f336a1368716ce904866a0fd8eaf00d39bbd913b
[pub/USBasp.git] / Bootloaders / CDC / BootloaderCDC.c
1 /*
2 LUFA Library
3 Copyright (C) Dean Camera, 2011.
4
5 dean [at] fourwalledcubicle [dot] com
6 www.lufa-lib.org
7 */
8
9 /*
10 Copyright 2011 Dean Camera (dean [at] fourwalledcubicle [dot] com)
11
12 Permission to use, copy, modify, distribute, and sell this
13 software and its documentation for any purpose is hereby granted
14 without fee, provided that the above copyright notice appear in
15 all copies and that both that the copyright notice and this
16 permission notice and warranty disclaimer appear in supporting
17 documentation, and that the name of the author not be used in
18 advertising or publicity pertaining to distribution of the
19 software without specific, written prior permission.
20
21 The author disclaim all warranties with regard to this
22 software, including all implied warranties of merchantability
23 and fitness. In no event shall the author be liable for any
24 special, indirect or consequential damages or any damages
25 whatsoever resulting from loss of use, data or profits, whether
26 in an action of contract, negligence or other tortious action,
27 arising out of or in connection with the use or performance of
28 this software.
29 */
30
31 /** \file
32 *
33 * Main source file for the CDC class bootloader. This file contains the complete bootloader logic.
34 */
35
36 #define INCLUDE_FROM_BOOTLOADERCDC_C
37 #include "BootloaderCDC.h"
38
39 /** Contains the current baud rate and other settings of the first virtual serial port. This must be retained as some
40 * operating systems will not open the port unless the settings can be set successfully.
41 */
42 static CDC_LineEncoding_t LineEncoding = { .BaudRateBPS = 0,
43 .CharFormat = CDC_LINEENCODING_OneStopBit,
44 .ParityType = CDC_PARITY_None,
45 .DataBits = 8 };
46
47 /** Current address counter. This stores the current address of the FLASH or EEPROM as set by the host,
48 * and is used when reading or writing to the AVRs memory (either FLASH or EEPROM depending on the issued
49 * command.)
50 */
51 static uint32_t CurrAddress;
52
53 /** Flag to indicate if the bootloader should be running, or should exit and allow the application code to run
54 * via a watchdog reset. When cleared the bootloader will exit, starting the watchdog and entering an infinite
55 * loop until the AVR restarts and the application runs.
56 */
57 static bool RunBootloader = true;
58
59
60 /** Main program entry point. This routine configures the hardware required by the bootloader, then continuously
61 * runs the bootloader processing routine until instructed to soft-exit, or hard-reset via the watchdog to start
62 * the loaded application code.
63 */
64 int main(void)
65 {
66 /* Force a reference to the API jump table to prevent the linker from discarding it */
67 uint8_t* volatile Dummy = BootloaderAPI_JumpTable;
68 (void)Dummy;
69
70 /* Setup hardware required for the bootloader */
71 SetupHardware();
72
73 /* Turn on first LED on the board to indicate that the bootloader has started */
74 LEDs_SetAllLEDs(LEDS_LED1);
75
76 /* Enable global interrupts so that the USB stack can function */
77 sei();
78
79 while (RunBootloader)
80 {
81 CDC_Task();
82 USB_USBTask();
83 }
84
85 /* Disconnect from the host - USB interface will be reset later along with the AVR */
86 USB_Detach();
87
88 /* Enable the watchdog and force a timeout to reset the AVR */
89 wdt_enable(WDTO_250MS);
90
91 for (;;);
92 }
93
94 /** Configures all hardware required for the bootloader. */
95 void SetupHardware(void)
96 {
97 /* Disable watchdog if enabled by bootloader/fuses */
98 MCUSR &= ~(1 << WDRF);
99 wdt_disable();
100
101 /* Disable clock division */
102 clock_prescale_set(clock_div_1);
103
104 /* Relocate the interrupt vector table to the bootloader section */
105 MCUCR = (1 << IVCE);
106 MCUCR = (1 << IVSEL);
107
108 /* Initialize USB Subsystem */
109 USB_Init();
110 LEDs_Init();
111
112 /* Bootloader active LED toggle timer initialization */
113 TIMSK1 = (1 << TOIE1);
114 TCCR1B = ((1 << CS11) | (1 << CS10));
115 }
116
117 /** ISR to periodically toggle the LEDs on the board to indicate that the bootloader is active. */
118 ISR(TIMER1_OVF_vect, ISR_BLOCK)
119 {
120 LEDs_ToggleLEDs(LEDS_LED1 | LEDS_LED2);
121 }
122
123 /** Event handler for the USB_ConfigurationChanged event. This configures the device's endpoints ready
124 * to relay data to and from the attached USB host.
125 */
126 void EVENT_USB_Device_ConfigurationChanged(void)
127 {
128 /* Setup CDC Notification, Rx and Tx Endpoints */
129 Endpoint_ConfigureEndpoint(CDC_NOTIFICATION_EPNUM, EP_TYPE_INTERRUPT,
130 ENDPOINT_DIR_IN, CDC_NOTIFICATION_EPSIZE,
131 ENDPOINT_BANK_SINGLE);
132
133 Endpoint_ConfigureEndpoint(CDC_TX_EPNUM, EP_TYPE_BULK,
134 ENDPOINT_DIR_IN, CDC_TXRX_EPSIZE,
135 ENDPOINT_BANK_SINGLE);
136
137 Endpoint_ConfigureEndpoint(CDC_RX_EPNUM, EP_TYPE_BULK,
138 ENDPOINT_DIR_OUT, CDC_TXRX_EPSIZE,
139 ENDPOINT_BANK_SINGLE);
140 }
141
142 /** Event handler for the USB_ControlRequest event. This is used to catch and process control requests sent to
143 * the device from the USB host before passing along unhandled control requests to the library for processing
144 * internally.
145 */
146 void EVENT_USB_Device_ControlRequest(void)
147 {
148 /* Ignore any requests that aren't directed to the CDC interface */
149 if ((USB_ControlRequest.bmRequestType & (CONTROL_REQTYPE_TYPE | CONTROL_REQTYPE_RECIPIENT)) !=
150 (REQTYPE_CLASS | REQREC_INTERFACE))
151 {
152 return;
153 }
154
155 /* Activity - toggle indicator LEDs */
156 LEDs_ToggleLEDs(LEDS_LED1 | LEDS_LED2);
157
158 /* Process CDC specific control requests */
159 switch (USB_ControlRequest.bRequest)
160 {
161 case CDC_REQ_GetLineEncoding:
162 if (USB_ControlRequest.bmRequestType == (REQDIR_DEVICETOHOST | REQTYPE_CLASS | REQREC_INTERFACE))
163 {
164 Endpoint_ClearSETUP();
165
166 /* Write the line coding data to the control endpoint */
167 Endpoint_Write_Control_Stream_LE(&LineEncoding, sizeof(CDC_LineEncoding_t));
168 Endpoint_ClearOUT();
169 }
170
171 break;
172 case CDC_REQ_SetLineEncoding:
173 if (USB_ControlRequest.bmRequestType == (REQDIR_HOSTTODEVICE | REQTYPE_CLASS | REQREC_INTERFACE))
174 {
175 Endpoint_ClearSETUP();
176
177 /* Read the line coding data in from the host into the global struct */
178 Endpoint_Read_Control_Stream_LE(&LineEncoding, sizeof(CDC_LineEncoding_t));
179 Endpoint_ClearIN();
180 }
181
182 break;
183 }
184 }
185
186 #if !defined(NO_BLOCK_SUPPORT)
187 /** Reads or writes a block of EEPROM or FLASH memory to or from the appropriate CDC data endpoint, depending
188 * on the AVR910 protocol command issued.
189 *
190 * \param[in] Command Single character AVR910 protocol command indicating what memory operation to perform
191 */
192 static void ReadWriteMemoryBlock(const uint8_t Command)
193 {
194 uint16_t BlockSize;
195 char MemoryType;
196
197 bool HighByte = false;
198 uint8_t LowByte = 0;
199
200 BlockSize = (FetchNextCommandByte() << 8);
201 BlockSize |= FetchNextCommandByte();
202
203 MemoryType = FetchNextCommandByte();
204
205 if ((MemoryType != 'E') && (MemoryType != 'F'))
206 {
207 /* Send error byte back to the host */
208 WriteNextResponseByte('?');
209
210 return;
211 }
212
213 /* Check if command is to read memory */
214 if (Command == 'g')
215 {
216 /* Re-enable RWW section */
217 boot_rww_enable();
218
219 while (BlockSize--)
220 {
221 if (MemoryType == 'F')
222 {
223 /* Read the next FLASH byte from the current FLASH page */
224 #if (FLASHEND > 0xFFFF)
225 WriteNextResponseByte(pgm_read_byte_far(CurrAddress | HighByte));
226 #else
227 WriteNextResponseByte(pgm_read_byte(CurrAddress | HighByte));
228 #endif
229
230 /* If both bytes in current word have been read, increment the address counter */
231 if (HighByte)
232 CurrAddress += 2;
233
234 HighByte = !HighByte;
235 }
236 else
237 {
238 /* Read the next EEPROM byte into the endpoint */
239 WriteNextResponseByte(eeprom_read_byte((uint8_t*)(intptr_t)(CurrAddress >> 1)));
240
241 /* Increment the address counter after use */
242 CurrAddress += 2;
243 }
244 }
245 }
246 else
247 {
248 uint32_t PageStartAddress = CurrAddress;
249
250 if (MemoryType == 'F')
251 {
252 boot_page_erase(PageStartAddress);
253 boot_spm_busy_wait();
254 }
255
256 while (BlockSize--)
257 {
258 if (MemoryType == 'F')
259 {
260 /* If both bytes in current word have been written, increment the address counter */
261 if (HighByte)
262 {
263 /* Write the next FLASH word to the current FLASH page */
264 boot_page_fill(CurrAddress, ((FetchNextCommandByte() << 8) | LowByte));
265
266 /* Increment the address counter after use */
267 CurrAddress += 2;
268 }
269 else
270 {
271 LowByte = FetchNextCommandByte();
272 }
273
274 HighByte = !HighByte;
275 }
276 else
277 {
278 /* Write the next EEPROM byte from the endpoint */
279 eeprom_write_byte((uint8_t*)((intptr_t)(CurrAddress >> 1)), FetchNextCommandByte());
280
281 /* Increment the address counter after use */
282 CurrAddress += 2;
283 }
284 }
285
286 /* If in FLASH programming mode, commit the page after writing */
287 if (MemoryType == 'F')
288 {
289 /* Commit the flash page to memory */
290 boot_page_write(PageStartAddress);
291
292 /* Wait until write operation has completed */
293 boot_spm_busy_wait();
294 }
295
296 /* Send response byte back to the host */
297 WriteNextResponseByte('\r');
298 }
299 }
300 #endif
301
302 /** Retrieves the next byte from the host in the CDC data OUT endpoint, and clears the endpoint bank if needed
303 * to allow reception of the next data packet from the host.
304 *
305 * \return Next received byte from the host in the CDC data OUT endpoint
306 */
307 static uint8_t FetchNextCommandByte(void)
308 {
309 /* Select the OUT endpoint so that the next data byte can be read */
310 Endpoint_SelectEndpoint(CDC_RX_EPNUM);
311
312 /* If OUT endpoint empty, clear it and wait for the next packet from the host */
313 while (!(Endpoint_IsReadWriteAllowed()))
314 {
315 Endpoint_ClearOUT();
316
317 while (!(Endpoint_IsOUTReceived()))
318 {
319 if (USB_DeviceState == DEVICE_STATE_Unattached)
320 return 0;
321 }
322 }
323
324 /* Fetch the next byte from the OUT endpoint */
325 return Endpoint_Read_8();
326 }
327
328 /** Writes the next response byte to the CDC data IN endpoint, and sends the endpoint back if needed to free up the
329 * bank when full ready for the next byte in the packet to the host.
330 *
331 * \param[in] Response Next response byte to send to the host
332 */
333 static void WriteNextResponseByte(const uint8_t Response)
334 {
335 /* Select the IN endpoint so that the next data byte can be written */
336 Endpoint_SelectEndpoint(CDC_TX_EPNUM);
337
338 /* If IN endpoint full, clear it and wait until ready for the next packet to the host */
339 if (!(Endpoint_IsReadWriteAllowed()))
340 {
341 Endpoint_ClearIN();
342
343 while (!(Endpoint_IsINReady()))
344 {
345 if (USB_DeviceState == DEVICE_STATE_Unattached)
346 return;
347 }
348 }
349
350 /* Write the next byte to the IN endpoint */
351 Endpoint_Write_8(Response);
352 }
353
354 /** Task to read in AVR910 commands from the CDC data OUT endpoint, process them, perform the required actions
355 * and send the appropriate response back to the host.
356 */
357 void CDC_Task(void)
358 {
359 /* Select the OUT endpoint */
360 Endpoint_SelectEndpoint(CDC_RX_EPNUM);
361
362 /* Check if endpoint has a command in it sent from the host */
363 if (!(Endpoint_IsOUTReceived()))
364 return;
365
366 /* Read in the bootloader command (first byte sent from host) */
367 uint8_t Command = FetchNextCommandByte();
368
369 if (Command == 'E')
370 {
371 RunBootloader = false;
372
373 /* Send confirmation byte back to the host */
374 WriteNextResponseByte('\r');
375 }
376 else if (Command == 'T')
377 {
378 FetchNextCommandByte();
379
380 /* Send confirmation byte back to the host */
381 WriteNextResponseByte('\r');
382 }
383 else if ((Command == 'L') || (Command == 'P'))
384 {
385 /* Send confirmation byte back to the host */
386 WriteNextResponseByte('\r');
387 }
388 else if (Command == 't')
389 {
390 /* Return ATMEGA128 part code - this is only to allow AVRProg to use the bootloader */
391 WriteNextResponseByte(0x44);
392 WriteNextResponseByte(0x00);
393 }
394 else if (Command == 'a')
395 {
396 /* Indicate auto-address increment is supported */
397 WriteNextResponseByte('Y');
398 }
399 else if (Command == 'A')
400 {
401 /* Set the current address to that given by the host */
402 CurrAddress = (FetchNextCommandByte() << 9);
403 CurrAddress |= (FetchNextCommandByte() << 1);
404
405 /* Send confirmation byte back to the host */
406 WriteNextResponseByte('\r');
407 }
408 else if (Command == 'p')
409 {
410 /* Indicate serial programmer back to the host */
411 WriteNextResponseByte('S');
412 }
413 else if (Command == 'S')
414 {
415 /* Write the 7-byte software identifier to the endpoint */
416 for (uint8_t CurrByte = 0; CurrByte < 7; CurrByte++)
417 WriteNextResponseByte(SOFTWARE_IDENTIFIER[CurrByte]);
418 }
419 else if (Command == 'V')
420 {
421 WriteNextResponseByte('0' + BOOTLOADER_VERSION_MAJOR);
422 WriteNextResponseByte('0' + BOOTLOADER_VERSION_MINOR);
423 }
424 else if (Command == 's')
425 {
426 WriteNextResponseByte(AVR_SIGNATURE_3);
427 WriteNextResponseByte(AVR_SIGNATURE_2);
428 WriteNextResponseByte(AVR_SIGNATURE_1);
429 }
430 else if (Command == 'e')
431 {
432 /* Clear the application section of flash */
433 for (uint32_t CurrFlashAddress = 0; CurrFlashAddress < BOOT_START_ADDR; CurrFlashAddress += SPM_PAGESIZE)
434 {
435 boot_page_erase(CurrFlashAddress);
436 boot_spm_busy_wait();
437 boot_page_write(CurrFlashAddress);
438 boot_spm_busy_wait();
439 }
440
441 /* Send confirmation byte back to the host */
442 WriteNextResponseByte('\r');
443 }
444 #if !defined(NO_LOCK_BYTE_WRITE_SUPPORT)
445 else if (Command == 'l')
446 {
447 /* Set the lock bits to those given by the host */
448 boot_lock_bits_set(FetchNextCommandByte());
449
450 /* Send confirmation byte back to the host */
451 WriteNextResponseByte('\r');
452 }
453 #endif
454 else if (Command == 'r')
455 {
456 WriteNextResponseByte(boot_lock_fuse_bits_get(GET_LOCK_BITS));
457 }
458 else if (Command == 'F')
459 {
460 WriteNextResponseByte(boot_lock_fuse_bits_get(GET_LOW_FUSE_BITS));
461 }
462 else if (Command == 'N')
463 {
464 WriteNextResponseByte(boot_lock_fuse_bits_get(GET_HIGH_FUSE_BITS));
465 }
466 else if (Command == 'Q')
467 {
468 WriteNextResponseByte(boot_lock_fuse_bits_get(GET_EXTENDED_FUSE_BITS));
469 }
470 #if !defined(NO_BLOCK_SUPPORT)
471 else if (Command == 'b')
472 {
473 WriteNextResponseByte('Y');
474
475 /* Send block size to the host */
476 WriteNextResponseByte(SPM_PAGESIZE >> 8);
477 WriteNextResponseByte(SPM_PAGESIZE & 0xFF);
478 }
479 else if ((Command == 'B') || (Command == 'g'))
480 {
481 /* Delegate the block write/read to a separate function for clarity */
482 ReadWriteMemoryBlock(Command);
483 }
484 #endif
485 #if !defined(NO_FLASH_BYTE_SUPPORT)
486 else if (Command == 'C')
487 {
488 /* Write the high byte to the current flash page */
489 boot_page_fill(CurrAddress, FetchNextCommandByte());
490
491 /* Send confirmation byte back to the host */
492 WriteNextResponseByte('\r');
493 }
494 else if (Command == 'c')
495 {
496 /* Write the low byte to the current flash page */
497 boot_page_fill(CurrAddress | 0x01, FetchNextCommandByte());
498
499 /* Increment the address */
500 CurrAddress += 2;
501
502 /* Send confirmation byte back to the host */
503 WriteNextResponseByte('\r');
504 }
505 else if (Command == 'm')
506 {
507 /* Commit the flash page to memory */
508 boot_page_write(CurrAddress);
509
510 /* Wait until write operation has completed */
511 boot_spm_busy_wait();
512
513 /* Send confirmation byte back to the host */
514 WriteNextResponseByte('\r');
515 }
516 else if (Command == 'R')
517 {
518 #if (FLASHEND > 0xFFFF)
519 uint16_t ProgramWord = pgm_read_word_far(CurrAddress);
520 #else
521 uint16_t ProgramWord = pgm_read_word(CurrAddress);
522 #endif
523
524 WriteNextResponseByte(ProgramWord >> 8);
525 WriteNextResponseByte(ProgramWord & 0xFF);
526 }
527 #endif
528 #if !defined(NO_EEPROM_BYTE_SUPPORT)
529 else if (Command == 'D')
530 {
531 /* Read the byte from the endpoint and write it to the EEPROM */
532 eeprom_write_byte((uint8_t*)((intptr_t)(CurrAddress >> 1)), FetchNextCommandByte());
533
534 /* Increment the address after use */
535 CurrAddress += 2;
536
537 /* Send confirmation byte back to the host */
538 WriteNextResponseByte('\r');
539 }
540 else if (Command == 'd')
541 {
542 /* Read the EEPROM byte and write it to the endpoint */
543 WriteNextResponseByte(eeprom_read_byte((uint8_t*)((intptr_t)(CurrAddress >> 1))));
544
545 /* Increment the address after use */
546 CurrAddress += 2;
547 }
548 #endif
549 else if (Command != 27)
550 {
551 /* Unknown (non-sync) command, return fail code */
552 WriteNextResponseByte('?');
553 }
554
555 /* Select the IN endpoint */
556 Endpoint_SelectEndpoint(CDC_TX_EPNUM);
557
558 /* Remember if the endpoint is completely full before clearing it */
559 bool IsEndpointFull = !(Endpoint_IsReadWriteAllowed());
560
561 /* Send the endpoint data to the host */
562 Endpoint_ClearIN();
563
564 /* If a full endpoint's worth of data was sent, we need to send an empty packet afterwards to signal end of transfer */
565 if (IsEndpointFull)
566 {
567 while (!(Endpoint_IsINReady()))
568 {
569 if (USB_DeviceState == DEVICE_STATE_Unattached)
570 return;
571 }
572
573 Endpoint_ClearIN();
574 }
575
576 /* Wait until the data has been sent to the host */
577 while (!(Endpoint_IsINReady()))
578 {
579 if (USB_DeviceState == DEVICE_STATE_Unattached)
580 return;
581 }
582
583 /* Select the OUT endpoint */
584 Endpoint_SelectEndpoint(CDC_RX_EPNUM);
585
586 /* Acknowledge the command from the host */
587 Endpoint_ClearOUT();
588 }
589