @@ -136,94 +264,214 @@ static void UpdateFAT12ClusterEntry(uint8_t* const FATTable, } } -/** Writes a block of data to the virtual FAT filesystem, from the USB Mass - * Storage interface. +/** Updates a FAT12 cluster chain in the FAT file table with a linear chain of + * the specified length. * - * \param[in] BlockNumber Index of the block to write. + * \note FAT data cluster indexes are offset by 2, so that cluster 2 is the + * first file data cluster on the disk. See the FAT specification. + * + * \param[out] FATTable Pointer to the FAT12 allocation table + * \param[in] Index Index of the start of the cluster chain to update + * \param[in] ChainLength Length of the chain to write, in clusters */ -static void WriteVirtualBlock(const uint16_t BlockNumber) +static void UpdateFAT12ClusterChain(uint8_t* const FATTable, + const uint16_t Index, + const uint8_t ChainLength) { - uint8_t BlockBuffer[SECTOR_SIZE_BYTES]; + for (uint8_t i = 0; i < ChainLength; i++) + { + uint16_t CurrentCluster = Index + i; + uint16_t NextCluster = CurrentCluster + 1; - /* Buffer the entire block to be written from the host */ - Endpoint_Read_Stream_LE(BlockBuffer, sizeof(BlockBuffer), NULL); - Endpoint_ClearOUT(); + /* Mark last cluster as end of file */ + if (i == (ChainLength - 1)) + NextCluster = 0xFFF; - if ((BlockNumber >= 4) && (BlockNumber < (4 + FILE_SECTORS(FIRMWARE_FILE_SIZE_BYTES)))) - { - uint32_t WriteFlashAddress = (uint32_t)(BlockNumber - 4) * SECTOR_SIZE_BYTES; + UpdateFAT12ClusterEntry(FATTable, CurrentCluster, NextCluster); + } +} +/** Reads or writes a block of data from/to the physical device FLASH using a + * block buffer stored in RAM, if the requested block is within the virtual + * firmware file's sector ranges in the emulated FAT file system. + * + * \param[in] BlockNumber Physical disk block to read from/write to + * \param[in,out] BlockBuffer Pointer to the start of the block buffer in RAM + * \param[in] Read If \c true, the requested block is read, if + * \c false, the requested block is written + */ +static void ReadWriteFLASHFileBlock(const uint16_t BlockNumber, + uint8_t* BlockBuffer, + const bool Read) +{ + uint16_t FileStartBlock = DISK_BLOCK_DataStartBlock + (*FLASHFileStartCluster - 2) * SECTOR_PER_CLUSTER; + uint16_t FileEndBlock = FileStartBlock + (FILE_SECTORS(FLASH_FILE_SIZE_BYTES) - 1); + + /* Range check the write request - abort if requested block is not within the + * virtual firmware file sector range */ + if (!((BlockNumber >= FileStartBlock) && (BlockNumber <= FileEndBlock))) + return; + + #if (FLASHEND > 0xFFFF) + uint32_t FlashAddress = (uint32_t)(BlockNumber - FileStartBlock) * SECTOR_SIZE_BYTES; + #else + uint16_t FlashAddress = (uint16_t)(BlockNumber - FileStartBlock) * SECTOR_SIZE_BYTES; + #endif + + if (Read) + { + /* Read out the mapped block of data from the device's FLASH */ + for (uint16_t i = 0; i < SECTOR_SIZE_BYTES; i++) + { + #if (FLASHEND > 0xFFFF) + BlockBuffer[i] = pgm_read_byte_far(FlashAddress++); + #else + BlockBuffer[i] = pgm_read_byte(FlashAddress++); + #endif + } + } + else + { + /* Write out the mapped block of data to the device's FLASH */ for (uint16_t i = 0; i < SECTOR_SIZE_BYTES; i += 2) { - if ((WriteFlashAddress % SPM_PAGESIZE) == 0) + if ((FlashAddress % SPM_PAGESIZE) == 0) { /* Erase the given FLASH page, ready to be programmed */ - boot_page_erase(WriteFlashAddress); - boot_spm_busy_wait(); + BootloaderAPI_ErasePage(FlashAddress); } /* Write the next data word to the FLASH page */ - boot_page_fill(WriteFlashAddress, (BlockBuffer[i + 1] << 8) | BlockBuffer[i]); - WriteFlashAddress += 2; + BootloaderAPI_FillWord(FlashAddress, (BlockBuffer[i + 1] << 8) | BlockBuffer[i]); + FlashAddress += 2; - if ((WriteFlashAddress % SPM_PAGESIZE) == 0) + if ((FlashAddress % SPM_PAGESIZE) == 0) { /* Write the filled FLASH page to memory */ - boot_page_write(WriteFlashAddress - SPM_PAGESIZE); - boot_spm_busy_wait(); + BootloaderAPI_WritePage(FlashAddress - SPM_PAGESIZE); } } } } +/** Reads or writes a block of data from/to the physical device EEPROM using a + * block buffer stored in RAM, if the requested block is within the virtual + * firmware file's sector ranges in the emulated FAT file system. + * + * \param[in] BlockNumber Physical disk block to read from/write to + * \param[in,out] BlockBuffer Pointer to the start of the block buffer in RAM + * \param[in] Read If \c true, the requested block is read, if + * \c false, the requested block is written + */ +static void ReadWriteEEPROMFileBlock(const uint16_t BlockNumber, + uint8_t* BlockBuffer, + const bool Read) +{ + uint16_t FileStartBlock = DISK_BLOCK_DataStartBlock + (*EEPROMFileStartCluster - 2) * SECTOR_PER_CLUSTER; + uint16_t FileEndBlock = FileStartBlock + (FILE_SECTORS(EEPROM_FILE_SIZE_BYTES) - 1); + + /* Range check the write request - abort if requested block is not within the + * virtual firmware file sector range */ + if (!((BlockNumber >= FileStartBlock) && (BlockNumber <= FileEndBlock))) + return; + + uint16_t EEPROMAddress = (uint16_t)(BlockNumber - FileStartBlock) * SECTOR_SIZE_BYTES; + + if (Read) + { + /* Read out the mapped block of data from the device's EEPROM */ + for (uint16_t i = 0; i < SECTOR_SIZE_BYTES; i++) + BlockBuffer[i] = ReadEEPROMByte((uint8_t*)EEPROMAddress++); + } + else + { + /* Write out the mapped block of data to the device's EEPROM */ + for (uint16_t i = 0; i < SECTOR_SIZE_BYTES; i++) + WriteEEPROMByte((uint8_t*)EEPROMAddress++, BlockBuffer[i]); + } +} + +/** Writes a block of data to the virtual FAT filesystem, from the USB Mass + * Storage interface. + * + * \param[in] BlockNumber Index of the block to write. + */ +void VirtualFAT_WriteBlock(const uint16_t BlockNumber) +{ + uint8_t BlockBuffer[SECTOR_SIZE_BYTES]; + + /* Buffer the entire block to be written from the host */ + Endpoint_Read_Stream_LE(BlockBuffer, sizeof(BlockBuffer), NULL); + Endpoint_ClearOUT(); + + switch (BlockNumber) + { + case DISK_BLOCK_BootBlock: + case DISK_BLOCK_FATBlock1: + case DISK_BLOCK_FATBlock2: + /* Ignore writes to the boot and FAT blocks */ + + break; + + case DISK_BLOCK_RootFilesBlock: + /* Copy over the updated directory entries */ + memcpy(FirmwareFileEntries, BlockBuffer, sizeof(FirmwareFileEntries)); + + break; + + default: + ReadWriteFLASHFileBlock(BlockNumber, BlockBuffer, false); + ReadWriteEEPROMFileBlock(BlockNumber, BlockBuffer, false); + + break; + } +} + /** Reads a block of data from the virtual FAT filesystem, and sends it to the * host via the USB Mass Storage interface. * * \param[in] BlockNumber Index of the block to read. */ -static void ReadVirtualBlock(const uint16_t BlockNumber) +void VirtualFAT_ReadBlock(const uint16_t BlockNumber) { uint8_t BlockBuffer[SECTOR_SIZE_BYTES]; memset(BlockBuffer, 0x00, sizeof(BlockBuffer)); switch (BlockNumber) { - case 0: /* Block 0: Boot block sector */ + case DISK_BLOCK_BootBlock: memcpy(BlockBuffer, &BootBlock, sizeof(FATBootBlock_t)); /* Add the magic signature to the end of the block */ BlockBuffer[SECTOR_SIZE_BYTES - 2] = 0x55; BlockBuffer[SECTOR_SIZE_BYTES - 1] = 0xAA; + break; - case 1: /* Block 1: First FAT12 cluster chain copy */ - case 2: /* Block 2: Second FAT12 cluster chain copy */ + case DISK_BLOCK_FATBlock1: + case DISK_BLOCK_FATBlock2: /* Cluster 0: Media type/Reserved */ UpdateFAT12ClusterEntry(BlockBuffer, 0, 0xF00 | BootBlock.MediaDescriptor); /* Cluster 1: Reserved */ UpdateFAT12ClusterEntry(BlockBuffer, 1, 0xFFF); - /* Cluster 2 onwards: Cluster chain of FIRMWARE.BIN */ - for (uint16_t i = 0; i < FILE_CLUSTERS(FIRMWARE_FILE_SIZE_BYTES); i++) - UpdateFAT12ClusterEntry(BlockBuffer, i+2, i+3); + /* Cluster 2 onwards: Cluster chain of FLASH.BIN */ + UpdateFAT12ClusterChain(BlockBuffer, *FLASHFileStartCluster, FILE_CLUSTERS(FLASH_FILE_SIZE_BYTES)); + + /* Cluster 2+n onwards: Cluster chain of EEPROM.BIN */ + UpdateFAT12ClusterChain(BlockBuffer, *EEPROMFileStartCluster, FILE_CLUSTERS(EEPROM_FILE_SIZE_BYTES)); - /* Mark last cluster as end of file */ - UpdateFAT12ClusterEntry(BlockBuffer, FILE_CLUSTERS(FIRMWARE_FILE_SIZE_BYTES) + 1, 0xFFF); break; - case 3: /* Block 3: Root file entries */ + case DISK_BLOCK_RootFilesBlock: memcpy(BlockBuffer, FirmwareFileEntries, sizeof(FirmwareFileEntries)); - break; - default: /* Blocks 4 onwards: Data allocation section */ - if ((BlockNumber >= 4) && (BlockNumber < (4 + FILE_SECTORS(FIRMWARE_FILE_SIZE_BYTES)))) - { - uint32_t ReadFlashAddress = (uint32_t)(BlockNumber - 4) * SECTOR_SIZE_BYTES; + break; - for (uint16_t i = 0; i < SECTOR_SIZE_BYTES; i++) - BlockBuffer[i] = pgm_read_byte_far(ReadFlashAddress++); - } + default: + ReadWriteFLASHFileBlock(BlockNumber, BlockBuffer, true); + ReadWriteEEPROMFileBlock(BlockNumber, BlockBuffer, true); break; } @@ -232,42 +480,3 @@ static void ReadVirtualBlock(const uint16_t BlockNumber) Endpoint_Write_Stream_LE(BlockBuffer, sizeof(BlockBuffer), NULL); Endpoint_ClearIN(); } - -/** Writes a number of blocks to the virtual FAT file system, from the host - * PC via the USB Mass Storage interface. - * - * \param[in] MSInterfaceInfo Pointer to a structure containing a Mass Storage Class configuration and state - * \param[in] BlockAddress Data block starting address for the write sequence - * \param[in] TotalBlocks Number of blocks of data to write - */ -void VirtualFAT_WriteBlocks(USB_ClassInfo_MS_Device_t* const MSInterfaceInfo, - const uint32_t BlockAddress, - uint16_t TotalBlocks) -{ - uint16_t CurrentBlock = (uint16_t)BlockAddress; - - /* Emulated FAT is performed per-block, pass each requested block index - * to the emulated FAT block write function */ - while (TotalBlocks--) - WriteVirtualBlock(CurrentBlock++); -} - -/** Reads a number of blocks from the virtual FAT file system, and sends them - * to the host PC via the USB Mass Storage interface. - * - * \param[in] MSInterfaceInfo Pointer to a structure containing a Mass Storage Class configuration and state - * \param[in] BlockAddress Data block starting address for the read sequence - * \param[in] TotalBlocks Number of blocks of data to read - */ -void VirtualFAT_ReadBlocks(USB_ClassInfo_MS_Device_t* const MSInterfaceInfo, - const uint32_t BlockAddress, - uint16_t TotalBlocks) -{ - uint16_t CurrentBlock = (uint16_t)BlockAddress; - - /* Emulated FAT is performed per-block, pass each requested block index - * to the emulated FAT block read function */ - while (TotalBlocks--) - ReadVirtualBlock(CurrentBlock++); -} -