/*
LUFA Library
- Copyright (C) Dean Camera, 2011.
+ Copyright (C) Dean Camera, 2012.
dean [at] fourwalledcubicle [dot] com
www.lufa-lib.org
*/
/*
- Copyright 2011 Dean Camera (dean [at] fourwalledcubicle [dot] com)
+ Copyright 2012 Dean Camera (dean [at] fourwalledcubicle [dot] com)
Permission to use, copy, modify, distribute, and sell this
software and its documentation for any purpose is hereby granted
*/
static uint16_t StartAddr = 0x0000;
-/** Memory end address, indicating the end address to read to/write from in the memory being addressed (either FLASH
+/** Memory end address, indicating the end address to read from/write to in the memory being addressed (either FLASH
* of EEPROM depending on the issued command from the host).
*/
static uint16_t EndAddr = 0x0000;
+/** Magic lock for forced application start. If the HWBE fuse is programmed and BOOTRST is unprogrammed, the bootloader
+ * will start if the /HWB line of the AVR is held low and the system is reset. However, if the /HWB line is still held
+ * low when the application attempts to start via a watchdog reset, the bootloader will re-start. If set to the value
+ * \ref MAGIC_BOOT_KEY the special init function \ref Application_Jump_Check() will force the application to start.
+ */
+uint16_t MagicBootKey ATTR_NO_INIT;
+
+
+/** Special startup routine to check if the bootloader was started via a watchdog reset, and if the magic application
+ * start key has been loaded into \ref MagicBootKey. If the bootloader started via the watchdog and the key is valid,
+ * this will force the user application to start via a software jump.
+ */
+void Application_Jump_Check(void)
+{
+ bool JumpToApplication = false;
+
+ #if ((BOARD == BOARD_XPLAIN) || (BOARD == BOARD_XPLAIN_REV1))
+ /* Disable JTAG debugging */
+ JTAG_DISABLE();
+
+ /* Enable pull-up on the JTAG TCK pin so we can use it to select the mode */
+ PORTF |= (1 << 4);
+ Delay_MS(10);
+
+ /* If the TCK pin is not jumpered to ground, start the user application instead */
+ JumpToApplication |= ((PINF & (1 << 4)) != 0);
+
+ /* Re-enable JTAG debugging */
+ JTAG_ENABLE();
+ #endif
+
+ /* If the reset source was the bootloader and the key is correct, clear it and jump to the application */
+ if ((MCUSR & (1 << WDRF)) && (MagicBootKey == MAGIC_BOOT_KEY))
+ JumpToApplication |= true;
+
+ /* If a request has been made to jump to the user application, honor it */
+ if (JumpToApplication)
+ {
+ /* Turn off the watchdog */
+ MCUSR &= ~(1<<WDRF);
+ wdt_disable();
+
+ /* Clear the boot key and jump to the user application */
+ MagicBootKey = 0;
+
+ // cppcheck-suppress constStatement
+ ((void (*)(void))0x0000)();
+ }
+}
/** Main program entry point. This routine configures the hardware required by the bootloader, then continuously
* runs the bootloader processing routine until instructed to soft-exit, or hard-reset via the watchdog to start
/* Configure hardware required by the bootloader */
SetupHardware();
- #if ((BOARD == BOARD_XPLAIN) || (BOARD == BOARD_XPLAIN_REV1))
- /* Disable JTAG debugging */
- MCUCR |= (1 << JTD);
- MCUCR |= (1 << JTD);
-
- /* Enable pull-up on the JTAG TCK pin so we can use it to select the mode */
- PORTF |= (1 << 4);
- Delay_MS(10);
-
- /* If the TCK pin is not jumpered to ground, start the user application instead */
- RunBootloader = (!(PINF & (1 << 4)));
-
- /* Re-enable JTAG debugging */
- MCUCR &= ~(1 << JTD);
- MCUCR &= ~(1 << JTD);
- #endif
-
/* Turn on first LED on the board to indicate that the bootloader has started */
LEDs_SetAllLEDs(LEDS_LED1);
}
/** Configures all hardware required for the bootloader. */
-void SetupHardware(void)
+static void SetupHardware(void)
{
/* Disable watchdog if enabled by bootloader/fuses */
MCUSR &= ~(1 << WDRF);
MCUCR = (1 << IVCE);
MCUCR = (1 << IVSEL);
- /* Initialize the USB subsystem */
+ /* Initialize the USB and other board hardware drivers */
USB_Init();
LEDs_Init();
-
+
/* Bootloader active LED toggle timer initialization */
TIMSK1 = (1 << TOIE1);
TCCR1B = ((1 << CS11) | (1 << CS10));
}
/** Resets all configured hardware required for the bootloader back to their original states. */
-void ResetHardware(void)
+static void ResetHardware(void)
{
- /* Shut down the USB subsystem */
+ /* Shut down the USB and other board hardware drivers */
USB_Disable();
+ LEDs_Disable();
+
+ /* Disable Bootloader active LED toggle timer */
+ TIMSK1 = 0;
+ TCCR1B = 0;
/* Relocate the interrupt vector table back to the application section */
MCUCR = (1 << IVCE);
*/
void EVENT_USB_Device_ControlRequest(void)
{
- /* Get the size of the command and data from the wLength value */
- SentCommand.DataSize = USB_ControlRequest.wLength;
-
/* Ignore any requests that aren't directed to the DFU interface */
if ((USB_ControlRequest.bmRequestType & (CONTROL_REQTYPE_TYPE | CONTROL_REQTYPE_RECIPIENT)) !=
(REQTYPE_CLASS | REQREC_INTERFACE))
return;
}
+ /* Activity - toggle indicator LEDs */
+ LEDs_ToggleLEDs(LEDS_LED1 | LEDS_LED2);
+
+ /* Get the size of the command and data from the wLength value */
+ SentCommand.DataSize = USB_ControlRequest.wLength;
+
switch (USB_ControlRequest.bRequest)
{
case DFU_REQ_DNLOAD:
{
uint32_t CurrFlashAddress = 0;
- while (CurrFlashAddress < BOOT_START_ADDR)
+ while (CurrFlashAddress < (uint32_t)BOOT_START_ADDR)
{
/* Check if the current byte is not blank */
#if (FLASHEND > 0xFFFF)
{
if (SentCommand.Data[1] == 0x00) // Start via watchdog
{
+ /* Unlock the forced application start mode of the bootloader if it is restarted */
+ MagicBootKey = MAGIC_BOOT_KEY;
+
/* Start the watchdog to reset the AVR once the communications are finalized */
wdt_enable(WDTO_250MS);
}
uint32_t CurrFlashAddress = 0;
/* Clear the application section of flash */
- while (CurrFlashAddress < BOOT_START_ADDR)
+ while (CurrFlashAddress < (uint32_t)BOOT_START_ADDR)
{
boot_page_erase(CurrFlashAddress);
boot_spm_busy_wait();