/*
LUFA Library
- Copyright (C) Dean Camera, 2010.
+ Copyright (C) Dean Camera, 2011.
dean [at] fourwalledcubicle [dot] com
www.lufa-lib.org
*/
/*
- Copyright 2010 Dean Camera (dean [at] fourwalledcubicle [dot] com)
+ Copyright 2011 Dean Camera (dean [at] fourwalledcubicle [dot] com)
Permission to use, copy, modify, distribute, and sell this
software and its documentation for any purpose is hereby granted
/** Contains the current baud rate and other settings of the first virtual serial port. This must be retained as some
* operating systems will not open the port unless the settings can be set successfully.
*/
-CDC_Line_Coding_t LineEncoding = { .BaudRateBPS = 0,
- .CharFormat = OneStopBit,
- .ParityType = Parity_None,
- .DataBits = 8 };
+static CDC_LineEncoding_t LineEncoding = { .BaudRateBPS = 0,
+ .CharFormat = CDC_LINEENCODING_OneStopBit,
+ .ParityType = CDC_PARITY_None,
+ .DataBits = 8 };
/** Current address counter. This stores the current address of the FLASH or EEPROM as set by the host,
* and is used when reading or writing to the AVRs memory (either FLASH or EEPROM depending on the issued
* command.)
*/
-uint32_t CurrAddress;
+static uint32_t CurrAddress;
/** Flag to indicate if the bootloader should be running, or should exit and allow the application code to run
* via a watchdog reset. When cleared the bootloader will exit, starting the watchdog and entering an infinite
* loop until the AVR restarts and the application runs.
*/
-bool RunBootloader = true;
+static bool RunBootloader = true;
/** Main program entry point. This routine configures the hardware required by the bootloader, then continuously
ENDPOINT_BANK_SINGLE);
}
-/** Event handler for the USB_UnhandledControlRequest event. This is used to catch standard and class specific
- * control requests that are not handled internally by the USB library (including the CDC control commands,
- * which are all issued via the control endpoint), so that they can be handled appropriately for the application.
+/** Event handler for the USB_ControlRequest event. This is used to catch and process control requests sent to
+ * the device from the USB host before passing along unhandled control requests to the library for processing
+ * internally.
*/
-void EVENT_USB_Device_UnhandledControlRequest(void)
+void EVENT_USB_Device_ControlRequest(void)
{
+ /* Ignore any requests that aren't directed to the CDC interface */
+ if ((USB_ControlRequest.bmRequestType & (CONTROL_REQTYPE_TYPE | CONTROL_REQTYPE_RECIPIENT)) !=
+ (REQTYPE_CLASS | REQREC_INTERFACE))
+ {
+ return;
+ }
+
/* Process CDC specific control requests */
switch (USB_ControlRequest.bRequest)
{
- case REQ_GetLineEncoding:
+ case CDC_REQ_GetLineEncoding:
if (USB_ControlRequest.bmRequestType == (REQDIR_DEVICETOHOST | REQTYPE_CLASS | REQREC_INTERFACE))
{
Endpoint_ClearSETUP();
/* Write the line coding data to the control endpoint */
- Endpoint_Write_Control_Stream_LE(&LineEncoding, sizeof(CDC_Line_Coding_t));
+ Endpoint_Write_Control_Stream_LE(&LineEncoding, sizeof(CDC_LineEncoding_t));
Endpoint_ClearOUT();
}
break;
- case REQ_SetLineEncoding:
+ case CDC_REQ_SetLineEncoding:
if (USB_ControlRequest.bmRequestType == (REQDIR_HOSTTODEVICE | REQTYPE_CLASS | REQREC_INTERFACE))
{
Endpoint_ClearSETUP();
/* Read the line coding data in from the host into the global struct */
- Endpoint_Read_Control_Stream_LE(&LineEncoding, sizeof(CDC_Line_Coding_t));
+ Endpoint_Read_Control_Stream_LE(&LineEncoding, sizeof(CDC_LineEncoding_t));
Endpoint_ClearIN();
}
}
}
- /* Write the next byte to the OUT endpoint */
+ /* Write the next byte to the IN endpoint */
Endpoint_Write_Byte(Response);
}