#define DEBUG_PRINTF(...) /*printf(__VA_ARGS__)*/
/**
- * \defgroup uip The uIP TCP/IP stack
+ * \addtogroup uip
* @{
- *
- * uIP is an implementation of the TCP/IP protocol stack intended for
- * small 8-bit and 16-bit microcontrollers.
- *
- * uIP provides the necessary protocols for Internet communication,
- * with a very small code footprint and RAM requirements - the uIP
- * code size is on the order of a few kilobytes and RAM usage is on
- * the order of a few hundred bytes.
*/
/**
*
* This file is part of the uIP TCP/IP stack.
*
- * $Id: uip.c,v 1.65 2006/06/11 21:46:39 adam Exp $
+ * $Id: uip.c,v 1.15 2008/10/15 08:08:32 adamdunkels Exp $
*
*/
* statement. While it would be possible to break the uip_process()
* function into many smaller functions, this would increase the code
* size because of the overhead of parameter passing and the fact that
- * the optimier would not be as efficient.
+ * the optimiser would not be as efficient.
*
* The principle is that we have a small buffer, called the uip_buf,
* in which the device driver puts an incoming packet. The TCP/IP
#include "uip.h"
#include "uipopt.h"
-#include "uip_arch.h"
+#include "uip_arp.h"
+
+#if !UIP_CONF_IPV6 /* If UIP_CONF_IPV6 is defined, we compile the
+ uip6.c file instead of this one. Therefore
+ this #ifndef removes the entire compilation
+ output of the uip.c file */
+
#if UIP_CONF_IPV6
-#include "uip-neighbor.h"
+#include "net/uip-neighbor.h"
#endif /* UIP_CONF_IPV6 */
#include <string.h>
here. Otherwise, the address */
#if UIP_FIXEDADDR > 0
const uip_ipaddr_t uip_hostaddr =
- {HTONS((UIP_IPADDR0 << 8) | UIP_IPADDR1),
- HTONS((UIP_IPADDR2 << 8) | UIP_IPADDR3)};
+ { UIP_IPADDR0, UIP_IPADDR1, UIP_IPADDR2, UIP_IPADDR3 };
const uip_ipaddr_t uip_draddr =
- {HTONS((UIP_DRIPADDR0 << 8) | UIP_DRIPADDR1),
- HTONS((UIP_DRIPADDR2 << 8) | UIP_DRIPADDR3)};
+ { UIP_DRIPADDR0, UIP_DRIPADDR1, UIP_DRIPADDR2, UIP_DRIPADDR3 };
const uip_ipaddr_t uip_netmask =
- {HTONS((UIP_NETMASK0 << 8) | UIP_NETMASK1),
- HTONS((UIP_NETMASK2 << 8) | UIP_NETMASK3)};
+ { UIP_NETMASK0, UIP_NETMASK1, UIP_NETMASK2, UIP_NETMASK3 };
#else
uip_ipaddr_t uip_hostaddr, uip_draddr, uip_netmask;
#endif /* UIP_FIXEDADDR */
-static const uip_ipaddr_t all_ones_addr =
-#if UIP_CONF_IPV6
- {0xffff,0xffff,0xffff,0xffff,0xffff,0xffff,0xffff,0xffff};
-#else /* UIP_CONF_IPV6 */
- {0xffff,0xffff};
-#endif /* UIP_CONF_IPV6 */
-static const uip_ipaddr_t all_zeroes_addr =
+const uip_ipaddr_t uip_broadcast_addr =
#if UIP_CONF_IPV6
- {0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000};
+ { { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff } };
#else /* UIP_CONF_IPV6 */
- {0x0000,0x0000};
+ { { 0xff, 0xff, 0xff, 0xff } };
#endif /* UIP_CONF_IPV6 */
-
+const uip_ipaddr_t uip_all_zeroes_addr = { { 0x0, /* rest is 0 */ } };
#if UIP_FIXEDETHADDR
const struct uip_eth_addr uip_ethaddr = {{UIP_ETHADDR0,
connections. */
u16_t uip_listenports[UIP_LISTENPORTS];
/* The uip_listenports list all currently
- listning ports. */
+ listening ports. */
#if UIP_UDP
struct uip_udp_conn *uip_udp_conn;
struct uip_udp_conn uip_udp_conns[UIP_UDP_CONNS];
#define ICMP_ECHO_REPLY 0
#define ICMP_ECHO 8
+#define ICMP_DEST_UNREACHABLE 3
+#define ICMP_PORT_UNREACHABLE 3
+
#define ICMP6_ECHO_REPLY 129
#define ICMP6_ECHO 128
#define ICMP6_NEIGHBOR_SOLICITATION 135
uip_acc32[2] = op32[2] + (op16 >> 8);
uip_acc32[1] = op32[1];
uip_acc32[0] = op32[0];
-
+
if(uip_acc32[2] < (op16 >> 8)) {
++uip_acc32[1];
if(uip_acc32[1] == 0) {
++uip_acc32[0];
}
}
-
-
+
+
if(uip_acc32[3] < (op16 & 0xff)) {
++uip_acc32[2];
if(uip_acc32[2] == 0) {
dataptr = data;
last_byte = data + len - 1;
-
+
while(dataptr < last_byte) { /* At least two more bytes */
t = (dataptr[0] << 8) + dataptr[1];
sum += t;
}
dataptr += 2;
}
-
+
if(dataptr == last_byte) {
t = (dataptr[0] << 8) + 0;
sum += t;
{
u16_t upper_layer_len;
u16_t sum;
-
+
#if UIP_CONF_IPV6
upper_layer_len = (((u16_t)(BUF->len[0]) << 8) + BUF->len[1]);
#else /* UIP_CONF_IPV6 */
upper_layer_len = (((u16_t)(BUF->len[0]) << 8) + BUF->len[1]) - UIP_IPH_LEN;
#endif /* UIP_CONF_IPV6 */
-
+
/* First sum pseudoheader. */
-
+
/* IP protocol and length fields. This addition cannot carry. */
sum = upper_layer_len + proto;
/* Sum IP source and destination addresses. */
- sum = chksum(sum, (u8_t *)&BUF->srcipaddr[0], 2 * sizeof(uip_ipaddr_t));
+ sum = chksum(sum, (u8_t *)&BUF->srcipaddr, 2 * sizeof(uip_ipaddr_t));
/* Sum TCP header and data. */
sum = chksum(sum, &uip_buf[UIP_IPH_LEN + UIP_LLH_LEN],
upper_layer_len);
-
+
return (sum == 0) ? 0xffff : htons(sum);
}
/*---------------------------------------------------------------------------*/
uip_icmp6chksum(void)
{
return upper_layer_chksum(UIP_PROTO_ICMP6);
-
+
}
#endif /* UIP_CONF_IPV6 */
/*---------------------------------------------------------------------------*/
uip_udp_conns[c].lport = 0;
}
#endif /* UIP_UDP */
-
+
/* IPv4 initialization. */
#if UIP_FIXEDADDR == 0
uip_connect(uip_ipaddr_t *ripaddr, u16_t rport)
{
register struct uip_conn *conn, *cconn;
-
+
/* Find an unused local port. */
again:
++lastport;
if(conn == 0) {
return 0;
}
-
+
conn->tcpstateflags = UIP_SYN_SENT;
conn->snd_nxt[0] = iss[0];
conn->snd_nxt[3] = iss[3];
conn->initialmss = conn->mss = UIP_TCP_MSS;
-
+
conn->len = 1; /* TCP length of the SYN is one. */
conn->nrtx = 0;
conn->timer = 1; /* Send the SYN next time around. */
conn->lport = htons(lastport);
conn->rport = rport;
uip_ipaddr_copy(&conn->ripaddr, ripaddr);
-
+
return conn;
}
#endif /* UIP_ACTIVE_OPEN */
/*---------------------------------------------------------------------------*/
#if UIP_UDP
struct uip_udp_conn *
-uip_udp_new(uip_ipaddr_t *ripaddr, u16_t rport)
+uip_udp_new(const uip_ipaddr_t *ripaddr, u16_t rport)
{
register struct uip_udp_conn *conn;
-
+
/* Find an unused local port. */
again:
++lastport;
if(lastport >= 32000) {
lastport = 4096;
}
-
+
for(c = 0; c < UIP_UDP_CONNS; ++c) {
if(uip_udp_conns[c].lport == htons(lastport)) {
goto again;
if(conn == 0) {
return 0;
}
-
+
conn->lport = HTONS(lastport);
conn->rport = rport;
if(ripaddr == NULL) {
- memset(conn->ripaddr, 0, sizeof(uip_ipaddr_t));
+ memset(&conn->ripaddr, 0, sizeof(uip_ipaddr_t));
} else {
uip_ipaddr_copy(&conn->ripaddr, ripaddr);
}
conn->ttl = UIP_TTL;
-
+
return conn;
}
#endif /* UIP_UDP */
memcpy(&uip_reassbuf[UIP_IPH_LEN + offset],
(char *)BUF + (int)((BUF->vhl & 0x0f) * 4),
len);
-
+
/* Update the bitmap. */
if(offset / (8 * 8) == (offset + len) / (8 * 8)) {
/* If the two endpoints are in the same byte, we only update
that byte. */
-
+
uip_reassbitmap[offset / (8 * 8)] |=
bitmap_bits[(offset / 8 ) & 7] &
~bitmap_bits[((offset + len) / 8 ) & 7];
} else {
/* If the two endpoints are in different bytes, we update the
- bytes in the endpoints and fill the stuff inbetween with
+ bytes in the endpoints and fill the stuff in-between with
0xff. */
uip_reassbitmap[offset / (8 * 8)] |=
bitmap_bits[(offset / 8 ) & 7];
uip_reassbitmap[(offset + len) / (8 * 8)] |=
~bitmap_bits[((offset + len) / 8 ) & 7];
}
-
+
/* If this fragment has the More Fragments flag set to zero, we
know that this is the last fragment, so we can calculate the
size of the entire packet. We also set the
uip_reassflags |= UIP_REASS_FLAG_LASTFRAG;
uip_reasslen = offset + len;
}
-
+
/* Finally, we check if we have a full packet in the buffer. We do
this by checking if we have the last fragment and if all bits
in the bitmap are set. */
goto udp_send;
}
#endif /* UIP_UDP */
-
+
uip_sappdata = uip_appdata = &uip_buf[UIP_IPTCPH_LEN + UIP_LLH_LEN];
/* Check if we were invoked because of a poll request for a
if(flag == UIP_POLL_REQUEST) {
if((uip_connr->tcpstateflags & UIP_TS_MASK) == UIP_ESTABLISHED &&
!uip_outstanding(uip_connr)) {
+ uip_len = uip_slen = 0;
uip_flags = UIP_POLL;
UIP_APPCALL();
goto appsend;
}
goto drop;
-
- /* Check if we were invoked because of the perodic timer fireing. */
+
+ /* Check if we were invoked because of the periodic timer firing. */
} else if(flag == UIP_TIMER) {
#if UIP_REASSEMBLY
if(uip_reasstmr != 0) {
goto tcp_send_nodata;
}
- /* Exponential backoff. */
+ /* Exponential back-off. */
uip_connr->timer = UIP_RTO << (uip_connr->nrtx > 4?
4:
uip_connr->nrtx);
++(uip_connr->nrtx);
-
+
/* Ok, so we need to retransmit. We do this differently
depending on which state we are in. In ESTABLISHED, we
call upon the application so that it may prepare the
/* In the SYN_RCVD state, we should retransmit our
SYNACK. */
goto tcp_send_synack;
-
+
#if UIP_ACTIVE_OPEN
case UIP_SYN_SENT:
/* In the SYN_SENT state, we retransmit out SYN. */
BUF->flags = 0;
goto tcp_send_syn;
#endif /* UIP_ACTIVE_OPEN */
-
+
case UIP_ESTABLISHED:
/* In the ESTABLISHED state, we call upon the application
to do the actual retransmit after which we jump into
uip_flags = UIP_REXMIT;
UIP_APPCALL();
goto apprexmit;
-
+
case UIP_FIN_WAIT_1:
case UIP_CLOSING:
case UIP_LAST_ACK:
/* In all these states we should retransmit a FINACK. */
goto tcp_send_finack;
-
+
}
}
} else if((uip_connr->tcpstateflags & UIP_TS_MASK) == UIP_ESTABLISHED) {
/* If there was no need for a retransmission, we poll the
application for new data. */
+ uip_len = uip_slen = 0;
uip_flags = UIP_POLL;
UIP_APPCALL();
goto appsend;
UIP_STAT(++uip_stat.ip.recv);
/* Start of IP input header processing code. */
-
+
#if UIP_CONF_IPV6
/* Check validity of the IP header. */
if((BUF->vtc & 0xf0) != 0x60) { /* IP version and header length. */
goto drop;
}
#endif /* UIP_CONF_IPV6 */
-
+
/* Check the size of the packet. If the size reported to us in
uip_len is smaller the size reported in the IP header, we assume
that the packet has been corrupted in transit. If the size of
}
#endif /* UIP_CONF_IPV6 */
- if(uip_ipaddr_cmp(uip_hostaddr, all_zeroes_addr)) {
+ if(uip_ipaddr_cmp(&uip_hostaddr, &uip_all_zeroes_addr)) {
/* If we are configured to use ping IP address configuration and
hasn't been assigned an IP address yet, we accept all ICMP
packets. */
#if UIP_BROADCAST
DEBUG_PRINTF("UDP IP checksum 0x%04x\n", uip_ipchksum());
if(BUF->proto == UIP_PROTO_UDP &&
- uip_ipaddr_cmp(BUF->destipaddr, all_ones_addr)
- /*&&
- uip_ipchksum() == 0xffff*/) {
- goto udp_input;
+ uip_ipaddr_cmp(&BUF->destipaddr, &uip_broadcast_addr))
+ {
+ if (uip_ipaddr_cmp(&BUF->srcipaddr, &uip_all_zeroes_addr))
+ uip_ipaddr_copy(&BUF->srcipaddr, &uip_broadcast_addr);
+
+ goto udp_input;
}
#endif /* UIP_BROADCAST */
-
+
/* Check if the packet is destined for our IP address. */
#if !UIP_CONF_IPV6
- if(!uip_ipaddr_cmp(BUF->destipaddr, uip_hostaddr)) {
+ if(!uip_ipaddr_cmp(&BUF->destipaddr, &uip_hostaddr)) {
UIP_STAT(++uip_stat.ip.drop);
goto drop;
}
hosts multicast address, and the solicited-node multicast
address) as well. However, we will cheat here and accept all
multicast packets that are sent to the ff02::/16 addresses. */
- if(!uip_ipaddr_cmp(BUF->destipaddr, uip_hostaddr) &&
- BUF->destipaddr[0] != HTONS(0xff02)) {
+ if(!uip_ipaddr_cmp(&BUF->destipaddr, &uip_hostaddr) &&
+ BUF->destipaddr.u16[0] != HTONS(0xff02)) {
UIP_STAT(++uip_stat.ip.drop);
goto drop;
}
/* If we are configured to use ping IP address assignment, we use
the destination IP address of this ping packet and assign it to
- ourself. */
+ yourself. */
#if UIP_PINGADDRCONF
- if((uip_hostaddr[0] | uip_hostaddr[1]) == 0) {
- uip_hostaddr[0] = BUF->destipaddr[0];
- uip_hostaddr[1] = BUF->destipaddr[1];
+ if(uip_ipaddr_cmp(&uip_hostaddr, &uip_all_zeroes_addr)) {
+ uip_hostaddr = BUF->destipaddr;
}
#endif /* UIP_PINGADDRCONF */
}
/* Swap IP addresses. */
- uip_ipaddr_copy(BUF->destipaddr, BUF->srcipaddr);
- uip_ipaddr_copy(BUF->srcipaddr, uip_hostaddr);
+ uip_ipaddr_copy(&BUF->destipaddr, &BUF->srcipaddr);
+ uip_ipaddr_copy(&BUF->srcipaddr, &uip_hostaddr);
UIP_STAT(++uip_stat.icmp.sent);
- goto send;
+ BUF->ttl = UIP_TTL;
+ goto ip_send_nolen;
/* End of IPv4 input header processing code. */
#else /* !UIP_CONF_IPV6 */
/* If we get a neighbor solicitation for our address we should send
a neighbor advertisement message back. */
if(ICMPBUF->type == ICMP6_NEIGHBOR_SOLICITATION) {
- if(uip_ipaddr_cmp(ICMPBUF->icmp6data, uip_hostaddr)) {
+ if(uip_ipaddr_cmp(&ICMPBUF->icmp6data, &uip_hostaddr)) {
if(ICMPBUF->options[0] == ICMP6_OPTION_SOURCE_LINK_ADDRESS) {
/* Save the sender's address in our neighbor list. */
- uip_neighbor_add(ICMPBUF->srcipaddr, &(ICMPBUF->options[2]));
+ uip_neighbor_add(&ICMPBUF->srcipaddr, &(ICMPBUF->options[2]));
}
-
+
/* We should now send a neighbor advertisement back to where the
- neighbor solicication came from. */
+ neighbor solicitation came from. */
ICMPBUF->type = ICMP6_NEIGHBOR_ADVERTISEMENT;
ICMPBUF->flags = ICMP6_FLAG_S; /* Solicited flag. */
-
+
ICMPBUF->reserved1 = ICMPBUF->reserved2 = ICMPBUF->reserved3 = 0;
-
- uip_ipaddr_copy(ICMPBUF->destipaddr, ICMPBUF->srcipaddr);
- uip_ipaddr_copy(ICMPBUF->srcipaddr, uip_hostaddr);
+
+ uip_ipaddr_copy(&ICMPBUF->destipaddr, &ICMPBUF->srcipaddr);
+ uip_ipaddr_copy(&ICMPBUF->srcipaddr, &uip_hostaddr);
ICMPBUF->options[0] = ICMP6_OPTION_TARGET_LINK_ADDRESS;
ICMPBUF->options[1] = 1; /* Options length, 1 = 8 bytes. */
memcpy(&(ICMPBUF->options[2]), &uip_ethaddr, sizeof(uip_ethaddr));
ICMPBUF->icmpchksum = 0;
ICMPBUF->icmpchksum = ~uip_icmp6chksum();
+
goto send;
-
+
}
goto drop;
} else if(ICMPBUF->type == ICMP6_ECHO) {
ICMP checksum before we return the packet. */
ICMPBUF->type = ICMP6_ECHO_REPLY;
-
- uip_ipaddr_copy(BUF->destipaddr, BUF->srcipaddr);
- uip_ipaddr_copy(BUF->srcipaddr, uip_hostaddr);
+
+ uip_ipaddr_copy(&BUF->destipaddr, &BUF->srcipaddr);
+ uip_ipaddr_copy(&BUF->srcipaddr, &uip_hostaddr);
ICMPBUF->icmpchksum = 0;
ICMPBUF->icmpchksum = ~uip_icmp6chksum();
-
+
UIP_STAT(++uip_stat.icmp.sent);
goto send;
} else {
}
/* End of IPv6 ICMP processing. */
-
+
#endif /* !UIP_CONF_IPV6 */
#if UIP_UDP
UDPBUF->destport == uip_udp_conn->lport &&
(uip_udp_conn->rport == 0 ||
UDPBUF->srcport == uip_udp_conn->rport) &&
- (uip_ipaddr_cmp(uip_udp_conn->ripaddr, all_zeroes_addr) ||
- uip_ipaddr_cmp(uip_udp_conn->ripaddr, all_ones_addr) ||
- uip_ipaddr_cmp(BUF->srcipaddr, uip_udp_conn->ripaddr))) {
+ (uip_ipaddr_cmp(&uip_udp_conn->ripaddr, &uip_all_zeroes_addr) ||
+ uip_ipaddr_cmp(&uip_udp_conn->ripaddr, &uip_broadcast_addr) ||
+ uip_ipaddr_cmp(&BUF->srcipaddr, &uip_udp_conn->ripaddr))) {
goto udp_found;
}
}
UIP_LOG("udp: no matching connection found");
+#if UIP_CONF_ICMP_DEST_UNREACH && !UIP_CONF_IPV6
+ /* Copy fields from packet header into payload of this ICMP packet. */
+ memcpy(&(ICMPBUF->payload[0]), ICMPBUF, UIP_IPH_LEN + 8);
+
+ /* Set the ICMP type and code. */
+ ICMPBUF->type = ICMP_DEST_UNREACHABLE;
+ ICMPBUF->icode = ICMP_PORT_UNREACHABLE;
+
+ /* Calculate the ICMP checksum. */
+ ICMPBUF->icmpchksum = 0;
+ ICMPBUF->icmpchksum = ~uip_chksum((u16_t *)&(ICMPBUF->type), 36);
+
+ /* Set the IP destination address to be the source address of the
+ original packet. */
+ uip_ipaddr_copy(&BUF->destipaddr, &BUF->srcipaddr);
+
+ /* Set our IP address as the source address. */
+ uip_ipaddr_copy(&BUF->srcipaddr, &uip_hostaddr);
+
+ /* The size of the ICMP destination unreachable packet is 36 + the
+ size of the IP header (20) = 56. */
+ uip_len = 36 + UIP_IPH_LEN;
+ ICMPBUF->len[0] = 0;
+ ICMPBUF->len[1] = (u8_t)uip_len;
+ ICMPBUF->ttl = UIP_TTL;
+ ICMPBUF->proto = UIP_PROTO_ICMP;
+
+ goto ip_send_nolen;
+#else /* UIP_CONF_ICMP_DEST_UNREACH */
goto drop;
-
+#endif /* UIP_CONF_ICMP_DEST_UNREACH */
+
udp_found:
uip_conn = NULL;
uip_flags = UIP_NEWDATA;
uip_sappdata = uip_appdata = &uip_buf[UIP_LLH_LEN + UIP_IPUDPH_LEN];
uip_slen = 0;
UIP_UDP_APPCALL();
+
udp_send:
if(uip_slen == 0) {
goto drop;
BUF->srcport = uip_udp_conn->lport;
BUF->destport = uip_udp_conn->rport;
- uip_ipaddr_copy(BUF->srcipaddr, uip_hostaddr);
- uip_ipaddr_copy(BUF->destipaddr, uip_udp_conn->ripaddr);
-
+ uip_ipaddr_copy(&BUF->srcipaddr, &uip_hostaddr);
+ uip_ipaddr_copy(&BUF->destipaddr, &uip_udp_conn->ripaddr);
+
uip_appdata = &uip_buf[UIP_LLH_LEN + UIP_IPTCPH_LEN];
#if UIP_UDP_CHECKSUMS
UDPBUF->udpchksum = 0xffff;
}
#endif /* UIP_UDP_CHECKSUMS */
-
+
goto ip_send_nolen;
#endif /* UIP_UDP */
-
+
/* TCP input processing. */
tcp_input:
UIP_STAT(++uip_stat.tcp.recv);
/* Start of TCP input header processing code. */
-
+
if(uip_tcpchksum() != 0xffff) { /* Compute and check the TCP
checksum. */
UIP_STAT(++uip_stat.tcp.drop);
UIP_LOG("tcp: bad checksum.");
goto drop;
}
-
-
+
/* Demultiplex this segment. */
/* First check any active connections. */
for(uip_connr = &uip_conns[0]; uip_connr <= &uip_conns[UIP_CONNS - 1];
if(uip_connr->tcpstateflags != UIP_CLOSED &&
BUF->destport == uip_connr->lport &&
BUF->srcport == uip_connr->rport &&
- uip_ipaddr_cmp(BUF->srcipaddr, uip_connr->ripaddr)) {
+ uip_ipaddr_cmp(&BUF->srcipaddr, &uip_connr->ripaddr)) {
goto found;
}
}
if((BUF->flags & TCP_CTL) != TCP_SYN) {
goto reset;
}
-
+
tmp16 = BUF->destport;
/* Next, check listening connections. */
for(c = 0; c < UIP_LISTENPORTS; ++c) {
- if(tmp16 == uip_listenports[c])
+ if(tmp16 == uip_listenports[c]) {
goto found_listen;
+ }
}
-
+
/* No matching connection found, so we send a RST packet. */
UIP_STAT(++uip_stat.tcp.synrst);
- reset:
+ reset:
/* We do not send resets in response to resets. */
if(BUF->flags & TCP_RST) {
goto drop;
}
UIP_STAT(++uip_stat.tcp.rst);
-
+
BUF->flags = TCP_RST | TCP_ACK;
uip_len = UIP_IPTCPH_LEN;
BUF->tcpoffset = 5 << 4;
c = BUF->seqno[3];
BUF->seqno[3] = BUF->ackno[3];
BUF->ackno[3] = c;
-
+
c = BUF->seqno[2];
BUF->seqno[2] = BUF->ackno[2];
BUF->ackno[2] = c;
-
+
c = BUF->seqno[1];
BUF->seqno[1] = BUF->ackno[1];
BUF->ackno[1] = c;
-
+
c = BUF->seqno[0];
BUF->seqno[0] = BUF->ackno[0];
BUF->ackno[0] = c;
}
}
}
-
+
/* Swap port numbers. */
tmp16 = BUF->srcport;
BUF->srcport = BUF->destport;
BUF->destport = tmp16;
-
+
/* Swap IP addresses. */
- uip_ipaddr_copy(BUF->destipaddr, BUF->srcipaddr);
- uip_ipaddr_copy(BUF->srcipaddr, uip_hostaddr);
-
+ uip_ipaddr_copy(&BUF->destipaddr, &BUF->srcipaddr);
+ uip_ipaddr_copy(&BUF->srcipaddr, &uip_hostaddr);
+
/* And send out the RST packet! */
goto tcp_send_noconn;
with a connection in LISTEN. In that case, we should create a new
connection and send a SYNACK in return. */
found_listen:
- /* First we check if there are any connections avaliable. Unused
+ /* First we check if there are any connections available. Unused
connections are kept in the same table as used connections, but
unused ones have the tcpstate set to CLOSED. Also, connections in
TIME_WAIT are kept track of and we'll use the oldest one if no
goto drop;
}
uip_conn = uip_connr;
-
+
/* Fill in the necessary fields for the new connection. */
uip_connr->rto = uip_connr->timer = UIP_RTO;
uip_connr->sa = 0;
uip_connr->nrtx = 0;
uip_connr->lport = BUF->destport;
uip_connr->rport = BUF->srcport;
- uip_ipaddr_copy(uip_connr->ripaddr, BUF->srcipaddr);
+ uip_ipaddr_copy(&uip_connr->ripaddr, &BUF->srcipaddr);
uip_connr->tcpstateflags = UIP_SYN_RCVD;
uip_connr->snd_nxt[0] = iss[0];
(u16_t)uip_buf[UIP_IPTCPH_LEN + UIP_LLH_LEN + 3 + c];
uip_connr->initialmss = uip_connr->mss =
tmp16 > UIP_TCP_MSS? UIP_TCP_MSS: tmp16;
-
+
/* And we are done processing options. */
break;
} else {
}
}
}
-
+
/* Our response will be a SYNACK. */
#if UIP_ACTIVE_OPEN
tcp_send_synack:
BUF->flags = TCP_ACK;
-
+
tcp_send_syn:
BUF->flags |= TCP_SYN;
#else /* UIP_ACTIVE_OPEN */
tcp_send_synack:
BUF->flags = TCP_SYN | TCP_ACK;
#endif /* UIP_ACTIVE_OPEN */
-
+
/* We send out the TCP Maximum Segment Size option with our
SYNACK. */
BUF->optdata[0] = TCP_OPT_MSS;
uip_flags = 0;
/* We do a very naive form of TCP reset processing; we just accept
any RST and kill our connection. We should in fact check if the
- sequence number of this reset is wihtin our advertised window
+ sequence number of this reset is within our advertised window
before we accept the reset. */
if(BUF->flags & TCP_RST) {
uip_connr->tcpstateflags = UIP_CLOSED;
UIP_APPCALL();
goto drop;
}
- /* Calculated the length of the data, if the application has sent
+ /* Calculate the length of the data, if the application has sent
any data to us. */
c = (BUF->tcpoffset >> 4) << 2;
/* uip_len will contain the length of the actual TCP data. This is
uip_connr->snd_nxt[1] = uip_acc32[1];
uip_connr->snd_nxt[2] = uip_acc32[2];
uip_connr->snd_nxt[3] = uip_acc32[3];
-
/* Do RTT estimation, unless we have done retransmissions. */
if(uip_connr->nrtx == 0) {
/* Reset length of outstanding data. */
uip_connr->len = 0;
}
-
+
}
/* Do different things depending on in what state the connection is. */
uip_conn->tcpstateflags = UIP_CLOSED;
goto reset;
#endif /* UIP_ACTIVE_OPEN */
-
+
case UIP_ESTABLISHED:
/* In the ESTABLISHED state, we call upon the application to feed
data into the uip_buf. If the UIP_ACKDATA flag is set, the
the initial MSS so that the application will send an entire MSS
of data. This data will not be acknowledged by the receiver,
and the application will retransmit it. This is called the
- "persistent timer" and uses the retransmission mechanim.
+ "persistent timer" and uses the retransmission mechanism.
*/
tmp16 = ((u16_t)BUF->wnd[0] << 8) + (u16_t)BUF->wnd[1];
if(tmp16 > uip_connr->initialmss ||
UIP_APPCALL();
appsend:
-
+
if(uip_flags & UIP_ABORT) {
uip_slen = 0;
uip_connr->tcpstateflags = UIP_CLOSED;
uip_connr->nrtx = 0;
apprexmit:
uip_appdata = uip_sappdata;
-
+
/* If the application has data to be sent, or if the incoming
packet had new data in it, we must send out a packet. */
if(uip_slen > 0 && uip_connr->len > 0) {
UIP_APPCALL();
}
break;
-
+
case UIP_FIN_WAIT_1:
/* The application has closed the connection, but the remote host
hasn't closed its end yet. Thus we do nothing but wait for a
goto tcp_send_ack;
}
goto drop;
-
+
case UIP_FIN_WAIT_2:
if(uip_len > 0) {
uip_add_rcv_nxt(uip_len);
case UIP_TIME_WAIT:
goto tcp_send_ack;
-
+
case UIP_CLOSING:
if(uip_flags & UIP_ACKDATA) {
uip_connr->tcpstateflags = UIP_TIME_WAIT;
}
}
goto drop;
-
/* We jump here when we are ready to send the packet, and just want
to set the appropriate TCP sequence numbers in the TCP header. */
tcp_send_ack:
BUF->flags = TCP_ACK;
+
tcp_send_nodata:
uip_len = UIP_IPTCPH_LEN;
+
tcp_send_noopts:
BUF->tcpoffset = (UIP_TCPH_LEN / 4) << 4;
- tcp_send:
+
/* We're done with the input processing. We are now ready to send a
reply. Our job is to fill in all the fields of the TCP and IP
headers before calculating the checksum and finally send the
packet. */
+ tcp_send:
BUF->ackno[0] = uip_connr->rcv_nxt[0];
BUF->ackno[1] = uip_connr->rcv_nxt[1];
BUF->ackno[2] = uip_connr->rcv_nxt[2];
BUF->ackno[3] = uip_connr->rcv_nxt[3];
-
+
BUF->seqno[0] = uip_connr->snd_nxt[0];
BUF->seqno[1] = uip_connr->snd_nxt[1];
BUF->seqno[2] = uip_connr->snd_nxt[2];
BUF->seqno[3] = uip_connr->snd_nxt[3];
BUF->proto = UIP_PROTO_TCP;
-
+
BUF->srcport = uip_connr->lport;
BUF->destport = uip_connr->rport;
- uip_ipaddr_copy(BUF->srcipaddr, uip_hostaddr);
- uip_ipaddr_copy(BUF->destipaddr, uip_connr->ripaddr);
+ uip_ipaddr_copy(&BUF->srcipaddr, &uip_hostaddr);
+ uip_ipaddr_copy(&BUF->destipaddr, &uip_connr->ripaddr);
if(uip_connr->tcpstateflags & UIP_STOPPED) {
/* If the connection has issued uip_stop(), we advertise a zero
#endif /* UIP_CONF_IPV6 */
BUF->urgp[0] = BUF->urgp[1] = 0;
-
+
/* Calculate TCP checksum. */
BUF->tcpchksum = 0;
BUF->tcpchksum = ~(uip_tcpchksum());
-
- ip_send_nolen:
+ ip_send_nolen:
#if UIP_CONF_IPV6
BUF->vtc = 0x60;
BUF->tcflow = 0x00;
BUF->ipchksum = ~(uip_ipchksum());
DEBUG_PRINTF("uip ip_send_nolen: chkecum 0x%04x\n", uip_ipchksum());
#endif /* UIP_CONF_IPV6 */
-
UIP_STAT(++uip_stat.tcp.sent);
+#if UIP_CONF_IPV6
send:
+#endif /* UIP_CONF_IPV6 */
DEBUG_PRINTF("Sending packet with length %d (%d)\n", uip_len,
(BUF->len[0] << 8) | BUF->len[1]);
-
+
UIP_STAT(++uip_stat.ip.sent);
/* Return and let the caller do the actual transmission. */
uip_flags = 0;
return;
+
drop:
uip_len = 0;
uip_flags = 0;
{
return HTONS(val);
}
+
+u32_t
+htonl(u32_t val)
+{
+ return HTONL(val);
+}
/*---------------------------------------------------------------------------*/
void
uip_send(const void *data, int len)
{
- if(len > 0) {
- uip_slen = len;
+ int copylen;
+#define MIN(a,b) ((a) < (b)? (a): (b))
+ copylen = MIN(len, UIP_BUFSIZE - UIP_LLH_LEN - UIP_TCPIP_HLEN -
+ (int)((char *)uip_sappdata - (char *)&uip_buf[UIP_LLH_LEN + UIP_TCPIP_HLEN]));
+ if(copylen > 0) {
+ uip_slen = copylen;
if(data != uip_sappdata) {
memcpy(uip_sappdata, (data), uip_slen);
}
}
}
+/*---------------------------------------------------------------------------*/
/** @} */
+#endif /* UIP_CONF_IPV6 */
+