this software.\r
*/\r
\r
-#if defined(ENABLE_PDI_PROTOCOL) || defined(__DOXYGEN__)\r
-\r
/** \file\r
*\r
* Target-related functions for the PDI Protocol decoder.\r
#define INCLUDE_FROM_PDITARGET_C\r
#include "PDITarget.h"\r
\r
-volatile bool IsSending;\r
+#if defined(ENABLE_PDI_PROTOCOL) || defined(__DOXYGEN__)\r
+\r
+/** Flag to indicate if the USART is currently in Tx or Rx mode. */\r
+volatile bool IsSending;\r
\r
#if !defined(PDI_VIA_HARDWARE_USART)\r
-volatile uint16_t SoftUSART_Data;\r
-volatile uint8_t SoftUSART_BitCount;\r
+/** Software USART raw frame bits for transmission/reception. */\r
+volatile uint16_t SoftUSART_Data;\r
\r
-ISR(TIMER0_COMPA_vect, ISR_BLOCK)\r
+/** Bits remaining to be sent or received via the software USART - set as a GPIOR for speed. */\r
+#define SoftUSART_BitCount GPIOR2\r
+\r
+\r
+/** ISR to manage the software USART when bit-banged USART mode is selected. */\r
+ISR(TIMER1_COMPA_vect, ISR_BLOCK)\r
{\r
/* Toggle CLOCK pin in a single cycle (see AVR datasheet) */\r
BITBANG_PDICLOCK_PIN |= BITBANG_PDICLOCK_MASK;\r
if (!(SoftUSART_BitCount))\r
return;\r
\r
- /* Check to see if the current clock state is on the rising or falling edge */\r
- bool IsRisingEdge = (BITBANG_PDICLOCK_PORT & BITBANG_PDICLOCK_MASK);\r
-\r
- if (IsSending && !IsRisingEdge)\r
+ /* Check to see if we are at a rising or falling edge of the clock */\r
+ if (BITBANG_PDICLOCK_PORT & BITBANG_PDICLOCK_MASK)\r
{\r
- if (SoftUSART_Data & 0x01)\r
- BITBANG_PDIDATA_PORT |= BITBANG_PDIDATA_MASK;\r
- else\r
- BITBANG_PDIDATA_PORT &= ~BITBANG_PDIDATA_MASK; \r
+ /* If at rising clock edge and we are in send mode, abort */\r
+ if (IsSending)\r
+ return;\r
+ \r
+ /* Wait for the start bit when receiving */\r
+ if ((SoftUSART_BitCount == BITS_IN_FRAME) && (BITBANG_PDIDATA_PIN & BITBANG_PDIDATA_MASK))\r
+ return;\r
+ \r
+ /* Shift in the bit one less than the frame size in position, so that the start bit will eventually\r
+ * be discarded leaving the data to be byte-aligned for quick access */\r
+ if (BITBANG_PDIDATA_PIN & BITBANG_PDIDATA_MASK)\r
+ SoftUSART_Data |= (1 << (BITS_IN_FRAME - 1));\r
\r
SoftUSART_Data >>= 1;\r
SoftUSART_BitCount--;\r
}\r
- else if (!IsSending && IsRisingEdge)\r
+ else\r
{\r
- /* Wait for the start bit when receiving */\r
- if ((SoftUSART_BitCount == BITS_IN_FRAME) && (BITBANG_PDIDATA_PIN & BITBANG_PDIDATA_MASK))\r
+ /* If at falling clock edge and we are in receive mode, abort */\r
+ if (!IsSending)\r
return;\r
- \r
- if (BITBANG_PDIDATA_PIN & BITBANG_PDIDATA_MASK)\r
- SoftUSART_Data |= (1 << BITS_IN_FRAME);\r
+\r
+ /* Set the data line to the next bit value */\r
+ if (SoftUSART_Data & 0x01)\r
+ BITBANG_PDIDATA_PORT |= BITBANG_PDIDATA_MASK;\r
+ else\r
+ BITBANG_PDIDATA_PORT &= ~BITBANG_PDIDATA_MASK; \r
\r
SoftUSART_Data >>= 1;\r
SoftUSART_BitCount--;\r
}\r
#endif\r
\r
+/** Enables the target's PDI interface, holding the target in reset until PDI mode is exited. */\r
void PDITarget_EnableTargetPDI(void)\r
{\r
#if defined(PDI_VIA_HARDWARE_USART)\r
\r
/* Set up the synchronous USART for XMEGA communications - \r
8 data bits, even parity, 2 stop bits */\r
- UBRR1 = 10;\r
+ UBRR1 = (F_CPU / 1000000UL);\r
UCSR1B = (1 << TXEN1);\r
UCSR1C = (1 << UMSEL10) | (1 << UPM11) | (1 << USBS1) | (1 << UCSZ11) | (1 << UCSZ10) | (1 << UCPOL1);\r
\r
asm volatile ("NOP"::);\r
asm volatile ("NOP"::);\r
\r
- /* Fire timer compare ISR every 50 cycles to manage the software USART */\r
- OCR0A = 50;\r
- TCCR0A = (1 << WGM01);\r
- TCCR0B = (1 << CS00);\r
- TIMSK0 = (1 << OCIE0A);\r
+ /* Fire timer compare ISR every 100 cycles to manage the software USART */\r
+ OCR1A = 80;\r
+ TCCR1B = (1 << WGM12) | (1 << CS10);\r
+ TIMSK1 = (1 << OCIE1A);\r
\r
PDITarget_SendBreak();\r
PDITarget_SendBreak();\r
#endif\r
}\r
\r
+/** Disables the target's PDI interface, exits programming mode and starts the target's application. */\r
void PDITarget_DisableTargetPDI(void)\r
{\r
#if defined(PDI_VIA_HARDWARE_USART)\r
#endif\r
}\r
\r
-void PDITarget_SendByte(uint8_t Byte)\r
+/** Sends a byte via the USART.\r
+ *\r
+ * \param[in] Byte Byte to send through the USART\r
+ */\r
+void PDITarget_SendByte(const uint8_t Byte)\r
{\r
#if defined(PDI_VIA_HARDWARE_USART)\r
/* Switch to Tx mode if currently in Rx mode */\r
PORTD |= (1 << 3);\r
DDRD |= (1 << 3);\r
\r
- UCSR1B &= ~(1 << RXEN1);\r
UCSR1B |= (1 << TXEN1);\r
+ UCSR1B &= ~(1 << RXEN1);\r
\r
IsSending = true;\r
}\r
\r
/* Wait until there is space in the hardware Tx buffer before writing */\r
while (!(UCSR1A & (1 << UDRE1)));\r
- UDR1 = Byte;\r
+ UCSR1A |= (1 << TXC1);\r
+ UDR1 = Byte;\r
#else\r
/* Switch to Tx mode if currently in Rx mode */\r
if (!(IsSending))\r
IsSending = true;\r
}\r
\r
- bool EvenParityBit = false;\r
- uint8_t ParityData = Byte;\r
+ /* Calculate the new USART frame data here while while we wait for a previous byte (if any) to finish sending */\r
+ uint16_t NewUSARTData = ((1 << 11) | (1 << 10) | (0 << 9) | ((uint16_t)Byte << 1) | (0 << 0));\r
\r
- /* Compute Even parity bit */\r
- for (uint8_t i = 0; i < 8; i++)\r
+ /* Compute Even parity - while a bit is still set, chop off lowest bit and toggle parity bit */\r
+ uint8_t ParityData = Byte;\r
+ while (ParityData)\r
{\r
- EvenParityBit ^= ParityData & 0x01;\r
- ParityData >>= 1;\r
+ NewUSARTData ^= (1 << 9);\r
+ ParityData &= (ParityData - 1);\r
}\r
\r
+ /* Wait until transmitter is idle before writing new data */\r
while (SoftUSART_BitCount);\r
\r
/* Data shifted out LSB first, START DATA PARITY STOP STOP */\r
- SoftUSART_Data = ((uint16_t)EvenParityBit << 9) | ((uint16_t)Byte << 1) | (1 << 10) | (1 << 11);\r
+ SoftUSART_Data = NewUSARTData;\r
SoftUSART_BitCount = BITS_IN_FRAME;\r
#endif\r
}\r
\r
+/** Receives a byte via the software USART, blocking until data is received.\r
+ *\r
+ * \return Received byte from the USART\r
+ */\r
uint8_t PDITarget_ReceiveByte(void)\r
{\r
#if defined(PDI_VIA_HARDWARE_USART)\r
SoftUSART_BitCount = BITS_IN_FRAME;\r
while (SoftUSART_BitCount);\r
\r
- /* Throw away the start, parity and stop bits to leave only the data */\r
- return (uint8_t)(SoftUSART_Data >> 1);\r
+ /* Throw away the parity and stop bits to leave only the data (start bit is already discarded) */\r
+ return (uint8_t)SoftUSART_Data;\r
#endif\r
}\r
\r
+/** Sends a BREAK via the USART to the attached target, consisting of a full frame of idle bits. */\r
void PDITarget_SendBreak(void)\r
{\r
#if defined(PDI_VIA_HARDWARE_USART)\r
}\r
\r
/* Need to do nothing for a full frame to send a BREAK */\r
- for (uint8_t i = 0; i <= BITS_IN_FRAME; i++)\r
+ for (uint8_t i = 0; i < BITS_IN_FRAME; i++)\r
{\r
/* Wait for a full cycle of the clock */\r
while (PIND & (1 << 5));\r
#endif\r
}\r
\r
-void PDITarget_SendAddress(uint32_t Address)\r
-{\r
- PDITarget_SendByte(Address >> 24);\r
- PDITarget_SendByte(Address >> 26);\r
- PDITarget_SendByte(Address >> 8);\r
- PDITarget_SendByte(Address & 0xFF);\r
-}\r
-\r
+/** Busy-waits while the NVM controller is busy performing a NVM operation, such as a FLASH page read or CRC\r
+ * calculation.\r
+ *\r
+ * \return Boolean true if the NVM controller became ready within the timeout period, false otherwise\r
+ */\r
bool PDITarget_WaitWhileNVMBusBusy(void)\r
{\r
- uint8_t AttemptsRemaining = 255;\r
-\r
+ TCNT0 = 0;\r
+ TIFR0 = (1 << OCF1A);\r
+ \r
+ uint8_t TimeoutMS = PDI_NVM_TIMEOUT_MS;\r
+ \r
/* Poll the STATUS register to check to see if NVM access has been enabled */\r
- while (AttemptsRemaining--)\r
+ while (TimeoutMS)\r
{\r
+ /* Send the LDCS command to read the PDI STATUS register to see the NVM bus is active */\r
PDITarget_SendByte(PDI_CMD_LDCS | PDI_STATUS_REG);\r
if (PDITarget_ReceiveByte() & PDI_STATUS_NVM)\r
return true;\r
+\r
+ if (TIFR0 & (1 << OCF1A))\r
+ {\r
+ TIFR0 = (1 << OCF1A);\r
+ TimeoutMS--;\r
+ }\r
}\r
\r
return false;\r
}\r
\r
-void PDITarget_WaitWhileNVMControllerBusy(void)\r
-{\r
- /* Poll the NVM STATUS register to check to see if NVM controller is busy */\r
- for (;;)\r
- {\r
- PDITarget_SendByte(PDI_CMD_LDS | (PDI_DATSIZE_1BYTE << 2));\r
- PDITarget_SendAddress(DATAMEM_BASE | DATAMEM_NVM_BASE | 0x0F);\r
- \r
- if (!(PDITarget_ReceiveByte() & (1 << 7)))\r
- return;\r
- }\r
-}\r
-\r
#endif\r