X-Git-Url: http://git.linex4red.de/pub/USBasp.git/blobdiff_plain/3c72896e84f54dab6d604518a355b37ea318df21..77a9df36a77d2523dd2bc24fa17f9f04c6c175c5:/Bootloaders/DFU/BootloaderDFU.c diff --git a/Bootloaders/DFU/BootloaderDFU.c b/Bootloaders/DFU/BootloaderDFU.c index 7136b972b..1dae162d2 100644 --- a/Bootloaders/DFU/BootloaderDFU.c +++ b/Bootloaders/DFU/BootloaderDFU.c @@ -1,21 +1,21 @@ /* LUFA Library - Copyright (C) Dean Camera, 2010. - + Copyright (C) Dean Camera, 2011. + dean [at] fourwalledcubicle [dot] com - www.fourwalledcubicle.com + www.lufa-lib.org */ /* - Copyright 2010 Dean Camera (dean [at] fourwalledcubicle [dot] com) + Copyright 2011 Dean Camera (dean [at] fourwalledcubicle [dot] com) - Permission to use, copy, modify, distribute, and sell this + Permission to use, copy, modify, distribute, and sell this software and its documentation for any purpose is hereby granted - without fee, provided that the above copyright notice appear in + without fee, provided that the above copyright notice appear in all copies and that both that the copyright notice and this - permission notice and warranty disclaimer appear in supporting - documentation, and that the name of the author not be used in - advertising or publicity pertaining to distribution of the + permission notice and warranty disclaimer appear in supporting + documentation, and that the name of the author not be used in + advertising or publicity pertaining to distribution of the software without specific, written prior permission. The author disclaim all warranties with regard to this @@ -38,62 +38,62 @@ /** Flag to indicate if the bootloader is currently running in secure mode, disallowing memory operations * other than erase. This is initially set to the value set by SECURE_MODE, and cleared by the bootloader - * once a memory erase has completed. + * once a memory erase has completed in a bootloader session. */ -bool IsSecure = SECURE_MODE; +static bool IsSecure = SECURE_MODE; /** Flag to indicate if the bootloader should be running, or should exit and allow the application code to run * via a soft reset. When cleared, the bootloader will abort, the USB interface will shut down and the application * jumped to via an indirect jump to location 0x0000 (or other location specified by the host). */ -bool RunBootloader = true; +static bool RunBootloader = true; /** Flag to indicate if the bootloader is waiting to exit. When the host requests the bootloader to exit and * jump to the application address it specifies, it sends two sequential commands which must be properly * acknowledged. Upon reception of the first the RunBootloader flag is cleared and the WaitForExit flag is set, * causing the bootloader to wait for the final exit command before shutting down. */ -bool WaitForExit = false; +static bool WaitForExit = false; /** Current DFU state machine state, one of the values in the DFU_State_t enum. */ -uint8_t DFU_State = dfuIDLE; +static uint8_t DFU_State = dfuIDLE; /** Status code of the last executed DFU command. This is set to one of the values in the DFU_Status_t enum after * each operation, and returned to the host when a Get Status DFU request is issued. */ -uint8_t DFU_Status = OK; +static uint8_t DFU_Status = OK; /** Data containing the DFU command sent from the host. */ -DFU_Command_t SentCommand; +static DFU_Command_t SentCommand; /** Response to the last issued Read Data DFU command. Unlike other DFU commands, the read command * requires a single byte response from the bootloader containing the read data when the next DFU_UPLOAD command * is issued by the host. */ -uint8_t ResponseByte; +static uint8_t ResponseByte; /** Pointer to the start of the user application. By default this is 0x0000 (the reset vector), however the host * may specify an alternate address when issuing the application soft-start command. */ -AppPtr_t AppStartPtr = (AppPtr_t)0x0000; +static AppPtr_t AppStartPtr = (AppPtr_t)0x0000; /** 64-bit flash page number. This is concatenated with the current 16-bit address on USB AVRs containing more than * 64KB of flash memory. */ -uint8_t Flash64KBPage = 0; +static uint8_t Flash64KBPage = 0; /** Memory start address, indicating the current address in the memory being addressed (either FLASH or EEPROM * depending on the issued command from the host). */ -uint16_t StartAddr = 0x0000; +static uint16_t StartAddr = 0x0000; -/** Memory end address, indicating the end address to read to/write from in the memory being addressed (either FLASH +/** Memory end address, indicating the end address to read from/write to in the memory being addressed (either FLASH * of EEPROM depending on the issued command from the host). */ -uint16_t EndAddr = 0x0000; +static uint16_t EndAddr = 0x0000; -/** Main program entry point. This routine configures the hardware required by the bootloader, then continuously +/** Main program entry point. This routine configures the hardware required by the bootloader, then continuously * runs the bootloader processing routine until instructed to soft-exit, or hard-reset via the watchdog to start * the loaded application code. */ @@ -101,17 +101,37 @@ int main(void) { /* Configure hardware required by the bootloader */ SetupHardware(); + + #if ((BOARD == BOARD_XPLAIN) || (BOARD == BOARD_XPLAIN_REV1)) + /* Disable JTAG debugging */ + MCUCR |= (1 << JTD); + MCUCR |= (1 << JTD); + + /* Enable pull-up on the JTAG TCK pin so we can use it to select the mode */ + PORTF |= (1 << 4); + Delay_MS(10); + + /* If the TCK pin is not jumpered to ground, start the user application instead */ + RunBootloader = (!(PINF & (1 << 4))); + /* Re-enable JTAG debugging */ + MCUCR &= ~(1 << JTD); + MCUCR &= ~(1 << JTD); + #endif + + /* Turn on first LED on the board to indicate that the bootloader has started */ + LEDs_SetAllLEDs(LEDS_LED1); + /* Enable global interrupts so that the USB stack can function */ sei(); /* Run the USB management task while the bootloader is supposed to be running */ while (RunBootloader || WaitForExit) USB_USBTask(); - + /* Reset configured hardware back to their original states for the user application */ ResetHardware(); - + /* Start the user application */ AppStartPtr(); } @@ -125,80 +145,101 @@ void SetupHardware(void) /* Disable clock division */ clock_prescale_set(clock_div_1); - + /* Relocate the interrupt vector table to the bootloader section */ MCUCR = (1 << IVCE); MCUCR = (1 << IVSEL); /* Initialize the USB subsystem */ USB_Init(); + LEDs_Init(); + + /* Bootloader active LED toggle timer initialization */ + TIMSK1 = (1 << TOIE1); + TCCR1B = ((1 << CS11) | (1 << CS10)); } /** Resets all configured hardware required for the bootloader back to their original states. */ void ResetHardware(void) { /* Shut down the USB subsystem */ - USB_ShutDown(); - + USB_Disable(); + /* Relocate the interrupt vector table back to the application section */ MCUCR = (1 << IVCE); MCUCR = 0; } -/** Event handler for the USB_UnhandledControlRequest event. This is used to catch standard and class specific - * control requests that are not handled internally by the USB library (including the DFU commands, which are - * all issued via the control endpoint), so that they can be handled appropriately for the application. - */ -void EVENT_USB_Device_UnhandledControlRequest(void) +/** ISR to periodically toggle the LEDs on the board to indicate that the bootloader is active. */ +ISR(TIMER1_OVF_vect, ISR_BLOCK) { + LEDs_ToggleLEDs(LEDS_LED1 | LEDS_LED2); +} + +/** Event handler for the USB_ControlRequest event. This is used to catch and process control requests sent to + * the device from the USB host before passing along unhandled control requests to the library for processing + * internally. + */ +void EVENT_USB_Device_ControlRequest(void) +{ + /* Ignore any requests that aren't directed to the DFU interface */ + if ((USB_ControlRequest.bmRequestType & (CONTROL_REQTYPE_TYPE | CONTROL_REQTYPE_RECIPIENT)) != + (REQTYPE_CLASS | REQREC_INTERFACE)) + { + return; + } + + /* Activity - toggle indicator LEDs */ + LEDs_ToggleLEDs(LEDS_LED1 | LEDS_LED2); + /* Get the size of the command and data from the wLength value */ SentCommand.DataSize = USB_ControlRequest.wLength; switch (USB_ControlRequest.bRequest) { - case DFU_DNLOAD: + case DFU_REQ_DNLOAD: Endpoint_ClearSETUP(); - + /* Check if bootloader is waiting to terminate */ if (WaitForExit) { /* Bootloader is terminating - process last received command */ ProcessBootloaderCommand(); - + /* Indicate that the last command has now been processed - free to exit bootloader */ WaitForExit = false; } - + /* If the request has a data stage, load it into the command struct */ if (SentCommand.DataSize) { while (!(Endpoint_IsOUTReceived())) - { + { if (USB_DeviceState == DEVICE_STATE_Unattached) return; } /* First byte of the data stage is the DNLOAD request's command */ - SentCommand.Command = Endpoint_Read_Byte(); - + SentCommand.Command = Endpoint_Read_8(); + /* One byte of the data stage is the command, so subtract it from the total data bytes */ SentCommand.DataSize--; - + /* Load in the rest of the data stage as command parameters */ for (uint8_t DataByte = 0; (DataByte < sizeof(SentCommand.Data)) && Endpoint_BytesInEndpoint(); DataByte++) { - SentCommand.Data[DataByte] = Endpoint_Read_Byte(); + SentCommand.Data[DataByte] = Endpoint_Read_8(); SentCommand.DataSize--; } - + /* Process the command */ ProcessBootloaderCommand(); } - + /* Check if currently downloading firmware */ if (DFU_State == dfuDNLOAD_IDLE) - { + { if (!(SentCommand.DataSize)) { DFU_State = dfuIDLE; @@ -210,21 +251,21 @@ void EVENT_USB_Device_UnhandledControlRequest(void) /* Throw away the packet alignment filler bytes before the start of the firmware */ DiscardFillerBytes(StartAddr % FIXED_CONTROL_ENDPOINT_SIZE); - + /* Calculate the number of bytes remaining to be written */ uint16_t BytesRemaining = ((EndAddr - StartAddr) + 1); - + if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x00)) // Write flash { /* Calculate the number of words to be written from the number of bytes to be written */ uint16_t WordsRemaining = (BytesRemaining >> 1); - + union { uint16_t Words[2]; uint32_t Long; } CurrFlashAddress = {.Words = {StartAddr, Flash64KBPage}}; - + uint32_t CurrFlashPageStartAddress = CurrFlashAddress.Long; uint8_t WordsInFlashPage = 0; @@ -236,14 +277,14 @@ void EVENT_USB_Device_UnhandledControlRequest(void) Endpoint_ClearOUT(); while (!(Endpoint_IsOUTReceived())) - { + { if (USB_DeviceState == DEVICE_STATE_Unattached) return; } } /* Write the next word into the current flash page */ - boot_page_fill(CurrFlashAddress.Long, Endpoint_Read_Word_LE()); + boot_page_fill(CurrFlashAddress.Long, Endpoint_Read_16_LE()); /* Adjust counters */ WordsInFlashPage += 1; @@ -255,7 +296,7 @@ void EVENT_USB_Device_UnhandledControlRequest(void) /* Commit the flash page to memory */ boot_page_write(CurrFlashPageStartAddress); boot_spm_busy_wait(); - + /* Check if programming incomplete */ if (WordsRemaining) { @@ -268,10 +309,10 @@ void EVENT_USB_Device_UnhandledControlRequest(void) } } } - + /* Once programming complete, start address equals the end address */ StartAddr = EndAddr; - + /* Re-enable the RWW section of flash */ boot_rww_enable(); } @@ -285,20 +326,20 @@ void EVENT_USB_Device_UnhandledControlRequest(void) Endpoint_ClearOUT(); while (!(Endpoint_IsOUTReceived())) - { + { if (USB_DeviceState == DEVICE_STATE_Unattached) return; } } /* Read the byte from the USB interface and write to to the EEPROM */ - eeprom_write_byte((uint8_t*)StartAddr, Endpoint_Read_Byte()); - + eeprom_write_byte((uint8_t*)StartAddr, Endpoint_Read_8()); + /* Adjust counters */ StartAddr++; } } - + /* Throw away the currently unused DFU file suffix */ DiscardFillerBytes(DFU_FILE_SUFFIX_SIZE); } @@ -309,27 +350,27 @@ void EVENT_USB_Device_UnhandledControlRequest(void) Endpoint_ClearStatusStage(); break; - case DFU_UPLOAD: + case DFU_REQ_UPLOAD: Endpoint_ClearSETUP(); while (!(Endpoint_IsINReady())) - { + { if (USB_DeviceState == DEVICE_STATE_Unattached) return; } - + if (DFU_State != dfuUPLOAD_IDLE) { if ((DFU_State == dfuERROR) && IS_ONEBYTE_COMMAND(SentCommand.Data, 0x01)) // Blank Check { /* Blank checking is performed in the DFU_DNLOAD request - if we get here we've told the host that the memory isn't blank, and the host is requesting the first non-blank address */ - Endpoint_Write_Word_LE(StartAddr); + Endpoint_Write_16_LE(StartAddr); } else { /* Idle state upload - send response to last issued command */ - Endpoint_Write_Byte(ResponseByte); + Endpoint_Write_8(ResponseByte); } } else @@ -356,7 +397,7 @@ void EVENT_USB_Device_UnhandledControlRequest(void) Endpoint_ClearIN(); while (!(Endpoint_IsINReady())) - { + { if (USB_DeviceState == DEVICE_STATE_Unattached) return; } @@ -364,15 +405,15 @@ void EVENT_USB_Device_UnhandledControlRequest(void) /* Read the flash word and send it via USB to the host */ #if (FLASHEND > 0xFFFF) - Endpoint_Write_Word_LE(pgm_read_word_far(CurrFlashAddress.Long)); + Endpoint_Write_16_LE(pgm_read_word_far(CurrFlashAddress.Long)); #else - Endpoint_Write_Word_LE(pgm_read_word(CurrFlashAddress.Long)); + Endpoint_Write_16_LE(pgm_read_word(CurrFlashAddress.Long)); #endif /* Adjust counters */ CurrFlashAddress.Long += 2; } - + /* Once reading is complete, start address equals the end address */ StartAddr = EndAddr; } @@ -384,16 +425,16 @@ void EVENT_USB_Device_UnhandledControlRequest(void) if (Endpoint_BytesInEndpoint() == FIXED_CONTROL_ENDPOINT_SIZE) { Endpoint_ClearIN(); - + while (!(Endpoint_IsINReady())) - { + { if (USB_DeviceState == DEVICE_STATE_Unattached) return; } } /* Read the EEPROM byte and send it via USB to the host */ - Endpoint_Write_Byte(eeprom_read_byte((uint8_t*)StartAddr)); + Endpoint_Write_8(eeprom_read_byte((uint8_t*)StartAddr)); /* Adjust counters */ StartAddr++; @@ -408,47 +449,47 @@ void EVENT_USB_Device_UnhandledControlRequest(void) Endpoint_ClearStatusStage(); break; - case DFU_GETSTATUS: + case DFU_REQ_GETSTATUS: Endpoint_ClearSETUP(); - + /* Write 8-bit status value */ - Endpoint_Write_Byte(DFU_Status); - + Endpoint_Write_8(DFU_Status); + /* Write 24-bit poll timeout value */ - Endpoint_Write_Byte(0); - Endpoint_Write_Word_LE(0); - + Endpoint_Write_8(0); + Endpoint_Write_16_LE(0); + /* Write 8-bit state value */ - Endpoint_Write_Byte(DFU_State); + Endpoint_Write_8(DFU_State); /* Write 8-bit state string ID number */ - Endpoint_Write_Byte(0); + Endpoint_Write_8(0); Endpoint_ClearIN(); - + Endpoint_ClearStatusStage(); - break; - case DFU_CLRSTATUS: + break; + case DFU_REQ_CLRSTATUS: Endpoint_ClearSETUP(); - + /* Reset the status value variable to the default OK status */ DFU_Status = OK; Endpoint_ClearStatusStage(); break; - case DFU_GETSTATE: + case DFU_REQ_GETSTATE: Endpoint_ClearSETUP(); - + /* Write the current device state to the endpoint */ - Endpoint_Write_Byte(DFU_State); - + Endpoint_Write_8(DFU_State); + Endpoint_ClearIN(); - + Endpoint_ClearStatusStage(); break; - case DFU_ABORT: + case DFU_REQ_ABORT: Endpoint_ClearSETUP(); - + /* Reset the current state variable to the default idle state */ DFU_State = dfuIDLE; @@ -472,14 +513,14 @@ static void DiscardFillerBytes(uint8_t NumberOfBytes) /* Wait until next data packet received */ while (!(Endpoint_IsOUTReceived())) - { + { if (USB_DeviceState == DEVICE_STATE_Unattached) return; } } else { - Endpoint_Discard_Byte(); + Endpoint_Discard_8(); } } } @@ -501,10 +542,10 @@ static void ProcessBootloaderCommand(void) /* Set the state and status variables to indicate the error */ DFU_State = dfuERROR; DFU_Status = errWRITE; - + /* Stall command */ Endpoint_StallTransaction(); - + /* Don't process the command */ return; } @@ -544,7 +585,7 @@ static void LoadStartEndAddresses(void) uint16_t Word; } Address[2] = {{.Bytes = {SentCommand.Data[2], SentCommand.Data[1]}}, {.Bytes = {SentCommand.Data[4], SentCommand.Data[3]}}}; - + /* Load in the start and ending read addresses from the sent data packet */ StartAddr = Address[0].Word; EndAddr = Address[1].Word; @@ -560,7 +601,7 @@ static void ProcessMemProgCommand(void) { /* Load in the start and ending read addresses */ LoadStartEndAddresses(); - + /* If FLASH is being written to, we need to pre-erase the first page to write to */ if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x00)) { @@ -569,12 +610,12 @@ static void ProcessMemProgCommand(void) uint16_t Words[2]; uint32_t Long; } CurrFlashAddress = {.Words = {StartAddr, Flash64KBPage}}; - + /* Erase the current page's temp buffer */ boot_page_erase(CurrFlashAddress.Long); boot_spm_busy_wait(); } - + /* Set the state so that the next DNLOAD requests reads in the firmware */ DFU_State = dfuDNLOAD_IDLE; } @@ -611,7 +652,7 @@ static void ProcessMemReadCommand(void) /* Save the location of the first non-blank byte for response back to the host */ Flash64KBPage = (CurrFlashAddress >> 16); StartAddr = CurrFlashAddress; - + /* Set state and status variables to the appropriate error values */ DFU_State = dfuERROR; DFU_Status = errCHECK_ERASED; @@ -680,7 +721,7 @@ static void ProcessWriteCommand(void) /* Re-enable the RWW section of flash as writing to the flash locks it out */ boot_rww_enable(); - + /* Memory has been erased, reset the security bit so that programming/reading is allowed */ IsSecure = false; } @@ -701,3 +742,4 @@ static void ProcessReadCommand(void) else if (IS_ONEBYTE_COMMAND(SentCommand.Data, 0x01)) // Read signature byte ResponseByte = SignatureInfo[DataIndexToRead - 0x30]; } +