- Permission to use, copy, modify, distribute, and sell this
+ Permission to use, copy, modify, distribute, and sell this
- permission notice and warranty disclaimer appear in supporting
- documentation, and that the name of the author not be used in
- advertising or publicity pertaining to distribution of the
+ permission notice and warranty disclaimer appear in supporting
+ documentation, and that the name of the author not be used in
+ advertising or publicity pertaining to distribution of the
software without specific, written prior permission.
The author disclaim all warranties with regard to this
software without specific, written prior permission.
The author disclaim all warranties with regard to this
#ifndef __ADC_AVRU4U6U7_H__
#define __ADC_AVRU4U6U7_H__
/* Includes: */
#include "../../../Common/Common.h"
#ifndef __ADC_AVRU4U6U7_H__
#define __ADC_AVRU4U6U7_H__
/* Includes: */
#include "../../../Common/Common.h"
/** Reference mask, for using the voltage present at the AVR's AREF pin for the ADC reference. */
#define ADC_REFERENCE_AREF 0
/** Reference mask, for using the voltage present at the AVR's AREF pin for the ADC reference. */
#define ADC_REFERENCE_AREF 0
/** Reference mask, for using the internally generated 2.56V reference voltage as the ADC reference. */
#define ADC_REFERENCE_INT2560MV ((1 << REFS1) | (1 << REFS0))
/** Reference mask, for using the internally generated 2.56V reference voltage as the ADC reference. */
#define ADC_REFERENCE_INT2560MV ((1 << REFS1) | (1 << REFS0))
/** Left-adjusts the 10-bit ADC result, so that the upper 8 bits of the value returned by the
* ADC_GetResult() macro contain the 8 most significant bits of the result. */
#define ADC_LEFT_ADJUSTED (1 << ADLAR)
/** Left-adjusts the 10-bit ADC result, so that the upper 8 bits of the value returned by the
* ADC_GetResult() macro contain the 8 most significant bits of the result. */
#define ADC_LEFT_ADJUSTED (1 << ADLAR)
/** Right-adjusts the 10-bit ADC result, so that the lower 8 bits of the value returned by the
* ADC_GetResult() macro contain the 8 least significant bits of the result. */
#define ADC_RIGHT_ADJUSTED (0 << ADLAR)
/** Right-adjusts the 10-bit ADC result, so that the lower 8 bits of the value returned by the
* ADC_GetResult() macro contain the 8 least significant bits of the result. */
#define ADC_RIGHT_ADJUSTED (0 << ADLAR)
/** Sets the ADC mode to free running, so that conversions take place continuously as fast as the ADC
* is capable of at the given input clock speed. */
#define ADC_FREE_RUNNING (1 << ADATE)
/** Sets the ADC mode to free running, so that conversions take place continuously as fast as the ADC
* is capable of at the given input clock speed. */
#define ADC_FREE_RUNNING (1 << ADATE)
/** Sets the ADC mode to single conversion, so that only a single conversion will take place before
* the ADC returns to idle. */
#define ADC_SINGLE_CONVERSION (0 << ADATE)
/** Sets the ADC mode to single conversion, so that only a single conversion will take place before
* the ADC returns to idle. */
#define ADC_SINGLE_CONVERSION (0 << ADATE)
/** Sets the ADC input clock to prescale by a factor of 2 the AVR's system clock. */
#define ADC_PRESCALE_2 (1 << ADPS0)
/** Sets the ADC input clock to prescale by a factor of 2 the AVR's system clock. */
#define ADC_PRESCALE_2 (1 << ADPS0)
/** Sets the ADC input clock to prescale by a factor of 128 the AVR's system clock. */
#define ADC_PRESCALE_128 ((1 << ADPS2) | (1 << ADPS1) | (1 << ADPS0))
/** Sets the ADC input clock to prescale by a factor of 128 the AVR's system clock. */
#define ADC_PRESCALE_128 ((1 << ADPS2) | (1 << ADPS1) | (1 << ADPS0))
//@{
/** MUX mask define for the ADC0 channel of the ADC. See \ref ADC_StartReading and \ref ADC_GetChannelReading. */
#define ADC_CHANNEL0 (0x00 << MUX0)
//@{
/** MUX mask define for the ADC0 channel of the ADC. See \ref ADC_StartReading and \ref ADC_GetChannelReading. */
#define ADC_CHANNEL0 (0x00 << MUX0)
/** MUX mask define for the internal 1.1V bandgap channel of the ADC. See \ref ADC_StartReading and \ref ADC_GetChannelReading. */
#define ADC_1100MV_BANDGAP (0x1E << MUX0)
/** MUX mask define for the internal 1.1V bandgap channel of the ADC. See \ref ADC_StartReading and \ref ADC_GetChannelReading. */
#define ADC_1100MV_BANDGAP (0x1E << MUX0)
#if (defined(__AVR_ATmega16U4__) || defined(__AVR_ATmega32U4__) || defined(__DOXYGEN__))
/** MUX mask define for the ADC8 channel of the ADC. See \ref ADC_StartReading and \ref ADC_GetChannelReading.
*
#if (defined(__AVR_ATmega16U4__) || defined(__AVR_ATmega32U4__) || defined(__DOXYGEN__))
/** MUX mask define for the ADC8 channel of the ADC. See \ref ADC_StartReading and \ref ADC_GetChannelReading.
*
/* Inline Functions: */
/** Configures the given ADC channel, ready for ADC conversions. This function sets the
* associated port pin as an input and disables the digital portion of the I/O to reduce
/* Inline Functions: */
/** Configures the given ADC channel, ready for ADC conversions. This function sets the
* associated port pin as an input and disables the digital portion of the I/O to reduce
{
#if (defined(__AVR_AT90USB1286__) || defined(__AVR_AT90USB646__) || \
defined(__AVR_AT90USB1287__) || defined(__AVR_AT90USB647__) || \
{
#if (defined(__AVR_AT90USB1286__) || defined(__AVR_AT90USB646__) || \
defined(__AVR_AT90USB1287__) || defined(__AVR_AT90USB647__) || \
DDRF &= ~(1 << ChannelIndex);
DIDR0 |= (1 << ChannelIndex);
#elif (defined(__AVR_ATmega16U4__) || defined(__AVR_ATmega32U4__))
DDRF &= ~(1 << ChannelIndex);
DIDR0 |= (1 << ChannelIndex);
#elif (defined(__AVR_ATmega16U4__) || defined(__AVR_ATmega32U4__))
/** De-configures the given ADC channel, re-enabling digital I/O mode instead of analog. This
* function sets the associated port pin as an input and re-enabled the digital portion of
* the I/O.
/** De-configures the given ADC channel, re-enabling digital I/O mode instead of analog. This
* function sets the associated port pin as an input and re-enabled the digital portion of
* the I/O.
{
#if (defined(__AVR_AT90USB1286__) || defined(__AVR_AT90USB646__) || \
defined(__AVR_AT90USB1287__) || defined(__AVR_AT90USB647__) || \
{
#if (defined(__AVR_AT90USB1286__) || defined(__AVR_AT90USB646__) || \
defined(__AVR_AT90USB1287__) || defined(__AVR_AT90USB647__) || \
DDRF &= ~(1 << ChannelIndex);
DIDR0 &= ~(1 << ChannelIndex);
#elif (defined(__AVR_ATmega16U4__) || defined(__AVR_ATmega32U4__))
DDRF &= ~(1 << ChannelIndex);
DIDR0 &= ~(1 << ChannelIndex);
#elif (defined(__AVR_ATmega16U4__) || defined(__AVR_ATmega32U4__))
/** Indicates if the ADC is currently enabled.
*
* \return Boolean true if the ADC subsystem is currently enabled, false otherwise.
/** Indicates if the ADC is currently enabled.
*
* \return Boolean true if the ADC subsystem is currently enabled, false otherwise.