/*
LUFA Library
- Copyright (C) Dean Camera, 2011.
+ Copyright (C) Dean Camera, 2013.
dean [at] fourwalledcubicle [dot] com
www.lufa-lib.org
*/
/*
- Copyright 2011 Dean Camera (dean [at] fourwalledcubicle [dot] com)
+ Copyright 2013 Dean Camera (dean [at] fourwalledcubicle [dot] com)
Permission to use, copy, modify, distribute, and sell this
software and its documentation for any purpose is hereby granted
advertising or publicity pertaining to distribution of the
software without specific, written prior permission.
- The author disclaim all warranties with regard to this
+ The author disclaims all warranties with regard to this
software, including all implied warranties of merchantability
and fitness. In no event shall the author be liable for any
special, indirect or consequential damages or any damages
*/
static bool RunBootloader = true;
+/** Magic lock for forced application start. If the HWBE fuse is programmed and BOOTRST is unprogrammed, the bootloader
+ * will start if the /HWB line of the AVR is held low and the system is reset. However, if the /HWB line is still held
+ * low when the application attempts to start via a watchdog reset, the bootloader will re-start. If set to the value
+ * \ref MAGIC_BOOT_KEY the special init function \ref Application_Jump_Check() will force the application to start.
+ */
+uint16_t MagicBootKey ATTR_NO_INIT;
+
+
+/** Special startup routine to check if the bootloader was started via a watchdog reset, and if the magic application
+ * start key has been loaded into \ref MagicBootKey. If the bootloader started via the watchdog and the key is valid,
+ * this will force the user application to start via a software jump.
+ */
+void Application_Jump_Check(void)
+{
+ bool JumpToApplication = false;
+
+ #if ((BOARD == BOARD_XPLAIN) || (BOARD == BOARD_XPLAIN_REV1))
+ /* Disable JTAG debugging */
+ JTAG_DISABLE();
+
+ /* Enable pull-up on the JTAG TCK pin so we can use it to select the mode */
+ PORTF |= (1 << 4);
+ Delay_MS(10);
+
+ /* If the TCK pin is not jumpered to ground, start the user application instead */
+ JumpToApplication |= ((PINF & (1 << 4)) != 0);
+
+ /* Re-enable JTAG debugging */
+ JTAG_ENABLE();
+ #endif
+
+ /* If the reset source was the bootloader and the key is correct, clear it and jump to the application */
+ if ((MCUSR & (1 << WDRF)) && (MagicBootKey == MAGIC_BOOT_KEY))
+ JumpToApplication |= true;
+
+ /* If a request has been made to jump to the user application, honor it */
+ if (JumpToApplication)
+ {
+ /* Turn off the watchdog */
+ MCUSR &= ~(1<<WDRF);
+ wdt_disable();
+
+ /* Clear the boot key and jump to the user application */
+ MagicBootKey = 0;
+
+ // cppcheck-suppress constStatement
+ ((void (*)(void))0x0000)();
+ }
+}
/** Main program entry point. This routine configures the hardware required by the bootloader, then continuously
* runs the bootloader processing routine until instructed to soft-exit, or hard-reset via the watchdog to start
/* Setup hardware required for the bootloader */
SetupHardware();
+ /* Turn on first LED on the board to indicate that the bootloader has started */
+ LEDs_SetAllLEDs(LEDS_LED1);
+
/* Enable global interrupts so that the USB stack can function */
- sei();
+ GlobalInterruptEnable();
while (RunBootloader)
{
/* Disconnect from the host - USB interface will be reset later along with the AVR */
USB_Detach();
+ /* Unlock the forced application start mode of the bootloader if it is restarted */
+ MagicBootKey = MAGIC_BOOT_KEY;
+
/* Enable the watchdog and force a timeout to reset the AVR */
wdt_enable(WDTO_250MS);
}
/** Configures all hardware required for the bootloader. */
-void SetupHardware(void)
+static void SetupHardware(void)
{
/* Disable watchdog if enabled by bootloader/fuses */
MCUSR &= ~(1 << WDRF);
MCUCR = (1 << IVCE);
MCUCR = (1 << IVSEL);
- /* Initialize USB Subsystem */
+ /* Initialize the USB and other board hardware drivers */
USB_Init();
+ LEDs_Init();
+
+ /* Bootloader active LED toggle timer initialization */
+ TIMSK1 = (1 << TOIE1);
+ TCCR1B = ((1 << CS11) | (1 << CS10));
+}
+
+/** ISR to periodically toggle the LEDs on the board to indicate that the bootloader is active. */
+ISR(TIMER1_OVF_vect, ISR_BLOCK)
+{
+ LEDs_ToggleLEDs(LEDS_LED1 | LEDS_LED2);
}
/** Event handler for the USB_ConfigurationChanged event. This configures the device's endpoints ready
void EVENT_USB_Device_ConfigurationChanged(void)
{
/* Setup CDC Notification, Rx and Tx Endpoints */
- Endpoint_ConfigureEndpoint(CDC_NOTIFICATION_EPNUM, EP_TYPE_INTERRUPT,
- ENDPOINT_DIR_IN, CDC_NOTIFICATION_EPSIZE,
- ENDPOINT_BANK_SINGLE);
+ Endpoint_ConfigureEndpoint(CDC_NOTIFICATION_EPADDR, EP_TYPE_INTERRUPT,
+ CDC_NOTIFICATION_EPSIZE, 1);
- Endpoint_ConfigureEndpoint(CDC_TX_EPNUM, EP_TYPE_BULK,
- ENDPOINT_DIR_IN, CDC_TXRX_EPSIZE,
- ENDPOINT_BANK_SINGLE);
+ Endpoint_ConfigureEndpoint(CDC_TX_EPADDR, EP_TYPE_BULK, CDC_TXRX_EPSIZE, 1);
- Endpoint_ConfigureEndpoint(CDC_RX_EPNUM, EP_TYPE_BULK,
- ENDPOINT_DIR_OUT, CDC_TXRX_EPSIZE,
- ENDPOINT_BANK_SINGLE);
+ Endpoint_ConfigureEndpoint(CDC_RX_EPADDR, EP_TYPE_BULK, CDC_TXRX_EPSIZE, 1);
}
/** Event handler for the USB_ControlRequest event. This is used to catch and process control requests sent to
return;
}
+ /* Activity - toggle indicator LEDs */
+ LEDs_ToggleLEDs(LEDS_LED1 | LEDS_LED2);
+
/* Process CDC specific control requests */
switch (USB_ControlRequest.bRequest)
{
}
break;
+ case CDC_REQ_SetControlLineState:
+ if (USB_ControlRequest.bmRequestType == (REQDIR_HOSTTODEVICE | REQTYPE_CLASS | REQREC_INTERFACE))
+ {
+ Endpoint_ClearSETUP();
+ Endpoint_ClearStatusStage();
+ }
+
+ break;
}
}
#if !defined(NO_BLOCK_SUPPORT)
/** Reads or writes a block of EEPROM or FLASH memory to or from the appropriate CDC data endpoint, depending
- * on the AVR910 protocol command issued.
+ * on the AVR109 protocol command issued.
*
- * \param[in] Command Single character AVR910 protocol command indicating what memory operation to perform
+ * \param[in] Command Single character AVR109 protocol command indicating what memory operation to perform
*/
static void ReadWriteMemoryBlock(const uint8_t Command)
{
uint16_t BlockSize;
char MemoryType;
- bool HighByte = false;
+ uint8_t HighByte = 0;
uint8_t LowByte = 0;
BlockSize = (FetchNextCommandByte() << 8);
MemoryType = FetchNextCommandByte();
- if ((MemoryType != 'E') && (MemoryType != 'F'))
+ if ((MemoryType != MEMORY_TYPE_FLASH) && (MemoryType != MEMORY_TYPE_EEPROM))
{
/* Send error byte back to the host */
WriteNextResponseByte('?');
return;
}
- /* Check if command is to read memory */
- if (Command == 'g')
+ /* Check if command is to read a memory block */
+ if (Command == AVR109_COMMAND_BlockRead)
{
/* Re-enable RWW section */
boot_rww_enable();
while (BlockSize--)
{
- if (MemoryType == 'F')
+ if (MemoryType == MEMORY_TYPE_FLASH)
{
/* Read the next FLASH byte from the current FLASH page */
#if (FLASHEND > 0xFFFF)
{
uint32_t PageStartAddress = CurrAddress;
- if (MemoryType == 'F')
+ if (MemoryType == MEMORY_TYPE_FLASH)
{
boot_page_erase(PageStartAddress);
boot_spm_busy_wait();
while (BlockSize--)
{
- if (MemoryType == 'F')
+ if (MemoryType == MEMORY_TYPE_FLASH)
{
/* If both bytes in current word have been written, increment the address counter */
if (HighByte)
{
LowByte = FetchNextCommandByte();
}
-
+
HighByte = !HighByte;
}
else
}
/* If in FLASH programming mode, commit the page after writing */
- if (MemoryType == 'F')
+ if (MemoryType == MEMORY_TYPE_FLASH)
{
/* Commit the flash page to memory */
boot_page_write(PageStartAddress);
static uint8_t FetchNextCommandByte(void)
{
/* Select the OUT endpoint so that the next data byte can be read */
- Endpoint_SelectEndpoint(CDC_RX_EPNUM);
+ Endpoint_SelectEndpoint(CDC_RX_EPADDR);
/* If OUT endpoint empty, clear it and wait for the next packet from the host */
while (!(Endpoint_IsReadWriteAllowed()))
static void WriteNextResponseByte(const uint8_t Response)
{
/* Select the IN endpoint so that the next data byte can be written */
- Endpoint_SelectEndpoint(CDC_TX_EPNUM);
+ Endpoint_SelectEndpoint(CDC_TX_EPADDR);
/* If IN endpoint full, clear it and wait until ready for the next packet to the host */
if (!(Endpoint_IsReadWriteAllowed()))
Endpoint_Write_8(Response);
}
-/** Task to read in AVR910 commands from the CDC data OUT endpoint, process them, perform the required actions
+/** Task to read in AVR109 commands from the CDC data OUT endpoint, process them, perform the required actions
* and send the appropriate response back to the host.
*/
-void CDC_Task(void)
+static void CDC_Task(void)
{
/* Select the OUT endpoint */
- Endpoint_SelectEndpoint(CDC_RX_EPNUM);
+ Endpoint_SelectEndpoint(CDC_RX_EPADDR);
/* Check if endpoint has a command in it sent from the host */
if (!(Endpoint_IsOUTReceived()))
/* Read in the bootloader command (first byte sent from host) */
uint8_t Command = FetchNextCommandByte();
- if (Command == 'E')
+ if (Command == AVR109_COMMAND_ExitBootloader)
{
RunBootloader = false;
-
+
/* Send confirmation byte back to the host */
WriteNextResponseByte('\r');
}
- else if (Command == 'T')
+ else if ((Command == AVR109_COMMAND_SetLED) || (Command == AVR109_COMMAND_ClearLED) ||
+ (Command == AVR109_COMMAND_SelectDeviceType))
{
FetchNextCommandByte();
/* Send confirmation byte back to the host */
WriteNextResponseByte('\r');
}
- else if ((Command == 'L') || (Command == 'P'))
+ else if ((Command == AVR109_COMMAND_EnterProgrammingMode) || (Command == AVR109_COMMAND_LeaveProgrammingMode))
{
/* Send confirmation byte back to the host */
WriteNextResponseByte('\r');
}
- else if (Command == 't')
+ else if (Command == AVR109_COMMAND_ReadPartCode)
{
/* Return ATMEGA128 part code - this is only to allow AVRProg to use the bootloader */
WriteNextResponseByte(0x44);
WriteNextResponseByte(0x00);
}
- else if (Command == 'a')
+ else if (Command == AVR109_COMMAND_ReadAutoAddressIncrement)
{
/* Indicate auto-address increment is supported */
WriteNextResponseByte('Y');
}
- else if (Command == 'A')
+ else if (Command == AVR109_COMMAND_SetCurrentAddress)
{
- /* Set the current address to that given by the host */
+ /* Set the current address to that given by the host (translate 16-bit word address to byte address) */
CurrAddress = (FetchNextCommandByte() << 9);
CurrAddress |= (FetchNextCommandByte() << 1);
/* Send confirmation byte back to the host */
WriteNextResponseByte('\r');
}
- else if (Command == 'p')
+ else if (Command == AVR109_COMMAND_ReadBootloaderInterface)
{
/* Indicate serial programmer back to the host */
WriteNextResponseByte('S');
}
- else if (Command == 'S')
+ else if (Command == AVR109_COMMAND_ReadBootloaderIdentifier)
{
/* Write the 7-byte software identifier to the endpoint */
for (uint8_t CurrByte = 0; CurrByte < 7; CurrByte++)
WriteNextResponseByte(SOFTWARE_IDENTIFIER[CurrByte]);
}
- else if (Command == 'V')
+ else if (Command == AVR109_COMMAND_ReadBootloaderSWVersion)
{
WriteNextResponseByte('0' + BOOTLOADER_VERSION_MAJOR);
WriteNextResponseByte('0' + BOOTLOADER_VERSION_MINOR);
}
- else if (Command == 's')
+ else if (Command == AVR109_COMMAND_ReadSignature)
{
WriteNextResponseByte(AVR_SIGNATURE_3);
WriteNextResponseByte(AVR_SIGNATURE_2);
WriteNextResponseByte(AVR_SIGNATURE_1);
}
- else if (Command == 'e')
+ else if (Command == AVR109_COMMAND_EraseFLASH)
{
/* Clear the application section of flash */
- for (uint32_t CurrFlashAddress = 0; CurrFlashAddress < BOOT_START_ADDR; CurrFlashAddress += SPM_PAGESIZE)
+ for (uint32_t CurrFlashAddress = 0; CurrFlashAddress < (uint32_t)BOOT_START_ADDR; CurrFlashAddress += SPM_PAGESIZE)
{
boot_page_erase(CurrFlashAddress);
boot_spm_busy_wait();
WriteNextResponseByte('\r');
}
#if !defined(NO_LOCK_BYTE_WRITE_SUPPORT)
- else if (Command == 'l')
+ else if (Command == AVR109_COMMAND_WriteLockbits)
{
/* Set the lock bits to those given by the host */
boot_lock_bits_set(FetchNextCommandByte());
WriteNextResponseByte('\r');
}
#endif
- else if (Command == 'r')
+ else if (Command == AVR109_COMMAND_ReadLockbits)
{
WriteNextResponseByte(boot_lock_fuse_bits_get(GET_LOCK_BITS));
}
- else if (Command == 'F')
+ else if (Command == AVR109_COMMAND_ReadLowFuses)
{
WriteNextResponseByte(boot_lock_fuse_bits_get(GET_LOW_FUSE_BITS));
}
- else if (Command == 'N')
+ else if (Command == AVR109_COMMAND_ReadHighFuses)
{
WriteNextResponseByte(boot_lock_fuse_bits_get(GET_HIGH_FUSE_BITS));
}
- else if (Command == 'Q')
+ else if (Command == AVR109_COMMAND_ReadExtendedFuses)
{
WriteNextResponseByte(boot_lock_fuse_bits_get(GET_EXTENDED_FUSE_BITS));
}
#if !defined(NO_BLOCK_SUPPORT)
- else if (Command == 'b')
+ else if (Command == AVR109_COMMAND_GetBlockWriteSupport)
{
WriteNextResponseByte('Y');
WriteNextResponseByte(SPM_PAGESIZE >> 8);
WriteNextResponseByte(SPM_PAGESIZE & 0xFF);
}
- else if ((Command == 'B') || (Command == 'g'))
+ else if ((Command == AVR109_COMMAND_BlockWrite) || (Command == AVR109_COMMAND_BlockRead))
{
/* Delegate the block write/read to a separate function for clarity */
ReadWriteMemoryBlock(Command);
}
#endif
#if !defined(NO_FLASH_BYTE_SUPPORT)
- else if (Command == 'C')
+ else if (Command == AVR109_COMMAND_FillFlashPageWordHigh)
{
/* Write the high byte to the current flash page */
boot_page_fill(CurrAddress, FetchNextCommandByte());
/* Send confirmation byte back to the host */
WriteNextResponseByte('\r');
}
- else if (Command == 'c')
+ else if (Command == AVR109_COMMAND_FillFlashPageWordLow)
{
/* Write the low byte to the current flash page */
boot_page_fill(CurrAddress | 0x01, FetchNextCommandByte());
/* Send confirmation byte back to the host */
WriteNextResponseByte('\r');
}
- else if (Command == 'm')
+ else if (Command == AVR109_COMMAND_WriteFlashPage)
{
/* Commit the flash page to memory */
boot_page_write(CurrAddress);
/* Send confirmation byte back to the host */
WriteNextResponseByte('\r');
}
- else if (Command == 'R')
+ else if (Command == AVR109_COMMAND_ReadFLASHWord)
{
#if (FLASHEND > 0xFFFF)
uint16_t ProgramWord = pgm_read_word_far(CurrAddress);
}
#endif
#if !defined(NO_EEPROM_BYTE_SUPPORT)
- else if (Command == 'D')
+ else if (Command == AVR109_COMMAND_WriteEEPROM)
{
/* Read the byte from the endpoint and write it to the EEPROM */
eeprom_write_byte((uint8_t*)((intptr_t)(CurrAddress >> 1)), FetchNextCommandByte());
/* Send confirmation byte back to the host */
WriteNextResponseByte('\r');
}
- else if (Command == 'd')
+ else if (Command == AVR109_COMMAND_ReadEEPROM)
{
/* Read the EEPROM byte and write it to the endpoint */
WriteNextResponseByte(eeprom_read_byte((uint8_t*)((intptr_t)(CurrAddress >> 1))));
CurrAddress += 2;
}
#endif
- else if (Command != 27)
+ else if (Command != AVR109_COMMAND_Sync)
{
/* Unknown (non-sync) command, return fail code */
WriteNextResponseByte('?');
}
/* Select the IN endpoint */
- Endpoint_SelectEndpoint(CDC_TX_EPNUM);
+ Endpoint_SelectEndpoint(CDC_TX_EPADDR);
/* Remember if the endpoint is completely full before clearing it */
bool IsEndpointFull = !(Endpoint_IsReadWriteAllowed());
}
/* Select the OUT endpoint */
- Endpoint_SelectEndpoint(CDC_RX_EPNUM);
+ Endpoint_SelectEndpoint(CDC_RX_EPADDR);
/* Acknowledge the command from the host */
Endpoint_ClearOUT();