*/
static bool RunBootloader = true;
+/** Magic lock for forced application start. If the HWBE fuse is programmed and BOOTRST is unprogrammed, the bootloader
+ * will start if the /HWB line of the AVR is held low and the system is reset. However, if the /HWB line is still held
+ * low when the application attempts to start via a watchdog reset, the bootloader will re-start. If set to the value
+ * \ref MAGIC_BOOT_KEY the special init function \ref Application_Jump_Check() will force the application to start.
+ */
+uint32_t MagicBootKey ATTR_NO_INIT;
+
+
+/** Special startup routine to check if the bootloader was started via a watchdog reset, and if the magic application
+ * start key has been loaded into \ref MagicBootKey. If the bootloader started via the watchdog and the key is valid,
+ * this will force the user application to start via a software jump.
+ */
+void Application_Jump_Check(void)
+{
+ /* If the reset source was the bootloader and the key is correct, clear it and jump to the application */
+ if ((MCUSR & (1 << WDRF)) && (MagicBootKey == MAGIC_BOOT_KEY))
+ {
+ /* Turn off the watchdog */
+ MCUSR &= ~(1<<WDRF);
+ wdt_disable();
+
+ /* Clear the boot key and jump to the user application */
+ MagicBootKey = 0;
+
+ // cppcheck-suppress constStatement
+ ((void (*)(void))0x0000)();
+ }
+}
/** Main program entry point. This routine configures the hardware required by the bootloader, then continuously
* runs the bootloader processing routine until instructed to soft-exit, or hard-reset via the watchdog to start
/* Disconnect from the host - USB interface will be reset later along with the AVR */
USB_Detach();
+
+ /* Unlock the forced application start mode of the bootloader if it is restarted */
+ MagicBootKey = MAGIC_BOOT_KEY;
/* Enable the watchdog and force a timeout to reset the AVR */
wdt_enable(WDTO_250MS);
else if (Command == 'e')
{
/* Clear the application section of flash */
- for (uint32_t CurrFlashAddress = 0; CurrFlashAddress < BOOT_START_ADDR; CurrFlashAddress += SPM_PAGESIZE)
+ for (uint32_t CurrFlashAddress = 0; CurrFlashAddress < (uint32_t)BOOT_START_ADDR; CurrFlashAddress += SPM_PAGESIZE)
{
boot_page_erase(CurrFlashAddress);
boot_spm_busy_wait();